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Surface plasmon-polariton (SPP) excitations of metal-dielectric interfaces are a fundamental light-matter
interaction which has attracted interest as a route to spatial confinement of light far beyond that offered by
conventional dielectric optical devices. Conventionally, SPPs have been studied in noble-metal structures,
where the SPPs are intrinsically bound to a 2D metal-dielectric interface. Meanwhile, recent advances in the
growth of hybrid 2D crystals, which comprise laterally connected domains of distinct atomically thin
materials, provide the first realistic platform on which a 2D metal-dielectric system with a truly 1D
metal-dielectric interface can be achieved. Here we show for the first time that 1D metal-dielectric interfaces
support a fundamental 1D plasmonic mode (1DSPP) which exhibits cutoff behavior that provides
dramatically improved light confinement in 2D systems. The 1DSPP constitutes a new basic category of
plasmon as the missing 1D member of the plasmon family: 3D bulk plasmon, 2DSPP, 1DSPP, and 0D
localized SP.

L
ow-dimensional collective electron excitations at metal surfaces, the so-called surface plasmon-polaritons
(SPPs), provide a route towards tremendous electric field enhancement1 and spatial confinement1, which can
dramatically enhance light-matter interactions2. Conventionally, SPPs have been studied in low-dimensional

noble-metal structures, where the SPP is intrinsically bound to a 2D metal-dielectric interface1. Although recently,
graphene3, the atomically thin 2D hexagonal crystal of carbon atoms, has rapidly gained interest as a long-sought-
after plasmonic material4-21 alternative to noble metals due to initial predictions5 of exceptional electric field
confinement of the intrinsic 2D plasmonic excitations of doped graphene sheets5–7. Quasi-low-dimensional
schemes aiming to further increase the electric field confinement of graphene plasmons, such as excitations of
graphene ribbon structures8–13, p-n junctions14,15, discs8,16,17 and nanoresonators18, have been suggested.

Meanwhile, at the cutting edge of materials science are hybrid 2D crystals22–25, comprising laterally connected
domains of distinct atomically thin materials, and which are mechanically continuous over macroscopic
domains. Moreover, studies have shown that compositional transition can occur over atomic scale distances22–25

at a crystalline junction25 connecting the neighbouring domains. Efforts in this direction have been largely driven
by prospects to further complement the outstanding properties of graphene22, and towards its implementation
with other 2D materials such as the insulating hexagonal boron nitride (h-BN), for atomically thin electrical
circuitry23,24. However, yet to be recognized is that hybrid 2D crystals further provide the first realistic platform on
which a 2D metal-dielectric system with truly 1D metal-dielectric (1DMD) interface – that is, across which the
sign of imaginary part of conductivity changes from positive (i.e., metallic response), to negative (i.e., dielectric
response) – could be achieved and probed at optical frequencies. Although, while such a 1D interface is of
remarkable fundamental simplicity, constituting the low-dimensional counterpart of the bulk metal-dielectric
interface, the existence and nature of plasmonic excitations at 1DMD interfaces remain unknown.

In this study, we show that 1DMD interfaces in general 2D metal-dielectric systems support a fundamental and
unique 1D plasmonic mode (1DSPP). Through an illustrative example on a hybrid graphene/graphene platform,
we show how unique cutoff behaviour of 1DSPPs could allow for a dramatic improvement in the electric field
confinement of plasmons in 2D systems, exceeding that of previously predicted quasi-1D and 1D plasmonic
excitations in graphene8–15. In the considered example, we demonstrate confinement of the electric field intensity
to modal areas over one million times smaller than the diffraction limit. Furthermore, from a fundamental
perspective, the 1DSPP, as the fundamental excitation of a 1DMD interface, constitutes a new basic category
of plasmon on its own: the missing 1D member of the plasmon family (3D bulk plasmon, 2DSPP, 1DSPP, and 0D
localised SP).
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Results
We start by considering a 2D metal-dielectric (MD) system in the y 5

0 plane consisting of two semi-infinite domains that are laterally
connected along the z axis with sheet conductivities of s(L) 5 s (L)9

