
rsob.royalsocietypublishing.org
Research
Cite this article: Franke B et al. 2014

Molecular basis for the fold organization and

sarcomeric targeting of the muscle atrogin

MuRF1. Open Biol. 4: 130172.

http://dx.doi.org/10.1098/rsob.130172
Received: 2 October 2013

Accepted: 3 March 2014
Subject Area:
structural biology

Keywords:
RBCC/TRIM fold, coiled-coil, COS-box, X-ray

crystallography, electron microscopy, ab initio

modelling
Author for correspondence:
Olga Mayans

e-mail: olga.mayans@liv.ac.uk
†Present address: Netherlands Cancer Institute,

Plesmanlaan 121, 1066CX Amsterdam,

The Netherlands.

Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsob.130172.
& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
Molecular basis for the fold
organization and sarcomeric
targeting of the muscle atrogin
MuRF1
Barbara Franke1, Alexander Gasch2, Dayté Rodriguez3,
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1. Summary
MuRF1 is an E3 ubiquitin ligase central to muscle catabolism. It belongs to the

TRIM protein family characterized by a tripartite fold of RING, B-box and

coiled-coil (CC) motifs, followed by variable C-terminal domains. The CC

motif is hypothesized to be responsible for domain organization in the fold as

well as for high-order assembly into functional entities. But data on CC from

this family that can clarify the structural significance of this motif are scarce.

We have characterized the helical region from MuRF1 and show that, contrary

to expectations, its CC domain assembles unproductively, being the B2- and

COS-boxes in the fold (respectively flanking the CC) that promote a native qua-

ternary structure. In particular, the C-terminal COS-box seemingly forms an

a-hairpin that packs against the CC, influencing its dimerization. This shows

that a C-terminal variable domain can be tightly integrated within the conserved

TRIM fold to modulate its structure and function. Furthermore, data from trans-

fected muscle show that in MuRF1 the COS-box mediates the in vivo targeting of

sarcoskeletal structures and points to the pharmacological relevance of the COS

domain for treating MuRF1-mediated muscle atrophy.
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unstructured. Constructs used in this study are indicated.
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2. Background
The regulation of protein catabolism by the proteasome

system receives ever-increasing attention owing to its

impact on the (patho)physiology of the eukaryotic cell. The

TRIM protein family consists of E2 and E3 ubiquitylating pro-

teins that arbitrate cellular processes, such as growth and

differentiation, transcription, apoptosis and viral response

[1,2]. Consequently, TRIMs have been linked to multiple

pathologies, including cancer, familiar Mediterranean fever,

Opitz/BBB syndrome, mulibrey nanism, thyroid carcinomas

and myopathy [3–6]. Despite their functional diversity,

TRIM proteins invariably share a tripartite fold consisting

of a RING finger (R), one or two RING finger-like B-box

domains (B) and a helical segment predicted to form a

coiled-coil (CC) motif. This RBCC fold constitutes the con-

stant N-terminal fraction of TRIM proteins, but variable

domains can be found in C-terminal position (e.g. PHD,

COS-box, PRY-SPRY). Those specific domains define the

classification of the more than 70 members of the TRIM

family into nine distinct classes (CI-CIX, where C signifies

C-terminal subgroup) [7,8].

The function of the TRIM/RBCC fold is to serve as a scaf-

fold that induces homo- and heteromeric interactions across

diverse E2–E3 ubiquitylation systems, leading to their for-

mation of pleiotropic complexes in the cell [2,9,10]. The CC

domain is thought to be central to this function by contribut-

ing to position domains within the TRIM fold, promoting

high-order assembly and mediating molecular targeting.

However, CC domains from TRIMs have atypical sequences

with poorly defined heptad-repeat compositions that confer

on them complex associative properties and a pronounced

tendency to aggregate. This hinders their characterization at

the molecular level and, as a result, little understanding

exists of their self-assembly process.

Muscle-specific RING fingers proteins (MuRFs) are E3 ubi-

quitin ligases that associate with the sarcomeric cytoskeleton

reportedly through their CC domains [11]. MuRFs form the

C-II TRIM class [7], whose C-terminal specific fraction contains

a COS (C-terminal subgroup One Signature)-box motif and an

intrinsically disordered acidic tail (figure 1). There are three

known members of the MuRF family—MuRF1 [12], MuRF2

[13] and MuRF3 [14]—all involved in controlling the trophicity

of striated muscle tissue. The three MuRFs are encoded by

different genes but are remarkably conserved: approximately

81% sequence identity across their RB fractions and approxi-

mately 36% in their CC domains [6]. MuRF1 is the

best-studied member of the family. It is strongly upregulated

by atrophic stimuli, such as immobilization, denervation,
nutritional deprivation, ageing and disease (e.g. cancer,

