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Abstract
Among four vertebrate arrestins, only two are ubiquitously expressed. Arrestins specifically bind
active phosphorylated G protein-coupled receptors (GPCRs), thereby precluding further G protein
activation. Recent discoveries suggest that the formation of the arrestin-receptor complex initiates
the second round of signaling with comparable biological importance. Despite having virtually no
recognizable sequence motifs known to mediate protein-protein interactions, arrestins bind a
surprising variety of signaling proteins with mind-boggling range of functional consequences.
High conformational flexibility allows arrestins to show many distinct “faces” to the world, which
allows these relatively small ~45 kDa proteins to bind various partners under different
physiological conditions, organizing multi-protein signaling complexes and localizing them to
distinct sub-cellular compartments.

Introduction
Exquisitely timed precisely regulated protein-protein interactions determine every aspect of
cell behavior. If we clearly understood what makes proteins bind each other and what
prevents their interactions, we would be able to tell the cell what to do in a language it
cannot ignore. Arrestins are a family of only four proteins in mammals with remarkably
similar structures [1–4]. Their only function in life is to bind an amazing variety of partners
at appropriate times, organizing multi-protein complexes and localizing them to proper sub-
cellular compartments, thereby orchestrating cell signaling [5,6]. Because of unimpressive
size (~45 kDa), an arrestin molecule can accommodate no more than 5–6 other proteins
simultaneously, suggesting that at any given moment it interacts only with select few out of
hundreds of possible partners [7]. Thus, arrestins provide a perfect model for elucidating
how the structural changes in proteins make them “decide” which partners to bind and in
what combinations. Extensive crystallographic, biophysical, and mutagenesis studies of
arrestin proteins are beginning to shed light on the molecular mechanisms underlying these
critical choices.
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S-antigen, 48 kDa protein, visual or rod arrestin), arrestin-2 (β-arrestin or β-arrestin1), arrestin-3 (β-arrestin2 or hTHY-ARRX), and
arrestin-4 (cone or X-arrestin; for unclear reasons its gene is called “arrestin 3” in the HUGO database).

NIH Public Access
Author Manuscript
Curr Opin Cell Biol. Author manuscript; available in PMC 2015 April 01.

Published in final edited form as:
Curr Opin Cell Biol. 2014 April ; 0: 1–9. doi:10.1016/j.ceb.2013.10.007.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Basal does not mean inactive
The protein that specifically binds active phosphorylated rhodopsin was discovered less than
30 years ago [8]. The fact that receptor binding induces a global conformational change in
this protein was established soon thereafter [9]. This idea was one of the cornerstones of the
first mechanistic model (which still holds water) coherently explaining how arrestin can
bind with high affinity to the receptor that is active and phosphorylated at the same time, but
neither to inactive phosphorylated nor active unphosphorylated form of the same protein
[10]. Therefore, subsequently solved remarkably similar crystal structures of all four
arrestins [1–4,11,12] were believed to represent their basal conformation, which was
deemed “inactive”. In essence, arrestins were assumed to exist in this “waiting” state, ready
to be “activated” by receptor binding [13], whereupon they would acquire the ability to
interact with various non-receptor partners [14]. This view was largely shaped by the
pioneering reports in 1999–2001 that arrestin-assisted activation of Src [15,16], MAP
kinases JNK3 [17] and ERK1/2 [15,16,18,19], and arrestin ubiquitination [20] happened
only in response to receptor activation. Although the first evidence contradicting this view
emerged as early as 2001, when Miller at al reported receptor-independent facilitation of
JNK3 phosphorylation by arrestin-3 [21], the idea that only GPCR-bound arrestin can
interact with non-receptor partners is still popular. In fact, it is an example of unwarranted
generalization: it is correct in some cases, but misleading in others. Careful comparison of
ERK1/2 and JNK3 activation in the same cell showed that while ERK1/2 phosphorylation is
strictly dependent on receptor stimulation and is only mediated by arrestins that can bind
receptors, the activation of JNK3 is not affected by receptor activity or the ability of arrestin
to interact with GPCRs [22]. This finding was consistent with previous demonstration that
ERK1/2 preferentially binds receptor-associated arrestins [23], whereas JNK3 binds free
arrestins in their basal state perfectly well [24], and its activation is facilitated even by
arrestin-3 mutant with the deletion in the inter-domain hinge that precludes receptor binding
[22,25]. Admittedly, cell-based assays cannot yield unambiguous answers, because every
cell expresses thousands of different proteins that can mediate indirect interactions and
significantly affect outcomes. Recently the ability of arrestin-3 to facilitate JNK3 activation
by its upstream kinases was demonstrated in the system reconstituted from purified proteins
in the absence of receptors [26,27], proving beyond reasonable doubt that this is a function
of free arrestin-3.