1 is(L)0 (x , 0) and s(R) 5 s(R)9 1 is(R)0 (x . 0) (see inset in Fig. 1a)
and immersed in a uniform dielectric with relative dielectric permit-
tivity e. Without loss of generality, we take regions L and R as the
metallic (s(L)0 . 0) and dielectric (s(R)0 , 0) domains, respectively. At
this point, to simplify our discussion, we omit ohmic and interband
losses in both domains (s(R,L)9 5 0; the lossy case is considered below
and in the Supplementary Information). According to the theory of
Volkov and Mikhailov26,27, the dispersion relation of plasmons prop-
agating along the 1DMD interface (z 5 0) in the quasi-static limit can
be shown to be (see Methods):ðp=2

0
dh ln

sin h{KN
sin h{N

� �
~i 2m{1ð Þp2=2, ð1Þ

where s(R)0 5 Ks(L)0 (K , 0), the normalised effective index N 5

n/n2D (N . 0; n 5 q/k0; k0 5 v/c) is the effective index of the 1D
interface plasmon with wavenumber q normalised to that of the
planar 2D transverse magnetic (TM) plasmons of region L, n2D 5

2cee0/s(L)0 (Ref. 5), and m is an integer.
While equation (1) lacks a closed-form solution, our numerical

solution indicates (see Methods) a dispersion relation of the form

q<2
ffiffiffiffiffiffiffi
3=2

p
ee0v= s Lð Þ00zs Rð Þ00

� �
, and N(K) is plotted in Fig. 1a. We

find that non-leaky plasmons (i.e., N is purely real) exist strictly in the
window 0 # 2K , 1. At K 5 0, the plasmon wavenumber takes its
minimum value as that of the bare edge plasmon21,28 qe<

ffiffiffiffiffiffiffi
3=2

p
n2Dk0.

As jKjR 1, that is, when the electric susceptibilities on the two sides
of the interface become equal (js(R)0j R s(L)0), the plasmon wave
number diverges. Interestingly, this divergent behaviour reveals a
strong connection to the conventional 2D surface plasmon polari-
tons (SPPs) localised to bulk metal-dielectric interfaces29. Indeed, in
the absence of ohmic loss, the wavenumber of the SPPs (qSPP 5

nSPPk0) diverges at the surface plasmon (SP) frequency vSP given
by the non-retarded SP condition29: ed 1 em(vSP) 5 0; ed . 0 and em

, 0 are the relative permittivities of the dielectric and the metal,
respectively. Likewise, at the 1DMD interface, we note the cutoff
condition K 5 21, or s(R)0 1 s(L)0 5 0 (s(R,L)9 5 0). This reveals that
the plasmonic mode of a 1DMD interface is a 1D manifestation of
SPPs in 2D systems (1DSPP). An important consequence of the
reduced dimensionality can be observed in the respective divergence

behaviours: the SPP behaviour takes the form nSPP*1=
ffiffiffiffiffiffi
De
p

(De 5 ed

2 jemj), which diverges much less rapidly than that of the 1DSPP,
n,1/Ds (Ds 5 s(L)0 2 js(R)0j).

We note that in the earlier works of Volkov and Mikhailov26,27

they considered only conventional 2D electron gases (2DEG) with
s (R,L)0 . 0 i.e., where both domains (L and R) are metallic. In that
case, while there is no solution to equation (1) for purely real N, there
is a solution for complex N which corresponds to a so-called inter-
edge plasmon that is damped as it leaks into the extended 2D plas-
mons supported by the domain with the smaller (positive) imaginary
part of conductivity27. In contrast, the 1DSPP (existing only in the 2D
metal-dielectric system when 0 # 2K , 1) is entirely non-leaky, and
completely bound to the 1DMD interface. It is also important to note
a clear distinction between the 1DSPP, and the recently predicted
quasi-1D plasmonic excitations of graphene p-n junctions14,15,
according to fundamental differences between their respective phys-
ical origins. The multiple plasmon modes of a graphene p-n junc-
tion14,15 owe their manifestation to a spatial gradient of the imaginary
part of conductivity (i.e., s0), much like the multiple modes of a
graded-index waveguide, and the graphene is everywhere metallic.
In contrast, the 1DSPP manifests exclusively as a consequence of the
metallic-to-dielectric transition across the 1DMD interface, either
side of which the conductivity is spatially uniform. In this regard,
we predict that the IR edge wave observed graphically in Vakil et al.
(Ref. 9) is in fact due to the excitation of 1DSPPs, rather than p-n
junction plasmons as suggested therein.