sepsis and renal failure) [15–17]. MuRF1 targets components

of the contractile sarcoskeleton; namely, myosin [18,19], tropo-

nin-T and titin [12,20,21]. Thus, it is regarded as the critical E3

ligase that acts on the cytoskeleton in situ, contributing to the

disassembly of the myofibril. MuRF1 also appears to have sig-

nalling roles in the cell as it interacts with a broad range of

cellular factors, including ubiquitin carboxyl-terminal hydro-

lase 13 (USP13), the SUMO E2 ligase Ubc9 and the

transcription regulator GMEB-1 [22]. MuRF1 deletion attenu-

ates muscle wasting and it is a pursued pharmacological

target [15,23]. Despite this, the structural and functional differ-

ences between MuRFs are poorly understood, as is the balance

of their expression across muscle types and during develop-

ment [24,25]. MuRF2 and MuRF3 are not transcriptionally

upregulated by atrophic stimuli, but they act synergistically

with MuRF1 (e.g. myosin is co-degraded by MuRF1 and

MuRF3 [26], while MuRF1 and MuRF2 jointly modulate cardiac

hypertrophy by acting on CARP/EEF1G [21]). Such functional

coupling might reflect the formation of MuRF hetero-oligomers

in the cell, as is characteristic of TRIM proteins.

The molecular understanding of MuRF1 targeting is

scarce, with only the interaction with the titin myofilament

having been studied in vitro [11,12]. Using recombinant

samples, we showed that MuRF1 binds M-line titin with

high affinity through its helical domain (HD) [11]. The binding

site in titin is formed by a tandem of Ig-Ig-Fn domains (A168-

A170) just N-terminal to titin kinase. We previously character-

ized this tandem structurally at atomic level and identified the

determinants of its binding [11]. By contrast, little is known

about the structure of MuRF1 and its CC scaffold, which is

central to molecular targeting. Here, we study the full-length

HD of MuRF1, spanning its atypical CC sequence and the

COS-box flanking domain. Our data reveal the interrelation

of these motifs both structurally and functionally within the

TRIM fold of MuRF1, and, in particular, the high significance

of the COS-box in sarcomere targeting.
3. Results
3.1. The helical domain of MuRF1 has low propensity

to coiled-coil formation
To estimate the associative properties of the HDs of MuRFs,

we predicted their potential for CC formation. CC motifs con-

sist of two to five amphipathic a-helices that wind around

each other to form, typically, a left-handed supercoil, thereby

inducing protein oligomerization [27]. CC sequences are
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Figure 2. Sequence analysis of the HD of MuRFs. (a) Sequence alignment of known MuRF sequences (MuRF1, MuRF2, MuRF3; h ¼ human, m ¼ mouse, r ¼ rat,
b ¼ bovine, p ¼ orangutan). The unstructured acidic tail is excluded. The colour code reflects sequence conservation as identity percentile: dark blue . 80%, light
blue . 60%, light grey . 40%, white � 40%. (b) Secondary structure prediction of the HD fraction (lower panel in (a)) of human MuRF1 (grey), MuRF2 (cyan)
and MuRF3 (red). Cylinders indicate helices. (c) Prediction of CC regions in human MuRFs (colour code as above). The total probability for CC formation is shown as a
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characterized by a heptad-repeat of amino acids denoted by a
to g. Positions a and d classically harbour hydrophobic

residues, which constitute the structural core of the motif.

Positions e and g often host charged groups that form intra-

and inter-helical salt bridges crucial to fold stability and

interchain registry. An initial prediction of secondary struc-

ture content indicated that the helical region of MuRFs

consists of a long, uninterrupted helix (helix H1), followed

by two short C-terminal helices (helix H2 and H3) linked

by loops and mapping to the COS-box motif (figure 2).

This prediction is consistent with a previous study that esti-

mated the secondary structure content of the helical region

of MuRF1 to be 70% a-helix and 30% random coil, based

on circular dichroism data [11]. Predictors indicated that

only the C-terminal end of the long helix H1 is compatible

with CC formation. The prediction was consistent for all

three MuRFs, although MuRF2 had the shortest predicted

CC-segment owing to the presence of bulky residues (M227

and F266) in core heptad positions a and d. Such groups are

poorly accommodated in the limited interface of coilinga-helices

[28]. The tendency for CC formation was modest for all MuRFs,

as reflected by the low probability scores (figure 2c). The scores,

in addition, could not resolve a preference for dimeric or trimeric

association as both states yielded comparable probability
values. However, previous studies that used size exclusion

chromatography coupled to multi-angle laser light scattering

(SEC-MALLS) on the helical fraction of MuRF1 showed it to

form dimers [11,29]. In the light of these data, the predictions

led us to anticipate that the CC-prone, C-terminal end of helix

H1 must form dimeric CC motifs, thereby being a molecular

determinant of self-assembly in MuRFs.
3.2. Crystal structure of the MuRF1 CC segment reveals
a tetrameric palindrome

To gain an insight into the assembly of the CC-prone segment

identified, we elucidated the crystal structure of the corre-

sponding fragment from human MuRF1 (MuRF1CC) to

2.1 Å resolution (table 1). The crystals contained four copies

of the MuRF1CC chain in their asymmetric unit. These

assembled into two parallel dimers, each having an ‘open scis-

sor’ conformation that intercalated through their C-terminal

ends to form a palindromic, inverted tetramer (figure 3).