In fact, remarkably few signaling proteins were shown to preferentially interact with
receptor-bound arrestins: in addition to ERK1/2 [23], this short list includes clathrin and
AP2 [28,29], E3 ubiquitin ligase AIP4 [30], and cRaf1 [23]. Several partners strongly prefer
the basal conformation of arrestins: microtubules [31], calmodulin [32], E3 ubiquitin ligases
Mdm2 [24] and parkin [33]. Some proteins apparently bind arrestins in both basal and
“active” conformations comparably: JNK3 [24], ASK1, MKK4, MEK1 [25], and PDE4D
[34] (Table 1). Unfortunately, we do not know the conformational preferences (if any) of the
great majority of arrestin-binding proteins. This issue must be addressed experimentally for
each partner, and it is safe to predict that for various proteins the answers will be very
different. It seems logical that if the interaction site of a particular partner overlaps with the
receptor footprint, this partner would only bind free arrestins. This prediction is supported
by the evidence in case of calmodulin [32] and microtubules [31]: both interact with the
concave sides of the two domains engaged by GPCRs, and therefore receptors successfully
outcompete them [32,35]. Unfortunately, arrestin residues mediating the interaction were
identified in very few cases (Fig. 1), which makes the usability of this logic very limited. To
complicate things further, different functional forms of the same receptor apparently interact
with distinct arrestin elements, as has been recently shown by comparing the residues
engaged by active unphosphorylated and inactive phosphorylated rhodopsin on arrestin-1
[36] (Fig. 2). Thus, it is entirely possible that certain partners would compete with some
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forms of the receptor, but not others. Precise identification of the binding sites of different
functional forms of GPCRs and other signaling proteins on arrestins is yet another unmet
need in arrestin biology.

