
ARTICLE

Mapping the Human Reference Genome’s Missing Sequence
by Three-Way Admixture in Latino Genomes

Giulio Genovese,1,2,3,* Robert E. Handsaker,2,3 Heng Li,2,3 Eimear E. Kenny,4,5,6,7,8

and Steven A. McCarroll1,2,3,*

A principal obstacle to completing maps and analyses of the human genome involves the genome’s ‘‘inaccessible’’ regions: sequences

(often euchromatic and containing genes) that are isolated from the rest of the euchromatic genome by heterochromatin and other

repeat-rich sequence. We describe a way to localize these sequences by using ancestry linkage disequilibrium in populations that derive

ancestry from at least three continents, as is the case for Latinos.We used this approach tomap the genomic locations of almost 20mega-

bases of sequence unlocalized or missing from the current human genome reference (NCBI Genome GRCh37)—a substantial fraction of

the human genome’s remaining unmapped sequence. We show that the genomic locations of most sequences that originated from

fosmids and larger clones can be admixture mapped in this way, by using publicly available whole-genome sequence data. Genome

assembly efforts and future builds of the human genome reference will be strongly informed by this localization of genes and other

euchromatic sequences that are embedded within highly repetitive pericentromeric regions.
Introduction

Studies of human genetic variation and genome biology,

increasingly based on next-generation sequencing, utilize

physical maps of the human genome’s sequence to inter-

pret sequence data. The scope of such studies is therefore

limited to those regions considered ‘‘accessible’’ in the

maps of the human genome.

Approximately 200 Mbp of the human genome, mainly

from the centromeres and the short arms of the acrocentric

chromosomes, are missing from the human reference

genome; a further 30 Mbp fall within ~300 interstitial

gaps mostly involving regions that could not be reliably

cloned or assembled.1–3 Most of the interstitial 30 Mbp,

and an unknown fraction of the other 200 Mbp, consists

of complex euchromatic sequence. Sequence reads arising

from these ‘‘missing pieces’’ are currently discarded or mis-

aligned to paralogous sequences present in the human

reference genome.4 We estimate that in whole-genome

studies using short next-generation sequencing reads,

~17 Mbp of the NCBI Genome GRCh37 human reference

genome receives an excess of aligned reads that in fact arise

from these missing pieces. To help address this problem in

its own analyses, the 1000 Genomes Project Consortium

now supplements the reference human genome, for the

purpose of alignment, with a set of additional sequences,

termed ‘‘decoy sequences,’’ consisting of ~35.4 Mbp of

partially assembled sequence that is missing from the hu-

man genome reference but is available from other sources

(including GenBank,5 the HuRef alternate genome assem-

bly,6 and the ALLPATH-LG assembly of NA128787).
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There is ample reason to believe that unlocalized regions

of the human genome contain biologically significant

genes and other sequences. Genes missing from the

human reference genome are often transcribed to mature

mRNA,8 even when they reside within repeat-rich pericen-

tromeric regions of the genome. A significant Mendelian

neurological disease, thyrotoxic hypokalemic periodic

paralysis (TTPP2 [MIM 613239]), was also shown to arise

from mutations in KCNJ18 (MIM 613236),9 a pericentro-

meric gene missing from maps of the human genome.

We recently showed8 how long-range linkage disequilib-

rium information resulting from admixture in African

Americans can be used to map the genomic location of

assembled but unlocalized sequences that are missing

from the human reference genome. We focused in that

study on African Americans, the admixed population for

which themost available genome-wide data were available,

but genetic data from other admixed populations could

also in principle be used for the same purpose. Sequence

data from 242 Latino samples recently became publicly

available from the 1000 Genomes Project Phase 1.10

Here we extend our admixture mapping approach to the

three-way admixture present in Latino genomes. Surpris-

ingly, we find that Latino genomes are particularly power-

ful for admixture mapping the human genome’s missing

pieces. Notably, whereas African American genomes have

an 80% 5 12% component of African descent,11,12

genomes from Latino samples have more evenly distrib-

uted amounts of ancestry,13–17 which could translate to

increased power for mapping through admixture linkage

disequilibrium.We show that low-coverage whole-genome
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Table 1. Genotype Likelihoods

P(gjl,p ¼ (pE,pA,pN)) g ¼ 0 g ¼ 1 g ¼ 2

l ¼ (2,0,0) (1 � pE)
2 2pE(1 � pE) pE

2

l ¼ (1,1,0) (1 � pE)(1 � pA) pE(1 � pA)þ(1 � pE)pA pEpA

l ¼ (0,2,0) (1 � pA)
2 2pA(1 � pA) pA

2

l ¼ (1,0,1) (1 � pE)(1 � pN) pE(1 � pN)þ(1 � pE)pN pEpN

l ¼ (0,1,1) (1 � pA)(1 � pN) pA(1 � pN)þ(1 � pA)pN pApN

l ¼ (0,0,2) (1 � pN)
2 2pN(1 � pN) pN

2

Probabilities of observing genotype g for a biallelic marker with known ances-
tral allele frequencies p ¼ (pE,pA,pN) and known local ancestry l at the marker.
sequence from even a limited number of Latino genomes

(n ¼ 242) already makes this strategy extremely effective,

allowing the localization of most sequences originated

from fosmids and larger clones. As the number of

sequenced Latino genomes continues to increase, we

expect admixture mapping to become increasingly valu-

able in helping to complete maps of the human genome.
Material and Methods

Mapping by Admixture Linkage Disequilibrium
We generalized our mapping method, first described in Genovese

et al.,8 to populations that derive significant amounts of ancestry

from three or more ancestral populations. We map an unlocalized

scaffold by mapping a polymorphic marker known through

sequence alignment to localize within the scaffold.