This packing resembles that of the CC domains from the post-

synaptic density protein Homer (PDB code 3CVE), Ndel1

(2V66) and BST2/tetherin (3MKX), although sequence

similarity between these and MuRF1CC is not detectable. In



Table 1. Diffraction data statistics and model refinement parameters.

space group P21

unit cell dimensions a ¼ 70.79 Å, b ¼ 24.41 Å,

c ¼ 75.39 Å, b ¼ 107.658

X-ray data

beamline I03 (diamond)

detector ADSC Q315r

wavelength (Å) 0.97

resolution (Å) 20.00 – 2.10 (2.15 – 2.10)

no. unique reflections 14 626 (1008)

Rsym (I) 2.7 (45.0)

multiplicity 3.64 (3.74)

completeness (%) 97.7 (99.3)

I/s (I) 17.24 (3.31)

model refinement

no. reflections in working/

free set

13 899/725

no. protein residues 228a

no. solvent molecules/buffer

molecules

55/20b

R-factor/R-free (%) 21.18/26.15

RMSD bond length (Å)/bond

angle (8)

0.006/0.836

Ramachandran statistics

favoured/allowed/outliers (%) 99.07/0.46/0.47
aOut of a total of 244 amino acids, 16 residues were structurally disordered
and are missing from the model (corresponding to 6.5% of the structure).
The missing residues are as follows: chain A (G271), chain C (G-3, E269,
P270, G271), chain B (E269, P270, G271), chain D (G-3, A-2, M-1, D214,
D268, E269, P270, G271).
bOrdered buffer components are glycerol and acetic acid.
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MuRF1, however, the chains within each dimer are out of

registry by one full heptad-repeat and their crossing angle

is broad, leading to the unpairing of both N- and C-termini.

The resulting exposure of hydrophobic residues at the

C-terminus permits the formation of an interchain hydro-

phobic core that supports the assembly of the inverted

tetramer (inset in figure 3). Other than that core, the contacts

within each dimer are few, with only two salt bridges (K224-

E236’ and E236-K238’) providing chain recognition (analysis

of chain interfaces used PISA [31]). One additional salt

bridge (K238-D268’’; chains DA in figure 3a) is present in

the structure, but it contributes to tetramer stabilization.

A further analysis with TWISTER [32] (figure 3b) and

SOCKET [28] (electronic supplementary material, figure S1)

was used to identify stretches in each chain that formed

parallel, antiparallel or simultaneous parallel/antiparallel

interactions. The analysis revealed that MuRF1CC can establish

manifold interactions, being able to support concurrently the

formation of parallel and antiparallel dimers and tetrameric

helical bundles. These promiscuous self-associative interactions

are in agreement with the mixed probability scores of the CC

predictions. This led us to question the prevailing view that
this MuRF1 region associates into robust CC motifs and that

it directs the productive quaternary assembly of MuRF1.
3.3. Coiled-coil fraction of MuRF1 does not assemble
productively in solution

Given the unexpected assembly of MuRF1CC in the crystalline

state, we studied its association in solution using SEC-MALLS.

This technique yields an accurate determination of molecular

mass (MM) without being influenced by molecular shape, an

important consideration when dealing with strongly aniso-

metric molecules. SEC-MALLS measurements yielded an

average MM of 11.8 kDa (table 2; electronic supplementary

material, figure S3a). This value is intermediate between the

calculated MM of a monomer (7 kDa) and a dimer (14 kDa)

of this sample. This indicates that the tetrameric crystalline

state does not predominate in solution, where the sample

appears to form mostly dimers, probably in equilibrium with

a monomeric fraction.