The lossy 1DSPP dispersion (i.e., when either s(L)9, s(R)9 ? 0) is
readily obtained on introducing the complex parameter K defined in
terms of the complex conductivities K 5 s(R)/s(L) 5 K9 1 iK0, and
solving for the complex normalised effective index N 5 n/n2D 5 N9

1 iN0 (where n2D 5 i2ce0/s(L) – Ref. 5). In the limit that the loss is
wholly confined to the dielectric domain (s(L)9 5 0, s(R)9 ? 0), we
obtain the convenient and meaningful expressions K9 5 s(R)0/s(L)0

(i.e., same as the lossless case), and K0 5 2s(R)9/s(L)0. Thus we may
imagine that fixing K9 and simultaneously increasing jK0j corre-
sponds to fixing of the imaginary part of conductivity of the L and
R domains, and linearly increasing the loss (s(R)9) in the dielectric
domain. Conversely, fixing jK0j and increasing K9 is equivalent to
fixing s(R)9 and linearly increasing s(R)0. Meanwhile, the quantity
N9/(2pN0) reduces to the propagation length defined as the
number of optical cycles within one exponential decay length
(l5Re(q)/[2pIm(q)]). We note that this physical scenario is particu-
larly relevant to a hybrid graphene/graphene metal-dielectric system

Figure 1 | 1DMD interface in a hybrid 2D system and dispersion of 1DSPPs. (a), Effective index n of the 1DMD interface plasmon (1DSPP) normalised

to that of planar 2D plasmons in the metallic domain L (n2D) as a function of K 5 s(R)0/s(L)0 (s(L)0 . 0; s(R)0 , 0). Inset: Schematic of the considered 2D

metal-dielectric system comprising two semi-infinite domains L (x , 0; metallic) and R (x . 0; dielectric) laterally connected along the z axis, with

sheet conductivities of s(L) and s(R), respectively. We consider a plasmon with a wavevector q 5 qk that propagates along and is localised to the 1D

interface (coinciding with the z axis). (b), K0 dependence of N9/(2pN0) at indicated values of K9. Inset: lossy dispersion of N9 for example values of loss K0

5 20.06 (green), K0 5 20.12 (red), as compared to lossless dispersion (blue).
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at finite temperature (see Supplementary Information) where the
dielectric response of domain R is accompanied by interband losses
which strongly dominate the overall loss (i.e., relative to ohmic loss in
either domain).

The green and red curves in the inset of Fig. 1b show N9 when loss
is introduced through two example values K0 5 20.06 and K0 5

20.12. Similarly to the behavior of conventional SPPs on a lossy
metal surface29, the loss is shown to destroy the divergent cutoff
behavior of the 1DSPP owing to heavy damping, the onset of which
occurs in some vicinity of K9 that is specific to K0 (compare where N9

begins to decrease at the two values of K0). To illustrate and quantify
the onset of 1DSPP damping, the main window of Fig. 1b shows the
K0 dependence of the 1DSPP propagation length at several fixed
values of K9. At a given value of K0, the propagation length decreases
with an increase in K9, which is typical of plasmons as their wave
number increases (recalling that q increases with K9). We note that, at
each value of K9, the curve is cutoff at the x-axis corresponding to the
propagation length of just one wavelength (i.e., a strongly damped
1DSPP). It is illustrative to compare the K0 cutoff with a particular K9

e.g., when K9 5 20.6, the cutoff is K0 , 20.06, corresponding to K0/
K9 5 2s(R)9/s(R)0 , 0.1. Obviously, the loss is more forgiving for
smaller K9, e.g. when K9 5 20.2, the cutoff is K0 , 20.12, corres-
ponding to 2s(R)9/s(R)0 , 0.6.