Wemodel the observed genotype for the polymorphic marker as

a function of the local ancestry deconvolution and the ancestral

frequencies of the alternate allele that are estimated by maxi-

mizing this likelihood after marginalizing over the local ancestry

deconvolution, which is modeled as a function of the global

ancestry proportions of the sample.

We then compute the likelihood of the genotype for a biallelic

marker of unknown localization marginalizing over the local

ancestry deconvolution and we compare this to the genotype like-

lihood assuming that the marker localizes at a locus i around the

genome for which the local ancestry is instead known.

Define the following variables:

d p ¼ (pE,pA,pN) as the alternate allele frequencies of the unlo-

calized marker in the ancestral European, West African, and

Native American populations

d j an admixed sample

d gj˛{0,1,2} the genotype of the unlocalizedmarker for sample j

d U ¼ {(2,0,0), (1,1,0), (0,2,0), (1,0,1), (0,1,1), (0,0,2)} the set of

all possible values for the local ancestry deconvolution,

where each number corresponds to the number of haplo-

types of European, West African, and Native American

descent, respectively

d i a locus around the genome

d lij˛U the local ancestry deconvolution for sample j at locus i

d P(lj¼u) a prior for the likelihood of the local ancestry decon-

volution being equal to u for sample j at a random or un-

known locus. This is estimated separately for each sample

by averaging the local ancestry calls across the genome.
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The likelihood P(gjjlij,p) of observing a genotype gj given the

local ancestry lij is given in Table 1. This is then compared to the

marginal likelihood

P
�
gj jp

�
¼
X
u˛U

P
�
gj; lj ¼ u jp

�
¼
X
u˛U

P
�
gj j lj ¼ u;p

�
P
�
lj ¼ u

�
;

and the odds ratio is computed to measure the evidence that the

biallelic marker actually does indeed localize near locus i across

the genome. Notice that P(lj ¼ u) is not just a function of the

global ancestry proportions of sample j; because of population

structure we do not assume that the parents had the same ancestry

proportions, as could be the case for the offspring of an African

American and a European American (for whom P(l ¼ (0,2,0)) ¼
0), and therefore it is best estimated from the local ancestry decon-

volution across the genome.

To estimate the values for the ancestral allele frequencies p ¼
(pE,pA,pN), we use a maximum-likelihood estimation approach

of the marginal probabilities, by computing

p ¼ argmaxp¼ðpE ;pA ;pNÞ
Y

j
P
�
gj jp ¼ ðpE; pA; pNÞ

�
:

For this computation, available nonadmixed samples that can

act as proxies for the ancestral populations (e.g., CEU for Euro-

peans and YRI for West Africans) can be used to improve the esti-

mates of the ancestral allele frequencies. We empirically observed

a limited but significant increase in power by doing so (despite

this, CEU and YRI should not be considered optimal proxies for

the European and African ancestral populations of Latinos). How-

ever, the estimates from the admixed genomes alone are still infor-

mative, and proxies for the ancestral populations are not required

(in particular, Native American genomes are not needed).

For a single locus i, we combine the evidence across all samples

for which the local ancestry has been estimated at the locus into a

LOD score (logarithm base 10 of odds) as

LODi ¼
X
j

log 10

 
P
�
gj j lij;p

�
P
�
gj jp

�
!
:

For a given biallelic marker, we can then compute this LOD score

for a dense and uniform set of loci i across the genome (say

~10,000 in practice) and refine the best hits by searching near

loci with the highest LOD scores. Notice that loci with missing

local ancestry calls or with higher error rates in the calls will

inevitably be less likely to achieve significant LOD scores.

In practice, because genotypes cannot be reliably inferred from

low-pass sequencing data, we generalize this model to genotype

likelihoods by marginalizing over the unknown genotypes, i.e.,

by replacing the probability of observing a given genotype with

a weighted average of the probabilities for all three possible geno-

types with the weights corresponding to the genotype likelihoods

p ¼ argmaxp¼ðpE ;pA ;pNÞ
Y

j

X
k¼0;1;2

P
�
gj ¼ k jp ¼ ðpE; pA; pNÞ

�
P
�
gj ¼ k

�

LODi ¼
X
j

log 10

0
B@
P

k¼0;1;2

P
�
gj ¼ k j lij;p

�
P
�
gj ¼ k

�
P

k¼0;1;2

P
�
gj ¼ k jp

�
P
�
gj ¼ k

�
1
CA:

The genotype likelihoods P(gj) are estimated from the sequence

read data and are usually readily provided by genotyping

software.
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Figure 1. Ancestry Proportions for Ad-
mixed Samples from the 1000 Genomes
Project Phase 1
Abbreviations for ancestral populations
are as follows: Eur, European; AFR, West
African; NAT, Native American; UNK, Un-
known. Abbreviations from the 1000
Genomes Project: ASW, African American;
CLM, Colombian; MXL, Mexican; PUR,
Puerto Rican.
Very large LOD scores across the genome will be unlikely to

be achieved by chance, though how large and unlikely is some-

what a function of the correlation structure in the local ancestry

(which is mainly due to the number of generations since the

admixing event of the ancestral populations), the level of poly-

morphism of the biallelic marker tested (which is related to demo-

graphics of the ancestral populations before the admixture), and

the accuracy of the local ancestry calls. We consider LOD scores

indicative of a correct mapping when those scores were larger

than or equal to 6.

For each biallelicmarker called by the 1000Genomes Project, we

computed the best LOD scores across all autosomes other than the

autosomewhere themarker is localized by using the available local

ancestry calls. We identified 666 SNPs with LOD scores greater

than 6 across ~2.6 Gbp of sequence from the autosomes, leading

to an upper estimate of one SNP incorrectly mapped every ~4

Mbp when using the available local ancestry deconvolution for

the 242 Latino genomes from the 1000 Genomes Project.

Assuming that SNPs across the genome behave, for the purpose

of admixture mapping, in similar ways to SNPs from unplaced

sequence, this suggests a low false-positive rate of less than ~10

missmaped markers among the mappings for SNPs from the

~41.5 Mbp of unplaced sequence analyzed here.
Coverage Analysis
To estimate the depth of coverage across GRCh37, we used low-

coverage Illumina sequencing data from 820 samples from 1000

Genomes Project Phase 1. We first constructed a map of uniquely

alignable positions on GRCh37 by aligning all k-mers of length 36

(the smallest read length in the sequencing data set) back to the

reference to determine which positions have unique alignments.

We then divided the reference into overlapping windows where

each window contains 10,000 uniquely aligning positions and

where adjacent windows overlap by 5,000 uniquely aligning posi-

tions.

For each window, we measured sequencing read depth and cor-

rected for differential sequencing depth because of GC bias sepa-

rately for each library. GC-bias correction factors were determined

by measuring differences in read depth stratified by GC fraction in

400 bp sliding windows across 588 Mbp of the genome that have

no annotated segmental duplications, repeats, or copy-number

variants from the Database of Genomic Variants18 (DGV) in the

UCSC genome browser.19 We then estimated each sample’s copy

number from the GC-normalized sequencing read depth via a

Gaussian mixture model20 extended to allow modeling of copy

number greater than two.

Copy-number likelihoods were assigned to each sample for each

possible copy-number genotype. These were then converted into

diploid biallelic genotype likelihoods for the purpose of admix-
The American
ture mapping, by selecting the three modal copy-number likeli-

hoods.
Decoy Sequences
Decoy sequences are composed of contiguous sequences from

GRCh37.p4 patches, completely sequenced bacterial artificial

chromosomes (BACs) and fosmids from GenBank, HuRef contigs,

and NA12878 contigs with a length of at least 1,000 bp and which

show less than 99% overall identity with paralogous sequence in

the GRCh37 reference genome for stretches at least 20 kbp long

or less than 95% for stretches at least 500 bp long. The whole

resource consists of ~35.4 Mbp of sequence (N50 ¼ 22.9 kbp).

Based on RepeatMasker-3.3.0 (RepBase 20110419) analysis, ~50%

of these sequences consist of satellite or simple repeats, and 23%

consist of interspersed repeats. The human genome reference inte-

grating GRCh37 and the decoy sequences is termed hs37d5.
Local Ancestry Deconvolution
Local ancestry deconvolution for African American (ASW, n¼ 61),

Mexican (MXL, n ¼ 66), Puerto Rican (PUR, n ¼ 55), and Colom-

bian (CLM, n¼ 60) samples from the 1000 Genomes Project Phase

1 (Figure 1) was computed from Illumina Omin2.5 genotype data

and low-pass sequencing SNP calls via a consensus scheme

from multiple algorithms: LAMP-LD,21 HAPMIX,22 RFMIX, and

MULTIMIX.23 Ancestry calls are available as part of the 1000 Ge-

nomes Project Phase 1 release.
SNP Calling
To identify SNPs over unlocalized hs37d5 contigs, we ran the

Genome Analysis Toolkit24 (GATK), with default settings for the

UnifiedGenotyper walker over aligned sequence data for European

(CEU, n ¼ 96), Yoruba (YRI, n ¼ 88), African American (ASW, n ¼
61), Mexican (MXL, n ¼ 66), Puerto Rican (PUR, n ¼ 55), and

Colombian (CLM, n ¼ 60) samples.