To investigate whether the extraction of MuRF1CC from

its molecular context could have weakened its self-associ-

ation, we assayed next an MuRF1 construct spanning the

full-length of helix H1 (MuRF1H1; figure 1), which probably

constitutes the entire CC motif. The expectation was that

this sample would show a stable, canonical, dimeric associ-

ation. However, SEC-MALLS data revealed that the sample

is trimeric and/or tetrameric in solution (table 2; electronic

supplementary material, figure S3b). The assemblies in sol-

ution may reproduce the interactions observed in the

crystal structure of MuRF1CC, but these might now be stabil-

ized by the longer length of the interacting chain. It can

be concluded that the long helix H1 of MuRF1 does not

assemble into native CC dimers.
3.4. Coiled-coil flanking motifs modulate the formation
of MuRF1 rod-shaped dimers

The irregularities in MuRF1H1 association led us to investigate

the role of CC flanking motifs in assembly. Using SEC-MALLS,

we analysed the oligomeric state of an MuRF1 construct

comprising the full-length helix H1, the preceding B2 box

and the subsequent COS-box (MuRF1B2jCCjCOS; figure 1). The

data (table 2; electronic supplementary material, figure S3c)

showed that the sample forms a range of oligomeric species,

including high-order aggregates, but that a sizeable fraction

forms small assemblies with an average MM of 49.2 kDa.

This value is in excellent agreement with the theoretical MM

of 48.1 kDa for a dimer of this construct, confirming that the

dimer (and not the tetramer) is the ground association state

of this sample.

To explore the global conformational features of

MuRF1B2jCCjCOS, we imaged the dimeric population fraction

using electron microscopy on negatively stained samples

(figure 4a,b). Micrographs showed a rod-like morphology of

approximately 17+3 nm length and 2.6+ 0.36 nm cross-

section (n ¼ 614). This overall shape suggested that, as

expected, the HD forms an elongated shaft with the B2-box

in apical position. However, the molecular length was shorter

than anticipated and could be explained by just the length of

helix H1 (29 helical turns with a pitch of 5.4 Å approximates

15.6 nm) plus the B2-box (approx. 2 nm). This led us to infer
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that the two short C-terminal helices (i.e. the COS-box) must

fold against the B2-CC fraction.
3.5. The C-terminal COS-box of MuRF1 is predicted to
have a spectrin-like fold

Next, we explored the fold of the COS-box through ab initio
modelling. This motif has no homology with any protein of

known structure, preventing the application of comparative

modelling. In ab initio modelling, the three-dimensional struc-

ture of proteins is derived from their amino acid sequence by

stitching together suitable protein fragments using simulated

annealing. The method is particularly successful when applied

to all-a proteins [33] owing to the greater accuracy of their

secondary structure prediction and the relatively limited

modes of helical packing compared with the variable twists

of b-sheets. Here, we employed the two leading ab initio
modelling programs: QUARK [34] and ROSETTA [35]. QUARK

assembles fragments of variable length identified by fold recog-

nition methods. Only available as a server, it returns a set of ten

predictions and estimates of model reliability as TM-scores.
ROSETTA assembles fragments of 3- and 9-residue length ident-

ified using PSI-BLAST. At the fragment assembly stage,

numerous models are clustered by structural similarity and

centroid representatives of large top clusters considered as can-

didate fold predictions. The appearance of a large top cluster is

generally indicative of accurate fold predictions.

First, we modelled the sequence spanning the crystallo-

graphic MuRF1CC and the COS-box, as EM data suggested

that the COS-box might require the preceding MuRF1CC por-

tion for packing. Models calculated using QUARK (figure 5a)

were in excellent agreement with the crystal structure in pre-

dicting MuRF1CC as a long a-helical shaft. They displayed the

C-terminal COS-box as a compact arrangement, where two

short helices folded into an a-hairpin that packed against

the shaft fraction. The resulting three-helix bundle resembled

a minimal version of the spectrin fold, where two helices lie

parallel to each other and the third is a cross-connector [36].

Nine out of the 10 predictions (electronic supplementary

material, figure S2) returned by QUARK shared this same

broad fold and had predicted TM-scores of 0.51–0.45

(over the threshold of 0.3 that indicates statistical signifi-

cance). Ab initio modelling in ROSETTA using the standard



Table 2. SEC-MALLS measurements. MM calculated from sequence data
(MMcalc) is quoted for the monomeric chain, with the value for a dimer given
in brackets. Experimental MM values (MMexp) have been measured using
SEC-MALLS (data shown in the electronic supplementary material, figure S3).

CC214 – 271 H1169 – 263 B2jCCjCOS114 – 327 aHD166 – 327

MMcalc (kDa) 7 (14) 11.3 (22.6) 24 (48.1) 17.4 (34.7)

MMexp (kDa) 11.8 37.4 49.2 32.3
aGiven here for comparison, values reported in [28] for the full-length HD
of MuRF1 spanning H1 and COS regions.
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protocol was unsuccessful, with the program overriding long

helices suggested by secondary structure predictions to pro-

duce compact, globular folds. This is a known limitation of

ROSETTA when handling anisometric structures [33]. Thus,

we next provided ROSETTA with the crystal structure of

MuRF1CC as a fixed fraction. This resulted in the largest clus-

ter containing 150 of the total 1000 models, indicative of a

satisfactory result (figure 5b). The model shared the same

topology with QUARK models (electronic supplementary

material, figure S2d ), this consistency being a further

indication of reliable modelling.