Now we present an illustrative and topical example of 1DSPPs in a
hybrid graphene/graphene metal-dielectric system, in which the ran-
dom phase approximation (RPA) provides convenient closed-form
expressions for the optical conductivity in both domains5–7,30. The
1DMD interface is achieved by appropriate doping of both graphene
domains; in the local and zero-temperature limit considered
here (see Ref. 30 and Methods), the doping would correspond to
m(L)/�hv . 0.6 and 0.5 , m(R)/�hv , 0.6, where m(L,R) is the Fermi
energy of domain L or R, respectively, and details at finite tempera-
tures are given in the Supplementary Information. Our numerical
calculations suggest that the existence of 1DSPPs is not critically
dependent on an abrupt sign change of s0 at the interface (see
Supplementary Information), so hybrid graphene systems that sup-
port 1DSPPs may also be realised by proposed electrical gating9 or
substrate controlled31 schemes for spatially non-uniform graphene
doping in addition to patterned growth22–25. We note that in an
electrical gating scheme9, the absence of a well-defined edge separat-
ing the metallic and dielectric graphene domains would reduce edge
effects such as those associated with zigzag edges in graphene and
known to be responsible for strong plasmon damping (see for
example Ref. 32).

The conductivities on either side of the interface are completely
determined by the respective normalised frequencies30 V(L,R) 5 �hv/
m(L,R). As it has been shown that the dispersion of 1DSPPs (relative to
n2D) is completely determined by the dimensionless conductivity K,
this behaviour suggests a flexible tunability of n through the variation
of either s(R)0 (m(R)) or s(L)0 (m(L)) with the doping of either graphene
domain. We demonstrate this tunability and simultaneously verify
our quasi-static analytical results by employing a mode-solver tool in
the numerical finite element method (FEM) package COMSOL,
which includes retardation effects. In Fig. 2a, we show the calculated
dependence of n on m(R) for several fixed values of m(L) (see respective
curves) and the spatial evolution of the 1DSPP electric field compo-
nents Ex and Ey. Note the normalisation of m(R,L) in terms of �hv; this
was verified by comparing all results at the frequencies f 5 20 THz
and 80 THz. One can observe excellent agreement between the dis-
persion analytically predicted by equation (1) (solid curves) and the
numerically determined data points. The monotonic increase in n as
m(L) decreases (at fixed m(R)) can be readily understood in terms of the
corresponding decrease in s(L)0and thusDs (recalling that n , 1/Ds).
Each curve diverges asymptotically towards a cutoff value of m(R)

given by the condition s(L)(m(L)) 1 s(R)(m(R)) 5 0. The cutoff value
of m(R) approaches 0.5�hv as m(L) increases. When the plasmon energy

�hv and the Fermi energy m(L) are of approximately the same order of
magnitude (corresponding to the typical practical situation), the
cutoff is very close to 0.5 because of the relative strengths of the
interband and intraband terms in the graphene conductivity (see
Methods).

The electric field profiles in Fig. 2b combined with the plot of the
net power flow (inset in Fig. 2a; normalised to the graphene bare edge
plasmon21 (GEP), i.e., when s(R) 5 0) demonstrate the nature of the
cutoff dynamics at the 1DMD interface. The net power flow parallel
to the interface is given by the integral of Sz 5 ExHy* 2 EyHx* over
the xy plane. Sz is symmetric about the x axis, although the terms
ExHy* and EyHx* both exhibit odd sign parity about the y axis; thus,
cumulative integration on either side of the interface leads to their
respective partial cancellation. This cancellation is weak in the case of
GEPs because of the strong field asymmetry, and therefore, the net
power flow is significant. Conversely, as the cutoff condition (s(R)0 R
2s(L)0) is approached, the symmetrisation of the field components
caused by equal charge screening on either side of the interface
(analogous to conventional SPPs near the surface plasmon fre-
quency29) leads to a strong reduction in the net power flow as the
group velocity approaches zero.

Figure 2 | 1DSPPs in a graphene/graphene hybrid 2D system. (a),

Effective index n 5 q/k0 of the 1DSPP on a sample hybrid graphene/

graphene system as a function of (V(R))21 5 m(R)/�hv; the different curves

correspond to (V(L))21 5 m(L)/�hv 5 2, 3, 4, and 5. Excellent agreement is

observed between the analytic dispersion equation (1) (solid curves) and

FEM simulations (data points). Left inset: Spatial evolution of the 1DSPP

electric field components Ex (xz slice) and Ey (yz slice); (V(L))21 5 2 and

(V(R))21 < 0.5. Right inset: Dependence of the net power flow P (along z)

on the effective index n of the 1DSPP, normalised to that of the graphene

bare edge plasmon (Pe, ne). (b), Electric field components of the 1DSPP for

the indicated parameters; the profiles on the left correspond to the 1DSPP

near the cutoff, while those on the right correspond to the graphene bare

edge plasmon (GEP) [the horizontal line indicates the graphene plane; the

red (blue) colour denotes a positive (negative) sign].
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Figure 3 shows the evolution of the 1DSPP mode cross section (see
caption for details) as the cutoff is approached, in comparison with
the GEP. We note the tremendous localisation of the electric field
intensity (lower inset) to regions from A0 < 5 3 1025l0