Receptor-bound conformation: what does it look like?
It became clear that the shape of receptor-bound arrestins must be quite different from the
basal state long before any crystal structures were solved [9]. The release of the C-tail was
the first receptor-induced conformational rearrangement documented [37]. However, the
finding that the deletion of the C-tail does not make arrestin bind all forms of the receptor
indiscriminately [10] suggested that additional changes are likely. Recently several attempts
to determine receptor-bound “active” conformation of arrestins were made using various
methods, such as NMR [36], EPR [38], and crystallography [39,40] (Fig. 3). Each of these
approaches has obvious caveats: biophysical studies of arrestin complexes with real receptor
cannot yield atomic resolution [36,38], whereas real receptors are absent in beautiful crystal
structures of “active” arrestins [39,40]. Nonetheless, collectively these attempts proved very
informative. As could be expected, every study detected significant conformational
rearrangements in arrestins. EPR documented the movement of four flexible loops on the
receptor-binding side [38], some of which were predicted, while others were quite
unexpected (Fig. 3B). NMR confirmed the engagement of distinct arrestin elements by
inactive phosphorylated and active unphosphorylated forms of the receptor [36] (Fig. 2),
which was predicted earlier based on mutagenesis and EPR data [10,41]. Unexpectedly,
NMR study also revealed global increase in arrestin flexibility upon the binding to active
phosphorylated receptor [36]. General “melting” of arrestin structure upon receptor binding
was never predicted, but biologically it makes perfect sense: receptor-bound arrestin
interacts with numerous signaling proteins, and protein-protein interactions are often
mediated by unstructured elements, where the binding to an appropriate partner promotes
folding [42,43]. The global conformational change induced by receptor binding was
hypothesized to include the movement of the two arrestin domains relative to each other
[13], partially based on the finding that the deletions in the 12-residue inter-domain hinge
impair receptor binding of all arrestins [31,44]. However, proposed clam-like movement of
the two domains was not detected by EPR [38] (Fig. 3B). Recently two crystal structures of
presumably “active” arrestins were reported: one of truncated arrestin-2 (previously shown
to be constitutively active [45]) associated with multi-phosphorylated C-terminus of
vasopressin V2 receptor [40](Fig. 3C) and the other of short arrestin-1 splice variant p44
also lacking the C-tail [39] (Fig. 3D). These very similar structures suggest that the
conformational changes include the rotation of the two domains relative to each other by
20–21° [39,40] (Fig. 3C,D). Both also revealed a large movement of the “139 loop” in the
central crest of the receptor-binding surface, away from the “finger loop” implicated in
receptor binding [41,46] (Fig. 3). This movement was earlier discovered using EPR [38] and
confirmed by mutagenesis [47]. Because the receptor is not present in the “active”
structures, we do not know how much arrestin domains actually move upon GPCR binding,
but domain rotation allows to rationalize hinge deletion results [31,44], which distance
measurements by EPR [38] left unexplained.

It is worth noting that back in 2006 this type of domain movement was proposed as a
possibility due to hydrophobic nature of the inter-domain interface [48] and even suggested
as the most likely based on molecular modeling [49]. The extent of domain rotation was
estimated at ~20° based the length of the hinge in WT arrestins [49]. The coincidence is
remarkable, even though this model was originally proposed to explain how two GPCRs can
fit a single arrestin [49]. A series of recent studies proved that monomeric class A
(rhodopsin-like) receptor is necessary and sufficient to perform all known signaling
functions: activate cognate G protein [50–52], become phosphorylated by G protein-coupled
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receptor kinases [53,54], and bind arrestins [53–56]. Interestingly, while the high-affinity
binding invariably involves one-to-one arrestin-receptor stoichiometry, an alternative mode,
where a single arrestin-1 molecule apparently engages two rhodopsins, one with high and
one with low affinity, was recently reported in the visual system [57,58]. It remains to be
elucidated whether this is a special adaptation in rods, where half of the surface of disc
membranes is occupied by rhodopsin, with the concentration in rod outer segments of ~ 3
mM [6], or reflects the capability of all arrestin proteins.

Although the true shape of “active” arrestins will be revealed only by the structure of the
arrestin-receptor complex, recent studies provided interesting clues (Fig. 3). Unless the real
structure proves otherwise, domain rotation appears the most likely global conformational
change, accompanied by the movement of several loops on the receptor-binding side. This
model, along with the identification of the docking sites of nonreceptor partners, which is
sadly missing in most cases, should help us understand their conformational preferences.

Microtubule-bound state: the third face of Janus?
All arrestins bind microtubules [31,35], and this interaction apparently triggers a
conformational change different from that induced by GPCRs [59], because hinge deletion
mutants impaired in receptor binding showed higher affinity for microtubules [31].
Microtubule binding was proposed to determine the localization of visual arrestin-1 in dark-
adapted photoreceptors [35] and to play a role in sub-cellular distribution and activity of
signaling proteins associated with non-visual arrestins [31]. Several proteins, including
ERK1/2 and Mdm2, interact with arrestins in microtubule-bound conformation (and/or
hinge deletion mutants mimicking this form) better than with free arrestins [23,24,31]. This
was particularly surprising in case of ERK1/2 with strong preference for the receptor-bound
form [23]. We know even less about the actual shape of microtubule-bound arrestins than
about their receptor-bound conformation. Since in this case crystallization is not an option,
only careful biophysical studies can give additional clues. This information is biologically
important, because it might give us tools to direct signaling proteins to the cytoskeleton and/
or specifically regulate their activity in this compartment.