We then performed ab initio modelling in QUARK of the full-

length HD of MuRF1, comprising helix H1 and COS-box

(MuRF1HD). The models (figure 5c) represented the N-terminal

fraction of the domain as a single uninterrupted helix and were

consistent with those of MuRF1CC plus COS-box described

above. This result is in excellent agreement with secondary

structure predictions (figure 2) and EM data.

Interestingly, a comparison of ab initio models with the

crystal structure of MuRF1CC revealed a remarkable simi-

larity in helix packing (electronic supplementary material,

figure S4). In the MuRF1CC tetramer, helices arrange them-

selves along the same interfaces as those occupied by the

COS-box a-hairpin in the ab initio models. This suggested

that the crystallographic arrangement was a compensatory

conformation aimed to satisfy naturalistic interfaces.

Finally, we sought validation of the ab initio models by

testing the interaction of independently produced samples

of MuRF1H1 and the COS-box a-hairpin (MuRF1COS). Co-seg-

regation of both samples in size-exclusion chromatography

(figure 4c; electronic supplementary material, figure S5)

confirmed the interaction of the two segments. Our earlier

work [11,29] showed the HD of MuRF1 (spanning H1 and

COS-box) to be dimeric, similar to MuRF1B2jCCjCOS in this

work. However, individually MuRFH1 forms higher assem-

blies (table 2). This led us to conclude that the interaction of

H1 and COS-box prevents the non-native association of the

HD, and thus that the COS-box is required to achieve

productive homodimerization.
3.6. In vivo expressed COS-box targets sarcomeric
structures similar to full-length MuRF1

We tested whether the COS-box contributes to sorting MuRF1 to

its in vivo locations. For this, we first confirmed the localization of

endogenous MuRF1 by immunostaining (figure 6a–c). This

detected MuRF1 mostly in the Z-disc (consistent with its
interaction with Z-disc proteins [20,21]) and also, more discre-

tely, in the M-line region (consistent with its binding to titin

A168–170 [11,12]) (figure 6a–c). Endogenous MuRF1 is also

known to localize to the neuromuscular junction [37]. Then,

we transfected the tibialis anterior (TA) muscle of adult mice

with a COS-GFP fragment. In vivo imaging of the overexpressed

COS-box showed a regular pattern of striations in the myofibril,

indicative of its targeting of defined sarcomeric structures

(figure 6d,e). In addition, GFP fluorescence was also present in

punctate structures co-localizing with endocytic acetylcholine

receptor at the neuromuscular junction (figure 6f,g). To deter-

mine the precise localization of COS-GFP in the sarcomeric

striations, sections of the imaged muscles were prepared and

stained against f-actin using the marker phalloidin-TRITC

(figure 6h). This assigned the predominant in vivo targeting of

COS-GFP to the Z-line/I-band region. The fainter binding at

the M-line was no longer detectable, probably having been

disrupted by the fixation procedure. On the whole, these data

indicate that the localization of COS-GFP is consistent with

that of endogenous MuRF1. Furthermore, the findings comp-

lement a recent study on a pathogenic mutation of MuRF1,

Q247*, linked to hypertrophic cardiomyopathy [38]. The

mutation results in a truncated protein that lacks the COS-box.

Truncated MuRF1 remains diffuse in the cytoplasm, no longer

targeting sarcomeric structures and with a near-total loss of

ubiquitinating function. It can be concluded that the COS-box

is an important mediator of MuRF1 interactions in vivo, and

that it is necessary and sufficient for the recruitment of MuRF1

to the sarcomeric cytoskeleton.
4. Discussion
CC domains are thought to drive the organization of TRIM

proteins into functional assemblies. However, our analysis

of the CC from MuRF1 (MuRF1CC and MuRF1H1) suggests

that this domain does not govern molecular order in this

TRIM but that flanking domains modulate its associative

function. It is not rare that CC domains extracted from their

protein context no longer assemble natively. For example,

the coil 2 from lamin A forms parallel dimers in its intermedi-

ate filament context, but antiparallel dimers in isolation [39].