To genotype SNPs over regions with excess coverage from 1000

Genomes Project Phase 1 alignments (that is, alignments by

GRCh37 rather than hs37d5), presumed to have duplicated paral-

ogous sequences, we run the UnifiedGenotyper walker over these

regions with default settings other than the additional option

‘‘-ploidy 4,’’ which instructs the GATK to treat the reads at a single

locus as if coming from four different haplotypes. We then used a

custom python script to identify the three main modes for the

tetraploid genotype likelihoods obtained with the UnifiedGeno-

typer walker, and subsequently recalibrate these to obtain standard

diploid genotype likelihoods. This simple scheme significantly

improves the genotype likelihoods within regions receiving excess

coverage and better recapitulates the real genotype, which in turn

leads to increased power for admixture mapping.
Journal of Human Genetics 93, 411–421, September 5, 2013 413



Figure 2. Admixture Mapping Flowchart for the LATOOLS Soft-
ware Tool Described in This Study
Local ancestry deconvolution for multiple samples can be input in
LATOOLS in unionbedg format, which can be easily generated
with the bedtools suite starting from single sample deconvolu-
tions in BedGraph format. Genotype likelihoods can be input
from a VCF file, without further processing if directly generated
with GATK.
Validation of Ancestry Mappings by Alignments to

Optical Restriction Maps
Genome-wide consensus restriction maps are high-resolution re-

striction maps obtained by combining restriction maps of many

long, individual DNA molecules generated through optical map-

ping.25,26 We used available restriction maps for three cell lines

(GM15510, GM10860, GM18994) with the SwaI restriction

enzyme.27 To validate mapping through admixture, we attempted

to match in silico generated restriction maps of unlocalized

hs37d5 BAC clone sequences to these optical restriction maps.

To perform this step in an automatized fashion, we used the Scaf-

folding using Optical Map Alignment (SOMA) software.28

Software for Admixture Mapping
To compute LOD scores from genotype likelihoods computed with

GATK, we developed a software tool named LATOOLS that takes as

input a file in variant call format29 (VCF) containing genotype

likelihoods and a single file containing the local ancestry deconvo-

lution for a group of admixed samples in the extended bedgraph

format outputted by the unionbedg subcommand of the bedtools

suite30 (Figure 2).

The source code for the LATOOLS program is freely available

and written in a combination of C and Python, using the PyVCF

library, a flexible module to parse and output VCF files.
Results

Our approach utilizes the principle that Latino genomes

are a mosaic of genomic segments derived from ancestors

from three continents: Europeans, Native Americans, and
Table 2. Statistics for Decoy Sequences Localized through Admixture

Scaffold Type SNPs LOD R 6 Mapped Scaffolds

GRCh37 unlocalized 255 22

GRCh37.p4 patches 67 3

BAC and fosmids 714 135

HuRef (placed) 982 94

HuRef (unplaced) 1,565 184

NA12878 305 130

TOTAL 3,888 568
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West Africans. We first developed a statistical approach to

estimate the likelihood that genotypes for a given marker

are observed from a combination of local ancestry back-

grounds permissible in three-way admixed genomes,

such as Latino genomes. We then estimated this likelihood

for different combinations of local ancestries previously

estimated across the genome. By using data from 242

Latino genomes from the 1000 Genomes Project Phase 1,

we identified loci whose estimated local ancestry explained

the observed genotypes much better than chance, and we

connected eachmarker to the genomic location at which it

resides. We were thus able to infer the approximate

genomic location of the previously unlocalized sequence

from which the marker came.

Across all ~41.5 Mbp of unlocalized human genome

sequence included in the hs37d5 reference (the human

genome reference integrating GRCh37 and the decoy

sequences), we were able to localize 3,888 SNPs through

admixture mapping with a LOD score greater than or equal

to 6 (Table 2 and Table S1 available online); these SNPs

arose from 569 distinct scaffolds (Table S2) spanning a total

of ~19.1 Mbp of sequence.

We sought to better understand this surprising finding

that Latino genomes were so powerful for admixture map-

ping in this context. Remarkably, ~25% of the admixture

mapped SNPs in the current analysis were estimated to

be polymorphic exclusively in the West African ancestral

population, compared with 1%–2% polymorphic exclu-

sively in the European ancestral population and 8%–10%

polymorphic exclusively in the Native American ancestral

population (Figures 3A–3C). We found that this was due to

a mix of ancestry proportions of the samples analyzed, his-

torical population demographics of the three ancestral

populations, and informativeness of a SNP given its ances-

tral allele frequencies for the purpose of admixture map-

ping (Figures 3D–3F).