2 to A < 6 3
1027l0

2 as jKj increases in the range 0 # jKj# 0.87. Thus, the spatial
confinement of the electric field intensity of the 1DSPP in the hybrid
graphene/graphene system is on the order of one million times smal-
ler than the diffraction limit (,l0

2; l0 is the vacuum wavelength); a
two-order-of-magnitude improvement over the graphene bare edge
plasmon (i.e., when K 5 0).

Discussion
We emphasise that the above results are not limited to the presented
example of graphene but are generalizable to any isolated 1DMD
interface in a hybrid 2D system characterised by the same value of
K. 1DMD interfaces in graphene/graphene hybrid 2D systems at
finite temperature are intrinsically lossy because of the presence of
interband transitions, which are essential to achieving the dielectric
character in one domain (i.e., s(R)0 , 0; K , 0), and further exhibit a
temperature-dependent upper limit on js(R)0j (and jKj). Neverthe-
less, we predict the propagation lengths of 1DSPPs on hybrid
graphene systems to be several plasmon wavelengths at room tem-
perature (T 5 300 K) and ,100 plasmon wavelengths at the tem-
perature of liquid nitrogen (T 5 80 K); for example, at a free space
wavelength l 5 1.8 mm we find l ,100nm (m(L) 5 1 eV, m(R) 5
0.42 eV, T 5 300 K) and l , 2.6 mm (m(L) 5 1 eV, m(R) 5 0.40 eV,
T 5 80 K), respectively (see Supplementary Information for full
details). On the other hand, graphene/h-BN hybrid structures are
promising systems for supporting 1DSPPs with large propagation
lengths. Because of the dielectric character of h-BN, one could realise
a graphene/h-BN 1DMD interface with separate tunability of the
graphene conductivity in real time using external gating, and the
plasmon propagation length in this system would be limited only

by the small ohmic losses in high-mobility graphene. Although in the
case of an atomically sharp transition between neighbouring
domains in hybrid 2D crystals, consideration of edge related effects
(such as electronic edge states32) would be important to accurately
determine the 1DSPP dispersion and loss properties.

In summary, we have predicted the existence of a fundamental 1D
plasmonic mode of 1D metal-dielectric interfaces in 2D systems
(1DSPP). The effective index of 1DSPPs diverges asymptotically
towards a cutoff as the magnitudes of the susceptibilities on the
two sides of the interface become equal, in striking analogy to
conventional SPPs at bulk metal-dielectric interfaces. On a sample
2D metal-dielectric graphene/graphene platform, highly sensitive
tunability of the 1DSPP dispersion was demonstrated via the doping
of either graphene domain, which further allowed for the achieve-
ment of spatial confinement of electric-field intensity to regions
orders of magnitude smaller than that of the plasmonic excitations
of a bare graphene edge (GEP). The unique and tuneable cutoff
behaviour of 1DSPPs thus presents a means for dramatic enhance-
ment of light confinement in 2D systems over other 1D or quasi-1D
excitations, such as GEPs or plasmonic excitations of graphene p-n
junctions. At a frequency of 50 THz, we predicted tremendous loca-
lisation of the electric-field intensity of the 1DSPP to a modal area
more than one million times smaller than the diffraction limit. As a
new member of the existing plasmon family of bulk plasmons, sur-
face plasmons, localised plasmons, etc., we foresee a new field of low-
dimensional plasmonics based on 1DSPPs, particularly branching
out into various multi-material 2D systems22–25.