To compensate for the promiscuity of the CC fold, many

CC-containing proteins have additional motifs that condition

the self-assembly of these domains. An example is the

dimeric dystrophia myotonica protein kinase (DMPK),

whose C-terminal CC domain forms robust, but artefactual,

trimers in isolation [40]. DMPK assembles into functional

homodimers by means of an N-terminal association motif

that dictates the subsequent interaction of the CC fraction

[41]. In MuRF1, the B2- and COS-boxes flanking helix H1

act as terminal clamps that secure the correct self-assembly

of the CC. Our previous structural characterization of the

MuRF1 B2-box showed that it forms homodimers in solution

with high affinity [29]. Studies on other TRIM proteins have

confirmed that B-boxes also form homodimers in those cases

[42]. Thus, our data explain the need for the B2-box to pre-

cede and pre-define the chain registry of the CC domain so

as to initiate its productive assembly by vicinal confinement.

This provides a rationale for the universal presence in the

TRIM fold of the B2 box immediately N-terminal to the CC

motif, forming an evolutionarily conserved core unit. Here,

we also show that at the C-terminus, CC and COS-box



(a)
(d)

RING

B-box

CC

COS

AT

(b)

(c)
2800

2300

1800

1300

800

300

–200 0 50 100 150
ml

ar
b.

 u
ni

ts

200

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

250 300

H1
COS

Ve = 236.74

Ve = 203.34

10 nm

100 nm

215 nm
280 nm
fraction

Figure 4. Characterization of MuRF1B2jCCjCOS. (a) Electron micrograph of negatively stained MuRF1B2jCCjCOS samples corresponding to the outermost tail fractions of size-
exclusion chromatograms containing dimeric assemblies (electronic supplementary material, figure S3). (b) Gallery of three major class averages obtained by using the
processing software EMAN1. (c) Complexation of MuRF1H1 and MuRF1COS samples monitored by size-exclusion chromatography. The complex was formed by mixing the
samples in a molar ratio of 1 : 2.5 in 20 mM Tris – HCl pH 7.5, 200 mM NaCl, 1 mM DTT followed by incubation for 1 h at 48C. The mixture was run on a Superdex 200
HiLoad 26/60 column. Chromatogram and associated SDS-PAGE are shown. MW marker is SeeBlue Plus2 Pre-stained standard (Invitrogen) (samples are proximal to the
6 kDa band). (d ) Proposed quaternary structure of MuRF1 compiling known and predicted structural information on MuRF1. The structure of the B2-box dimer is that
previously elucidated by X-ray crystallography (PDB 3DDT) [29]; the model for the HD and its dimeric assembly is as deducted in the current study.

rsob.royalsocietypublishing.org
Open

Biol.4:130172

7

sequences are integrated into a structural unit, together form-

ing an HD, where the COS-box might prevent fraying of the

CC and aid the formation of functional dimers. This is the

first example of how a specific C-terminal domain is inte-

grated within the conserved TRIM fold to modulate its

structure and function. We anticipate that this architectural

design is shared by all 10 TRIMs in classes I–III where the

CC is immediately followed by a COS-box [5]. In addition

to the close MuRF1 homologues MuRF2 and MuRF3, these

classes include proteins such as the Opitz syndrome protein

Midline-1 (MID1) and its homologue Midline-2 (MID2), the

brain-specific TRIM9 that is seemingly linked to neuronal

dysfunction in dementia, and Harprin (TRIM36), thought to

regulate the acrosome reaction in sperm during fertilization.

We predict that the COS-box has a minimalistic spectrin-

like fold. The spectrin fold has been particularly observed in

microtubule-associated proteins [36], consistent with the role

attributed to the COS-box [7,14]. The mutation of the con-

served motifs FLQ and LDY in the COS-box of MID1
(respectively, 275-FLL-277 and 323-IDF-325 in MuRF1)

were shown to independently abolish the interaction with

microtubules [7]. Ab initio models in this study indicate

that these motifs co-localize at the termini of the COS a-

hairpin, at the base of the HD (figure 5a). This suggests

that these motifs are important for the correct folding of

the COS-box and/or that they form a key interaction locus

in the fold. Furthermore, previous SPOT-blots identified a

C-terminal sequence as the primary interaction site of

MuRF1 with M-line titin [20]. The mapping of this sequence

on our secondary structure predictions (figure 2) and on

the ab initio models (figure 5) shows that it corresponds to

helix H3. This helix is in the outermost position in the

models and thus is largely accessible. We conclude that

our model of MuRF1 COS-box rationalizes current binding

data on this motif. Finally, we summarize the findings

from this study in the proposal of an overall structural

model of MuRF1 (figure 4d ) that might guide its further

functional study.
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The model is superimposed on the crystal structure of MuRF1CC (grey). The pathogenic Q247* mutation is shown in black and motifs previously identified to mediate
microtubule binding in protein MID1 are in magenta [7]. Additional QUARK models are shown in the electronic supplementary material, figure S2. (b) ROSETTA-
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material, figure S2. (c) Top QUARK model of the full-length HD of MuRF1 (the degree of bending of the long helix H1 is not meaningful).
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5. Conclusion
The change in demographics and inactive lifestyles is making