Intuitively, genomic segments derived from West Afri-

can ancestors are the segments most likely to contain

ancestry-specific alleles, and the low levels of West African

components in Latino genomes makes the observation of

these alleles even more informative for the purpose of

admixture mapping. Most of these West African-specific

SNPs would have not had sufficient power to map in a

similarly sized cohort of African Americans because of
Mapping

Total Scaffolds Mapped bp Total bp

59 2,798,503 6,110,758

6 186,895 222,135

652 4,713,464 11,833,029

310 5,263,708 7,417,706

1,213 5,470,985 11,892,765

1,017 823,900 4,018,028

3,257 19,257,455 41,494,421
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Figure 3. Ancestral Allele Frequencies
Spectrum for Mapped SNPs and Power
Estimates for the Mappability of a SNP
Given Its Ancestral Allele Frequencies
(A–C) Ancestral frequencies estimates for
SNPs from unlocalized scaffolds that map-
ped with a LOD score greater than or equal
to 6.
(D–F) Probability of obtaining a LOD score
greater than or equal to 6 for a SNP mono-
morphic for the reference allele for one
ancestral population and with given alter-
nate allele frequencies for the two other
populations on the x and y axes.
the 80% 5 12% West African component in the African

American population. Conversely, European-specific

markers are easier to map than West African-specific

markers in African Americans (see Supplementary Note

of Genovese et al.8).

Given our false-positive estimates, we expected less than

~10 mismapped markers overall. Among scaffolds with

multiple mapped SNPs (332 of the 569), we identified

seven with discordant localizations. In one case

(NW_001838929.1), this is due to a known misassembly

between chromosomes 5 and 6 in HuRef over PRIM2

(MIM 176636). In another case (AL356585.7), the most

parsimonious explanation is that one localization is a false

positive. The other five cases relate to regions rich in satel-

lite repeats where different SNPs localize to either chro-

mosomes 1 and 14 (AEKP01218574.1, BX546479.5,

and NW_001841051.1) or chromosomes 5 and 19

(NW_001841116.1 and NW_001840272.1). In these cases

the most parsimonious explanation is alignment of reads

originating from paralogous regions of different chromo-

somes for which at least one region was not modeled in

hs37d5. Although these results are in line with the number

of false-positive localizations estimated, they highlight the

importance of relying on correct alignments, a problem

that can be obviated by either using longer reads,

including models for all paralogs in the reference used

for alignment, or performing careful analysis of excess

read coverage.

We sought to understand the statistical power of this

approach, in part to evaluate its future contribution to

completing physical maps of the human genome as more

admixed genomes are sequenced. Empirically, with the
The American Journal of Human Gen
available sequence from 242 admixed

samples, approximately one SNP

every 10 kbp achieved an admixture

mapping LOD score greater than or

equal to 6. Because larger contigs

have a larger chance to contain a

mapped SNP than smaller contigs,

even if we were able to map only

~17.5% of the contigs analyzed (569

scaffolds), we successfully mapped

~46.4% of the sequence contained in
all unlocalized contigs (~19.1 Mbp of sequence). We there-

fore tried to estimate empirically the likelihood of map-

ping an unlocalized contig given its size. As expected,

larger contigs were significantly more likely to map

because they were more likely to contain a mapped SNP

and contigs larger than ~40 kbp were more likely to be

mapped than not (Figure 4). Although these results are

encouraging for the feasibility to map most unlocalized

sequences originated from BAC and fosmid clones (20–

180 kbp), we caution that the likelihood to identify a

SNP that maps will also be a function of the sequence con-

tent and the LD structure of a given contig.

Most of the mapped scaffolds localized to regions near

gaps in the human reference genome (Figure 5). HuRef-

unplaced scaffolds almost always mapped to pericentro-

meric regions, much more often than HuRef-placed

scaffolds did. This is consistent with our earlier observation

that these scaffolds often contain centromeric satellite

sequence and that on many occasions they resemble

euchromatic islands flanked by heterochromatic satellite

sequence.8 Note that mappings within pericentromeric

regions are unable to pinpoint the exact location of the

sequence within pericentromeric gaps and often provide

localizations to either side of the centromere.

To critically evaluate these mappings by an independent

molecular analysis, we utilized optical restriction maps for

the human genome, previously obtained by visualizing the

digestion patterns of a restriction enzyme on long,

random, individual pieces of genomic DNA.25,26 We

selected for analysis the 37 BAC clone sequences that we

were able to localize and for which at least 7 SwaI restric-

tion enzyme cuts were identified in silico. (The existence
etics 93, 411–421, September 5, 2013 415
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Figure 4. Percentage of hs37d5 Unlocalized Contigs that Were
Localized in This Study as a Function of Contig Size
Percentage of localized contigs, in blue, and localized sequence, in
green, admixture mapped among all unlocalized contigs from the
hs37d5 reference larger than a given size using sequence data from
the 242 admixed samples from the 1000 Genomes Project Phase 1.
of at least 7 restriction sites was required for specificity;

spurious matches with the restriction maps were observed

for clones with fewer than 7 SwaI sites.) We compared the

restriction maps for these clones to available consensus

maps for the human genome to identify significant

matches. We were able to connect 16 of these clones to a

genomic location via the optical-map data, generally

because a long, restriction-mapped segment of genomic

DNA contained restriction fragments matching the clone

and also restriction fragments matching an assembled

part of the human genome. In each case (16/16), the opti-

cal map validated our admixture-based mapping of the

same clone (Table 3).