Elusive transitions and signaling bias
Among many arrestin conformations we know well only the free state, with one structure
affording better than 2Å resolution [2]. Several recent studies [36,38–40] provided clues
about receptor-induced conformational changes, although the structure of the arrestin-
receptor complex, preferably several revealing different “flavors” of these complexes that
likely exist [60], would be most welcome. The shape of the microtubule-bound arrestin
remains to be elucidated. Recent finding that arrestin-3 binding to JNK3α2 differentially
affects its affinity for the upstream kinases, enhancing the interaction with MKK4, while
decreasing MKK7 binding [27], strongly suggests that many partners induce conformational
changes in arrestins, so that GPCRs and microtubules are not unique in this regard. Thus, the
shape of arrestins in complex with different partners must be investigated. Most importantly,
we know virtually nothing about the process of conformational transitions in arrestins,
which can be only elucidated by biophysical methods revealing protein dynamics, because it
is virtually impossible to deduce them from inherently static crystal structures.

Identification of arrestin elements engaged by various partners is another challenge.
Mapping of the receptor-binding site on arrestins [41,46] (Fig. 1A) and even partial
elucidation of the mechanics of the arrestin-receptor interactions [1–4,61] led to the
construction of enhanced arrestins that bind unphosphorylated active GPCRs, change
receptor trafficking pattern [62], and even compensate for the lack of receptor
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phosphorylation in vivo [63]. Reengineering of the receptor-binding surface of inherently
promiscuous non-visual arrestin-3 yielded mutants with >50-fold preference for some
GPCRs over others [64] (Fig. 1A). Similarly, even imperfect identification of MAP kinase
interaction sites led to the construction of arrestin-2 that does not facilitate ERK1/2
activation [65] (Fig. 1B), as well as arrestin-3 mutant that acts as a dominant-negative silent
scaffold, recruiting the kinases of JNK activation cascade away from productive scaffolds
and suppressing JNK activity in the cell [22] (Fig. 1B). Considering how many different
proteins arrestins bind [7], these pioneering attempts show that there are many possible ways
of constructing arrestins with signaling bias [60], which can be used to change cell signaling
in the desired manner.