muscle loss an endemic problem in the populations of devel-

oped countries. Hence, the study of pathways that regulate

the degradation of muscle proteins is of high interest. Over

50 potential MuRF1 targets have been proposed based on

yeast two hybrid screens, including sarcomeric proteins of

the Z-disc and M-lines [20,21], and the neuromuscular junction

[37]. Our findings suggest that the COS-box is a region of high

structural and functional importance in MuRF1. It is a necess-

ary interaction motif that mediates MuRF1 recruitment to

myocellular structures, and thus the pharmacological pertur-

bation of its targeting might open new avenues for the

control of MuRF1-mediated atrophy of the myofibril.
6. Methods
6.1. Sequence analysis
Sequences of MuRF proteins were obtained from the Uni-

protKB database and aligned with CLUSTALW2 [43] using the

BLOSUM matrix. Secondary structure predictions of the heli-

cal regions of MuRF1, -2, -3 used Jpred3 [44]. The probability

for CC formation was calculated with MULTICOIL [45] using a

sequence window of 28 residues.

6.2. Cloning
Human MuRF1CC (UniProtKB Q969Q1) was cloned into the

vector pETM-11 (EMBL collection) using KpnI and NcoI restric-

tion sites. This vector incorporates a His6-tag and a TEV
protease cleavage site N-terminal to the target construct.

MuRF1H1 (containing the mutation C173S) was cloned into

pETM-20 (EMBL collection) using the restriction sites NcoI

and BamHI, fusing an N-terminal His6-TRX tag to the target

construct, cleavable by TEV protease. MuRF1COS was cloned

into the NcoI and Acc65I sites of pETZZ (http://babel.ucmp.

umu.se/cpep/web_content/Pages/CPEP_09_vectors.html) to

produce a TEV-protease-cleavable N-terminal His6-ZZtag con-

struct. The expression clone of MuRF1B2jCCjCOS (containing

the mutation C298S) has been previously reported [29].

The C-terminal fusion of the COS-box to GFP was

obtained by cloning MuRF1COS into the pEGFP-N1 vector

using XhoI and EcoRI sites.

All constructs were verified by sequencing (Geneservice).
6.3. Protein production
MuRF1 samples were overexpressed in Escherichia coli Rosetta2

(DE3) or BL21 (DE3) (Novagen). Cultures were grown at 308C
up to an OD600 of 0.6 in Luria Bertani medium supplemented

with 20 mg ml21 chloramphenicol and 30 mg ml21 kanamycin.

Expression was induced by 0.75 mM isopropyl-b-D-thiogalac-

topyranoside (IPTG) and cultures were grown for a further

20 h at 208C. Cells were harvested by centrifugation at 48C.

Bacterial pellet was resuspended in lysis buffer (50 mM Tris

pH 8.0, 50 mM NaCl, 0.5 mM b-mercaptoethanol) containing

a protease inhibitor cocktail (Roche). Lysis was carried out

by French pressing in the presence of DNAse. The homogenate

was clarified by centrifugation and the supernatant applied to

a Ni2þ-chelating His trap column (GE Healthcare) equilibrated

in lysis buffer containing 20 mM imidazol. Elution used

200 mM imidazol. Tag removal was by incubation with TEV

http://babel.ucmp.umu.se/cpep/web_content/Pages/CPEP_09_vectors.html
http://babel.ucmp.umu.se/cpep/web_content/Pages/CPEP_09_vectors.html
http://babel.ucmp.umu.se/cpep/web_content/Pages/CPEP_09_vectors.html
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protease overnight at 48C during dialysis against lysis buffer.

The protein was then subjected to subtractive metal affinity

chromatography followed by gel filtration on a Superdex 75

16/60 HL column or on a Superdex 200 26/60 HL column

equilibrated in 20 mM Tris pH 7.5, 200 mM NaCl (GE Health-

care). The purified sample was stored at 48C until further use.

The production of MuRF1B2jCCjCOS was as reported [29].

6.4. Crystal structure elucidation
Crystals were grown at 208C in hanging drops using 48-well

plates (Hampton Research). Drops consisted of 1 ml protein
solution at 14 mg ml21 and 1 ml mother liquor containing

35% MPD, 0.1 M sodium acetate pH 4.5, 20% [v/v] glycerol

and 20 mM NaF. Crystals grew as thin plates with dimen-

sions of 400 � 100 m2 in the measurable plane of the plate.