We sought to more deeply understand the relationships

among optical-mapping and ancestry-mapping results and

the potential complementarity of these two new

approaches to genome assembly. Several of the validated

concordances involved the localization of the BAC clone

sequences (e.g., AC026273.7) within a centromeric gap,

confirming the potential of optical mapping to bridge

euchromatic sequences separated by >100 kbp stretches

of centromeric satellite repeats. Another case involved a

BAC clone sequence (AL354926.17) that is part of a known

~240 kbp euchromatic island resulting from a segmental

duplication involving PRIM2 from chromosome 6 within

the centromere of chromosome 3 (see Genovese et al.8);

in this case, the optical restriction map was unable to

localize the clone, despite the 17 restriction enzyme cuts

predicted from the sequence. Consensus maps for chromo-

some 3 predict that this island must be separated by >400

kbp stretches of centromeric satellite repeats that are not

bridged by current optical-mapping data sets. This

example highlights the unique kind of long-range infor-
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mation that can be accessed through admixture mapping

but not yet through currently available molecular technol-

ogies.

We hypothesized that our statistical approach could also

be used to identify dispersed duplication polymorphisms,

in which extra, polymorphic copies of a genomic locus

reside far from the known copies. (Such dispersed duplica-

tions are in contrast to tandem duplications, the most

common form of duplication polymorphism.) We there-

fore also attempted to remap the genomic locations of

copy-number polymorphisms (CNPs) by the above

approach and we identified four dispersed duplication

events (Table S3). Two of these remapped polymorphisms

relate to a large and common copy-number polymorphism

in 16p11.2 that also affects missing sequence paralogous to

sequence in 6p25.3, containing DUSP22, and 20q13.2

(Figure 6 and Table S4). Further analysis revealed the pres-

ence of an LD-related less common CNP also affecting

sequence paralogous to 16p11.2 and 6p25.3 (Figure S1).

Sequence coverage analysis shows that this missing piece

is highly polymorphic in human populations, confirming

previous observations about the DUSP22 paralog.8,31–33

We also mapped to a telomeric region of 20q13.33 the

polymorphic, extra copy of sequence in 12p13.33, and

we mapped to 21q11.2 a large CNP affecting missing

sequence paralogous to sequence in 13q11. Notably, this

last CNP also affects a region in 21q11.2, and it seems

that samples with excess coverage in 13q11 have lower-

than-expected sequence coverage in 21q11.2, possibly

indicating the presence of a common polymorphism

involving sequence exchange between chromosomes 13

and 21 (Figure S2).

Finally, we sought to identify cryptic missing paralogous

sequences that are entirely missing from human reference

genome sequences (i.e., that are not even described as

unlocalized sequences in GRCh37) and exist as cryptic

segmental duplications (or paralogs) of known genomic

sequences. We found that ~17 Mbp of sequence in the

autosomes of the GRCh37 reference human genome

receive an excessive number of reads (when aligning

against GRCh37 rather than hs37d5), indicating the pres-

ence of missing paralogs (Tables 4 and S5). Notably, chro-

mosome 1 contains an exceptional ~2.6 Mbp of such

sequence, mainly concentrated in the 1q21 region. Part

of the reason is due to three large and recent segmental du-

plications of the region surrounding SRGAP2 from 1q32.1

to 1q21.1, 1p12, and proximal 1q21.1,34 which are not

fully represented in GRCh37. Another autosome with a

large amount of sequence paralogous to missing sequence

is chromosome 16, containing ~1.8 Mbp of such sequence,

for which most of the excess coverage is due to missing pa-

ralogous sequence involved in the large CNP in 16p11.2

(Figures 6 and S1 and Table S4).

Having identified ~17 Mbp of genomic sequence that

harbors cryptic paralogs, we next sought to map the

genomic locations of these cryptic paralogs by admixture

mapping the genomic locations of variants in this
er 5, 2013
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sequence. After genotyping SNPs over the regions with

observed excess coverage, we identified 175 SNPs that re-

mapped to a chromosome different from the chromosome

on which they were originally located (Table S6). Notably,

26 of these remapped SNPs were erroneously localized in

the 1q21.1 region; 24 remapped SNPs related to the dupli-

cation from 6p25.3 to 16p11.2 containing DUSP22 (notice

that because of the copy-number polymorphism at

16p11.2, these SNPs might actually be paralogous

sequence variants); and 13 related to a known duplication

from 6p11.2 to 3p11.1 containing a partial copy of

PRIM2.8,35–38 Intriguingly, 21 of the remapped SNPs origi-

nated from the pericentromeric regions of chromosome

19 and remapped to pericentromeric regions of chromo-

some 5; the extent of apparent genetic exchange between

these two genomic regions is probably due to the high de-

gree of alpha satellite homology between them.39,40

Another 17 of the remapped SNPs originated from the

short arm of chromosome 21 and mapped to chromo-

somes 13 and 14; this is consistent with the observation

of recombination exchanges selective for sequences be-

tween the acrocentric chromosomes 13, 14, and 21 result-

ing from a common subfamily of alpha satellite DNA.40–42
Discussion

We successfully mapped much of the human genome’s

remaining unlocalized sequence. By applying our three-

way admixture mapping approach to whole-genome

sequence data from 242 Latino genomes, we localized

569 scaffolds containing almost 20 Mbp of sequence

currently unlocalized ormissing from the current reference

human genome. Only 38 of these scaffolds had been map-
The American Journal of Human Gen
ped in our previous work.8 Mappings

in our studies based on African Amer-

ican and Latino admixture produced

consistent results, with mappings

agreeing at 37/38 scaffolds with only

one exception (NW_001841149.1).