Methods
1DSPP Dispersion: Derivation and Analysis. We consider a hybrid 2D system in the
y 5 0 plane comprising two semi-infinite domains laterally connected along the z axis
with sheet conductivities of s(L) 5 s(L)9 1 is(L)0 (x , 0) and s(R) 5 s(R)9 1 is(R)0 (x . 0)
(see inset in Fig. 1) immersed in a uniform medium with relative dielectric
permittivity e. In the quasi-static theory of Volkov and Mikhailov26,27, based on the
solution to Poisson’s equation with an assumed electric potential of the form
Q(r)5Q0(x,y)exp(iqzz2ivt), the dispersion relation of plasmons propagating along a
1D junction between two adjoining 2D electron gases (2DEG) is given by26

1z
dsxz

idsxx
tanh

1
p

ð?
0

dj

1zj2 ln
eR q,vð Þ
eL q,vð Þ

� �
qx~ qzj jj

2
4

3
5~0:

Here, dsbc 5 s(R)
bc 2 s(L)

bc, where b and c are tensor indices (x, z), and eR,L are the
effective dielectric permittivities of the left (L) and right (R) 2DEG26;

eR,L~ezis R,Lð Þ
xx vð Þq=(2e0v), where q~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

xzq2
z

q
and e0 is the permittivity of free

space. For electrically isotropic 2DEGs in the absence of an external magnetic field, we
have s(R,L)

xz 5 0 and dsxz 5 0. Taking dsxx 5 ds 5 s(R) 2 s(L), we obtain

{ids coth
1
p

ð?
0

dj

1zj2 ln
eR q,vð Þ
eL q,vð Þ

� �
qx~ qzj jj

2
4

3
5~0:

When ds ? 0, the dispersion relation reduces to when the hyperbolic cosine of the
argument in the above equation is zero. To simplify the analysis we start by setting
s(R,L)9 5 0, which neglects ohmic and interband losses (the complex-conductivity case
is treated in Supplementary Information), e.g., pristine graphene in the local and zero-
temperature limit30 at a normalised frequency V , 2; V 5 �hv/m, where m is the Fermi
energy. Then, making the variable substitution sinh5(11j2)21/2, we arrive at equa-
tion (1) with the prescribed definitions. Inspection of equation (1) reveals that the left
hand side of the plasmon dispersion can be written as the difference of two integrals

f(KN) 2 f(N), where f Cð Þ~
ðp=2

0
dh ln sin h{Cð Þ. While the solution of this integral

lacks a simple closed-form expression for arbitrary C, its numerical solution com-
bined with its asymptotic behaviour is revealing. We find that Im[f(C)] 5 0 when
C # 0, Im[f(C)] 5 p2/2 when C $ 1, and Im[f(C)] increases monotonically as C
increases within the range 0 , C , 1 (see the inset of Fig. 4a; dashed red and blue
curve). This behaviour immediately precludes solutions for purely real N (i.e., non-
leaky) when K . 0 (i.e., metal-metal systems) because 0 , f(KN), f(N) # p2/2, which
constrains 2p2/2 , Im[f(KN) 2 f(N)] , p2/2, so that the imaginary part of equation
(1) could not be satisfied for any integer m. Indeed, this was earlier pointed out by
Mikhailov27 and corresponds to leakage of the so-called inter-edge plasmon into
planar 2D plasmons towards the region with the smaller carrier density (i.e., smaller
s0).

Figure 3 | Enhanced modal confinement of 1DSPPs. Mode cross section

of 1DSPPs as the cutoff condition is approached (blue-dashed K 5 0 R red

K 5 20.87). Concentric contours, from the outermost to the innermost

contour, correspond to (V(R))21 5 0.6, 0.58, 0.56, 0.54, 0.52, 0.501, and

0.5002. The blue-dashed contour exactly coincides with that of the

graphene bare edge plasmon (GEP). Each contour is defined as a line

| E | 2 5 constant enclosing an area A (in the xy plane), such thatðð
A

jEj2dS=
ðð
jEj2dS~0:8. Insets: (top) Mode cross section area A

normalised to that of the GEP A0 as a function of (V(R))21 and (bottom)

normalised intensity of the electric field (2 nm above the graphene) for the

extreme cases (V(R))21 5 0.6 (blue-dashed) and (V(R))21 5 0.5002 (red).