Conclusions
Arrestins are typical scaffolds that bind numerous partners, organizing multi-protein
signaling complexes and ensuring their proper sub-cellular localization via interactions with
“anchoring” proteins, such as GPCRs and microtubules. Arrestins exist in at least three (very
likely more) distinct conformations: free, GPCR-associated, and microtubule-bound. This
flexibility underlies their functional versatility: each conformational state preferentially
recruits particular partners. Current challenge is to elucidate the shape of arrestins in each
state, the mechanism of their transition from one state to another, and the sites where other
proteins bind consistent with their conformational preferences. This will pave the way to
engineering arrestins that bind the partners we want and recruit them to sub-cellular
locations of our choosing in order to channel cell signaling in desired directions.
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Fig. 1. What arrestin elements do GPCRs and other partners engage?
A. Arrestin from “receptor viewpoint”. Arrestin residues that determine receptor specificity
[46,64] are shown in different shades of green: yellow-green, those where mutations (Y239T
and Q256Y) result in reduced dopamine D2 receptor binding; bright green, those where
mutations (D260K and Q262P) result in high preference for other GPCRs over β2-
adrenergic receptor. Elements engaged by Ca2+-liganded calmodulin are shown in pink and
brown (darker color indicates greater immobilization by calmodulin [32]). Residues in green
with red border (L69 and T239) are shared by receptors and calmodulin. B. Non-receptor-
binding side of arrestins. Residues engaged by all forms of PDE4D are shown in blue, those
specific for PDE4D5 in bright violet [34], the residue critical cRaf1-binding is in bright
green (mutation R307A in arrestin-3 prevents cRaf1 interaction; homologous mutation
K308A in arrestin-3 does not) [65], residues responsible for the ability of arrestin-3 to
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promote JNK3 activation are shown in bright red (critical V343) and pink (supporting
residues) [67]. Arrestin-3 structure 3P2D [4] was used to generate this figure (since
calmodulin-binding elements were identified in arrestin-2 [32], homologous arrestin-3
residues are highlighted).
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Fig. 2. Different functional forms of the same receptor engage distinct arrestin elements
Arrestin-1 residues demonstrating significant chemical shift changes in NMR spectra upon
the binding of light-activated unphosphorylated (A) or inactive phosphorylated (B). A. The
magnitude of binding-induced changes is shown by color coding: bright red, shifts greater
than 0.01; pink, shifts greater than 0.005, but smaller than 0.01. B. The magnitude of
binding-induced changes is shown by color coding: dark blue, peaks disappeared; blue,
shifts greater than 0.01; light blue, shifts greater than 0.005, but smaller than 0.01. The two
forms of rhodopsin affect distinct arrestin-1 elements that only partially overlap [36].
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Fig. 3. Receptor binding-induced structural changes in arrestins
A. Basal arrestin conformation (based on arrestin-2 structure 1G4M, which has the highest
resolution among published arrestin structures [2]). B. A model of arrestin-1 bound to
lightactivated phosphorylated rhodopsin based on intra-molecular distance measurements in
free and bound arrestin-1 [38]. C. Crystal structure 4JQI of truncated arrestin-2-(1–382) in
complex with multi-phosphorylated C-terminus of vasopressin V2 receptor receptor [40]. D.
Crystal structure of p44, truncated splice variant of arrestin-1. Arrestin elements that change
conformation upon receptor binding are color-coded, as follows: blue, the “finger loop”
(G68-S78 in arrestin-1; G65-T74 in arrestin-2); green, “139 loop” (P134-S142 in arrestin-1;
P131-A139 in arrestin-2); red, “157 loop” (H155-P165 in arrestin-1; E152-H159 in
arrestin-2); magenta, “344 loop” (S336-S344 in arrestin-1; S330-S340 in arrestin-2).
Residue numbers for corresponding bovine proteins are given. The rotation of the two
domains relative to each other by 20–21° is indicated by curved arrow in C and D.
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Table 1

Known conformational preferences of arrestin binding partners.

Arrestin Binding
Partner

Arrestin
isoform

Preferred Arrestin
Conformation

References

ERK1/2 Arrestin-2,
arrestin-3

receptor-bound [23]

clathrin Arrestin-2,
arrestin-3

receptor-bound [28,29]

AP-2 Arrestin-2,
arrestin-3

receptor-bound [28,29]

E3 ubiquitin ligase
AIP4

Arrestin-2 receptor-bound [30]

cRaf1 Arrestin-2 receptor-bound [23]

microtubules Arrestin-1,
arrestin-2,
arrestin-3

basal [31,59]

calmodulin arrestin2 basal [32]

E3 ubiquitin ligase
Mdm2

Arrestin-1,
Arrestin-2,
arrestin-3

basal [24]

E3 ubiquitin ligase
parkin

Arrestin-2,
arrestin-3

basal [33]

JNK3 Arrestin-1,
arrestin-2,
arrestin-3

either [24]

ASK1 Arrestin-2,
arrestin-3

either [25]

MKK4 Arrestin-3 either [25]

MEK1 Arrestin-2,
arrestin-3

either [25,66]

c-Raf1 Arrestin-3 either [23]

PDE4 Arrestin-3 either [34]
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