Despite this effort, even more

sequence remains unlocalized (much

of it in smaller contigs) or missing

from the current human reference

genome.

Though our work was limited by

the modest number of admixed sam-

ples for whom whole-genome

sequence data are currently available

(n ¼ 242), Latino genomes turned

out to be surprising powerful for

admixture mapping the reference
human genome’s missing sequence, as a result of the

particular ancestral proportions that are present in Latino

genomes (and in particular, because of the appreciable

but still-modest contribution of African ancestry to the

populations sampled). As more whole-genome sequence

data sets from admixed samples become available (the

1000 Genomes Project alone is expected to include ~500

admixed samples at the end of Phase 3), we predict that

it will be possible to localize the great majority of fosmid-

size or larger (>40 kbp) contigs by admixture mapping.

The completion of physical maps of the human genome

remains an important goal, in which the initial localiza-

tion of novel sequences to their correct genomic locations

is an important step. Most of the genetic findings from

linkage, association, and CNVs have not yet been attached

to specific functional variants or causal genes; knowing all

of the eligible sequence and genes in a genomic region is

key for informing follow-up strategies. The localization of

pericentromeric sequences currently absent from the hu-

man reference genome will also help efforts to complete

physical maps of the human genome in these regions,

for example by informing the selection of clones for

sequencing and the creation of tiling paths. Such resources

will support the resolution of genetic signals, particularly

in pericentromeric regions without a full and correct repre-

sentation in the current human genome reference—for

example, a risk factor for multiple sclerosis (MS [MIM

126200]) that is currently localized, but not yet identified,

in the pericentromeric region of chromosome 1.43

The Genome Reference Consortium (GRC) is actively

working to improve the current human genome assem-

bly.44 At present, the whole 1q21 region has been rese-

quenced by means of a haploid BAC library34 enabling

analysis of many novel genes within it; this sequence
etics 93, 411–421, September 5, 2013 417



Table 3. Optical Map Validation

Accession Clone/Scaffold Name Length Decoy Mapping Mapping Type SwaI Cuts OM Match