f 5 50 THz; (V(L))21 5 2.
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Now, we turn to the pertinent case of the 1D metal-dielectric (1DMD) interface [K
, 0; s(L)0 . 0, s(R)0 , 0)]. This case has not been previously considered26,27 because of
the strictly positive sign of s0 in conventional 2DEGs. New opportunities to realise
1DMD interfaces in hybrid 2D systems prompted us to investigate fundamental
solutions to equation (1) in 2D metal-dielectric systems. Our previous observations
imply non-leaky solutions to equation (1) for K,0 when N . 1 (and m 5 0), provided
that Re[f(2jKjN)] 5 Re[f(N)] (which satisfies the real part of equation (1)); indeed,
Im[f(KN)] 5 0 for NK , 0 (i.e., N . 0,K , 0), and Im[f(N)] 5 p2/2 for N . 1, thus
satisfying the imaginary parts of equation (1). From the numerical integration of f(C),
we empirically find the relation Re[f(C 1 D)] < Re[f(2C)] (C . 0) (see the inset of
Fig. 4a; overlaid dotted black curve). Setting C 5 jKjN leads to Re[f(jKjN 1 D)] <
Re[f(2jKjN)], and recalling the solution condition Re[f(2jKjN)] 5 Re[f(N)], we
must have (comparing the positive arguments of the function Re[f(C)] which
monotonically increases for C . 1, and noting D . 1) jKjN 1 D5 N. This indicates a
dispersion relation of the form N 5 Ne/(1 2 jKj), where we have identified D 5 Ne as
the bare edge plasmon dispersion (i.e., for when K 50), or recalling the definitions of

N and K and taking28 Ne<
ffiffiffiffiffiffiffi
3=2

p
(the known approximate factor of the bare edge

plasmon dispersion), we can write the following for the propagation constant:

q<2
ffiffiffiffiffiffiffi
3=2

p
ee0v= s Lð Þ00zs Rð Þ00

� �
:One may also consider the asymptotic behaviour in

the limit N,NjKj? 1; writing equation (1) as the difference of two integrals
f(2jKjN)2f(N) and Taylor-expanding the respective arguments to the first order, we
find

N<
2
p

1z
1
Kj j

� �
1

ln 1= Kj jð Þ ; N,N Kj jww1, ð2Þ

which further illustrates the limiting behaviour as jKjR 1 of N < (2/p)(1 1 jKj)/
(1 2 jKj), which is consistent with the (1 2 jKj)21 dependence in the empirical
relation obtained above. Solution to equation (1) only when m 5 0 naturally pre-
cludes the existence of higher-order, multipolar modes because of the step-like
transition of the conductivity across the junction; this result is expected, considering
that multipolar modes of a bare edge plasmon manifest only when the conductivity
decreases monotonically from a constant to zero over a non-zero length a beyond
some cutoff21. We note that the dispersion of the bare edge plasmon26,27 is recovered in

the limit that K 5 0, given by the root of
ðp=2

0
dh ln

N
sin h

{1

� �
~0, which is satisfied

by N 5 Ne < 1.217…26. In Fig. 4a, we plot the dispersion N(K) as determined from the
numerical solution of equation (1) and as given by the analytical equation (2) given
for jKj . 0.5 (see solid and dashed curves, respectively).

Numerical analysis of 1DSPP in hybrid graphene/graphene system. The 1DSPP
dispersion was obtained using the mode analysis tool in the COMSOL RF module
(www.comsol.com). In our example of the graphene/graphene hybrid 2D system, the
conductivities on either side of the junction are calculated using the random phase
approximation (RPA) in the local and zero-temperature limit30 (Fig. 4b):

s R,Lð Þ~
ie2

p�h
1

V R,Lð Þz
e2
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� �

{
i
p

ln
2zV R,Lð Þ
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�����
�����

 !
, ð3Þ

In our COMSOL simulations, the graphene is incorporated into the numerical
simulations as a thin film with a thickness of d 5 0.2 nm, an effective relative
dielectric permittivity9 of e(R,L)511is(R,L)/ve0d, and s(R,L) given by equation (3). We
note that the band structure of graphene is implicitly included in the permittivity
through the conductivity as determined from the RPA. The almost perfect agreement
between our numerical results and theoretical calculations (according to equation
(1)) verify that the numerical results are sufficiently converged to the d R 0 limit (at d
5 0.2 nm).

From our simulations, we also observed the onset of plasmon leakage towards
region R (x . 0) as (V(R))21 .0.6, thus confirming the previous assertion27 for the case
when K . 0. At values of (V(R))21 , 0.5, the dispersion must be solved for a complex
value of N because of the introduction of non-zero s(R)9; nevertheless, considering that
we would likely have s(R)9 . js(R)0j (see Fig. 4b), the 1DSPP will be strongly damped.
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