Skip to main content
. Author manuscript; available in PMC: 2014 Oct 1.
Published in final edited form as: Pharm Biol. 2013 Jun 5;51(10):1228–1235. doi: 10.3109/13880209.2013.784922

Table 1.

Four kinetic equations used in Figure 2. The first order kinetics was chosen since it showed the most reliable pretreatment time-curves based on the values of adjusted R2 and probability obtained.

Kinetics Equation Adjusted R2 Probability (>F) t0.5 (min)
Empirical model
 Baicalin
C=187.24-205.09×t11.16+t
0.9586 6.14E-4 11.16
 Wogonoside
C=44.04-49.77×t33.13+t
0.9012 1.30E-3 33.13
 Baicalein
C=79.13+242.86×t12.08+t
0.9380 3.45E-5 12.08
 Wogonin
C=14.36+57.04×t35.67+t
0.8884 2.46E-4 35.67
Zero order
 Baicalin
C=86.86-0.50t
0.23976 1.00E-1 86.86
 Wogonoside
C=29.39-0.14t
0.48099 1.50E-2 104.96
 Baicalein
C=119.84+0.60t
0.25019 1.50E-3
 Wogonin
C=30.43+0.16t
0.48768 1.60E-3
First order
 Baicalin
C=185.96×e-0.061×t
0.9955 4.61E-7 11.32
 Wogonoside
C=43.7×e-0.025×t
0.9497 5.57E-5 27.69
 Baicalein
C=297.81-218.70×e-0.060×t
0.9796 3.74E-6
 Wogonin
C=61.63-47.49×e-0.027×t
0.9368 7.99E-5
Second order
 Baicalin
C=16.63×10-4t+1/187.74
0.9448 2.36E-4 8.03
 Wogonoside
C=19.37×10-4t+1/44.47
0.9005 2.99E-4 24.01
 Baicalein
C=321.99-13.41×10-4t+1/242.87
0.9380 3.45E-5
 Wogonin
C=71.38-14.91×10-4t+1/57.04
0.8884 2.46E-4