AC006359.3 DJ1135M02 118,730 14,732 1p12 pericentromeric 12 þ

AC006453.3 RP4-614C10 155,313 21,861 2q11.1 pericentromeric 9 NA

AC010098.8 RP11-400J9 176,043 35,075 1q21.1 pericentromeric 11 NA

AC011850.12 RP11-364J18 164,681 164,681 20q11.21 pericentromeric 13 NA

AC018692.9 RP11-555K2 189,789 189,789 21q11.2 pericentromeric 23 NA

AC026273.7 CTD-2314M3 144,645 118,722 2p11.2 pericentromeric 7 þ

AC040978.8 RP11-570L14 180,983 2,300 8q24.3 interstitial 13 þ

AC092107.5 RP11-755J8 137,617 135,288 20q11.21 pericentromeric 10 NA

AC104301.2 RP11-150N22 189,610 180,137 20q11.22 pericentromeric 11 NA

AC109135.2 RP11-240C17 175,099 117,528 1q21.1 pericentromeric 18 þ

AC114745.6 RP11-116D16 142,666 1,718 2q31.1 interstitial 8 NA

AC116618.4 RP11-98L17 153,040 148,815 22q11.21 pericentromeric 10 NA

AC127701.2 RP11-79F18 161,405 77,395 7p12.3 pericentromeric 10 NA

AC129531.8 RP11-188B1 164,068 30,549 17q24.1 interstitial 8 þ

AC133920.2 RP11-413O9 197,357 56,111 16p11.2 pericentromeric 14 NA

AC137488.2 CTD-2506I5 167,135 121,805 22q11.21 pericentromeric 11 NA

AC138774.4 RP11-1320P3 194,050 158,495 14q11.2 pericentromeric 12 NA

AC233266.3 CH17-257B11 200,859 52,993 2p11.2 pericentromeric 13 þ

AC233698.3 CH17-16P3 205,905 6,425 17q12 interstitial 11 þ

AC233702.5 CH17-53B9 237,913 32,188 17p11.2 pericentromeric 13 þ

AC234063.4 RP11-281H18 171,953 97,656 17q24.1 interstitial 14 þ

AC239584.4 CH17-186K1 188,924 7,642 4q13.3 interstitial 19 NA

AC239860.3 CH17-262O2 191,275 35,427 1q21.1 pericentromeric 10 þ

AC241586.3 CH17-289G7 221,610 28,747 1p11.2 pericentromeric 23 þ

AC243974.2 CH17-93H22 121,220 1,892 12p13.2 interstitial 15 þ

AL137861.5 RP4-813B7 127,682 97,063 1q21.1 pericentromeric 9 NA

AL163540.11 RP11-348N17 166,566 166,566 9q21.12 pericentromeric 14 NA

AL354926.17 RP1-216J23 163,140 128,103 3p11.1 pericentromeric 17 NA

AL356585.7 RP11-341D18 186,858 186,858 13q12.11 pericentromeric 9 NA

AL360154.30 RP11-499D3 240,434 240,434 1q21.2 pericentromeric 17 þ

AL590523.5 RP11-565G5 155,397 155,397 3q11.2 pericentromeric 11 NA

AL592188.60 RP11-337M7 161,802 161,802 1p36.11 interstitial 8 NA

AL845331.2 RP11-407P15 185,111 53,859 2p11.2 pericentromeric 21 þ

AL929347.8 RP3-433O3 128,374 128,374 6p25.3 telomeric 11 þ

BX072566.10 RP11-25L22 164,239 164,239 21q11.2 pericentromeric 10 þ

BX546479.5 RP11-438N17 172,294 172,294 1q21.1 pericentromeric 9 NA

BX640538.4 RP6-238B6 165,731 162,788 9p13.1 pericentromeric 11 NA

List of admixture-mapped BAC clone sequences with at least seven SwaI restriction enzyme cuts. In the length column we report the length of the sequence asso-
ciated with the clone, and in the decoy column we report the amount of sequence included in the decoy sequences. In the type column we indicate whether the
clone was mapped to an interstitial or a pericentromeric region. Notice that interstitial clones usually report only a small fraction of their sequence as part of the
decoy, because these usually are clones selected among the decoy sequences only for harboring a small insertion not present in GRCh37. In the last column we
report whether we were able to match the in silico restriction map of the clone to the available consensus maps from optical mapping (þ) or whether we were
unable to find any match (NA).
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Figure 6. A Common Structural Poly-
morphism at 16p11.2
Sequence read coverage for 826 samples
from the 1000 Genomes Project Phase 1
within regions 16p11.2, 6p25.3, and
20q11.2. For clarity, 42 samples that were
not classified as copy number two over
the two mostly unaffected windows
chr16: 32,699,009–32,829,564 and chr16:
33,142,816–33,339,320 were excluded,
because these may harbor larger and rarer
CNVs. Median coverage for samples geno-
typed as CN ¼ 2,3,4 over chr6: 257,000–
295,000 is displayed. Notably, a strong cor-
relation emerges between coverage over
the genotyped region and sequence within
window chr16: 32,258,540–32,659,102.
Coordinates in Mbp on the horizontal
axis are with respect to GRCh37.
will be incorporated into the reference assembly in

GRCh38. Similar efforts aremaking progress inmany other

regions of the genome.

Admixture mapping the human genome’s missing

pieces will complement current, clone-based efforts to fin-

ish the human genome assembly. We predict that intersti-

tial gaps in the reference may be most completely closed

through the use of more traditional tiling approaches by

assembling sequences originated from fosmid or BAC

clones. On the other hand, euchromatic islands isolated

from the rest of the euchromatic genome in oceans of

heterochromatic, repeat-rich sequence may be difficult or

impossible to connect to the rest of the euchromatic
Table 4. Amount of Autosomal Sequence in GRCh37 Estimated as
Paralogous to Human Genome Sequence Missing from GRCh37

Chromosome Amount Chromosome Amount

1 2,619,146 12 78,080

2 1,256,316 13 44,748

3 260,658 14 791,331

4 702,290 15 1,804,382

5 225,217 16 1,778,050

6 712,060 17 687,292

7 951,381 18 29,417

8 575,030 19 495,126

9 1,139,288 20 255,426

10 1,149,893 21 1,011,618

11 217,685 22 159,547

The American
genome by clone-based approaches. Admixture mapping

may be critical for localizing such genomic sequences.
Supplemental Data

Supplemental Data include two figures and six tables and can be

found with this article online at http://www.cell.com/AJHG/.
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Web Resources

The URLs for data presented herein are as follows:

1000 Genomes, http://browser.1000genomes.org

BedGraph Format, http://genome.ucsc.edu/goldenPath/help/

bedgraph.html

Decoy sequences, ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

technical/reference/phase2_reference_assembly_sequence/ or

ftp://ftp.ncbi.nih.gov/1000genomes/ftp/technical/reference/

phase2_reference_assembly_sequence/

GRC, Genome Reference Consortium, http://www.ncbi.nlm.nih.

gov/projects/genome/assembly/grc/

LATOOLS software, http://www.broadinstitute.org/~giulio/

latools/
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Local ancestry deconvolution, ftp://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/phase1/analysis_results/ancestry_deconvolution/ or

ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/phase1/

analysis_results/ancestry_deconvolution/

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org/

PyVCF, A Variant Call Format Parser for Python, http://pyvcf.

readthedocs.org/en/latest/

RepeatMasker, http://www.repeatmasker.org

SOMA, Scaffolding using Optical Map Alignment, http://www.

cbcb.umd.edu/soma/

UCSC Genome Browser, http://genome.ucsc.edu

unionbedg Format, http://bedtools.readthedocs.org/en/latest/

content/tools/unionbedg.html

VCFtools, Variant Call Format, http://vcftools.sourceforge.net/

specs.html
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