For X-ray data collection crystals were flash frozen in liquid

nitrogen. X-ray diffraction data were processed with XDS/

XSCALE [46] (table 1). Crystals contained four MuRF1CC

chains in the asymmetric unit, corresponding to a solvent

content of 46%. Analysis with POLARRFN revealed a two-

fold (k ¼ 1808) non-crystallographic axis contained within

the crystallographic ac plane (v ¼ 908, f ¼ 1538). Phases

were obtained using ARCIMBOLDO [47]. Subsequent
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model building used COOT [48] and ARP/wARP [49], while

refinement was in PHENIX [50]. Building of solvent and

ordered buffer components used PHENIX and COOT.

6.5. Multi-angle laser light scattering
Measurements were performed on a Dionex BioLC HPLC

connected to an 18-angle light-scattering detector and a differ-

ential refractometer (DAWN HELEOS-II and Optilab rEX,

Wyatt). A Superdex 75 10/300 GL column (GE Healthcare)

was used in 20 mM Tris pH 8.0, 50 mM NaCl at a flow rate

of 0.75 ml min21. Sample volumes of 1 ml were injected at a

concentration of 1.5 mg ml21. Samples eluting from the

column passed through an in-line DAWN HELEOS-II laser

photometer (l ¼ 658 nm) and an Optilab rEX refractometer

with a QELS dynamic light-scattering attachment. Light-

scattering intensity and eluent refractive index (concentration)

were analysed using ASTRA v. 5.3.4.13 software to give a

weight-averaged MM. To determine the detector delay

volumes and normalization coefficients for the MALLS

detector, a BSA sample (Sigma A-8531) was used as reference.

The SEC-MALLS analysis of MuRF1B2jCCjCOS samples

was carried out as above but used a Superdex 200 10/300

prep-grade column equilibrated in 20 mM Tris pH 8.0,

100 mM NaCl. MuRF1B2jCCjCOS was injected at 0.7 mg ml21.

6.6. Transmission electron microscopy and image
processing

Aliquots of 5 ml sample were adsorbed onto a glow-

discharged carbon film-coated copper grid, washed with

three droplets of pure water and subsequently stained with

2% uranyl-acetate. Images were recorded using a Philips

CM10 TEM (The Netherlands) operating at 80 kV on a

Veleta 4 k CCD camera (Olympus, Germany).

Reference-free alignment was performed on manually

selected particles from electron micrographs using the

EMAN image-processing package [51]. Next, particle projec-

tions were classified by multi-variant statistical analysis. The

class averages with the best signal-to-noise ratio were selected

and gathered in a gallery.

6.7. Ab initio modelling
The MuRF1 sequence corresponding to residues 214–327 was

submitted to the QUARK ab initio modelling server [34]. For com-

parison, fragment assembly-based ab initio modelling was done
with ROSETTA using default parameters (ab initio protocol) to pro-

duce 1000 models [35]. This was done both with and without

specifying that residues 214–271 must adopt the experimentally

determined helical structure (flag fix_residues_to_).
6.8. In vivo transfection, staining and imaging
For the analysis of endogenous MuRF1 distribution in TA, its

expression was induced by two weeks of N. ischiadicus

denervation. Single myofibrils from TA were prepared as

before [52], and endogenous MuRF1 was detected with

three different polyclonal antibodies [21,37] (available from

www.myomedix.com). Double labelling with desmin,

coupled to AlexaFluor647, was used to determine Z-disc

localized MuRF1 epitopes. All staining was done using stan-

dard protocols as previously described [53].

Expression of MuRF1COS fused C-terminally to EGFP was

by transfection of the expression vector into TA muscles, as pre-

viously described [54]. Ten days post-transfection, mice were

anaesthetized, transfected muscles exposed and injected with

the marker for acetylcholine receptors, a-bungarotoxin-Alexa-

Fluor647, as previously described [37]. Mice were then

transferred to a confocal microscope (DMRE TCS SP2, Leica

Microsystems) and GFP fluorescence excited using a KrAr

laser (488 nm). Emission was detected by a 63x/1.2NA HCX

PL APO CS W CORR objective (Leica Microsystems) (immer-

sion medium Visc-Ophtal gel, Winzer-Pharma) using 500–

550 nm bandpass. Next, muscles were extracted and fixed in

4% PFA/PBS overnight at 48C, washed in PBS for 30 min

and embedded in 2% agarose. Longitudinal slices of 50 mm

thickness were made using a Leica vibratome VT1000 S, permea-

bilized for 4–5 h in 0.1% Triton X-100 and washed in PBS.

Sarcomeric actin was labelled with 250 nM phalloidin-TRITC

(Life Technologies) in 2% BSA/PBS overnight; slices were then

washed in 2% BSA/PBS for 1–2 h and embedded in Mowiol.

GFP, phalloidin-TRITC and a-bungarotoxin-AlexaFluor647

were excited at 488, 561 and 633 nm, respectively. Emission

was detected at 500–550, 570–620 and 650–750 nm bandpass.
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