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Abstract
The cerebral cortex of the human brain is highly folded. It is useful for neuroscientists and clinical
researchers to identify and/or quantify cortical folding patterns across individuals. The top (gyri)
and bottom (sulci) of these folds resemble the “blob-like” features used in computer vision. In this
article, we evaluate different blob detectors and descriptors on brain MR images, and introduce
our own, the “brain blob detector and descriptor (BBDD).” For the first time blob detectors are
considered as spatial filters under the scale-space framework and their impulse responses are
manipulated for detecting the structures in our interest. The BBDD detector is tailored to the scale
and structure of blob-like features that coincide with cortical folds, and its descriptors performed
well at discriminating these features in our evaluation.

I. Introduction
Recent evidence supports heritable aspects to cortical folding [1,2] and an association
between cortical folding and mental disorders [3,4]. To better understand, diagnose, or
predict treatment outcome for these conditions based on morphological differences, it is
important to identify and/or quantify the type and degree of folding across conditions.
Magnetic Resonance Imaging (MRI) data provide contrast between gray and white matter of
the folded cortical surface, and the top (gyri) and bottom (sulci) of these folds are distinctive
features of the brain. These distinctive features are quite similar to the “blob-like” features
of interest to the computer vision community. We are interested here in evaluating the
performance of blob-like feature detectors and descriptors to distinguish folds in human
brain MRI data, in the interest of developing our own method that can be refined for brain
image analysis and clinical research.

There are many blob-like detectors defined for different purposes, most of which are
compared in [5,6]. However, scale normalized Laplacian (SNL) based on the Laplacian of
Gaussian (LOG) [7], Salient regions based on entropy [8], shift invariant feature transform
(SIFT) based on the difference of Gaussians (DOG) [9], and speeded-up robust features
(SURF) based on the determinant of Hessian (DOH) [10] have attracted the most attention
in the literature. There are also different descriptors introduced in the field of computer
vision which are compared in [11], and some newly defined descriptors such as the rotation
invariant feature transform (RIFT) [12], which plays a significant role in our newly
introduced BBDD descriptor.

Please note that these methods were originally proposed for 2D images and the extension to
3D is not always straightforward. For instance, the 3D extension of the DOG filter is readily
given, but the SIFT algorithm in which it is used is not easily extendable to 3D. There are a
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number of 3D extensions of the SIFT algorithm, however we used the recently published
method [13] which is the only true 3D extension of the SIFT method. We used the 3D
extension of the SURF algorithm given in [14] for our examination, and we extended SNL
and Salient regions to 3D (normalization factor in SNL changes from σ2 to σ3/2. The
extension of the descriptors to image volumes also poses a challenge. We have extended the
RIFT descriptor to 3D images for comparison.

This paper is organized in the following format. In section 2, blob-like detectors are
reviewed and a new algorithm for blob detection in brain MR images is introduced. In
section 3, descriptors are reviewed and a new descriptor is introduced. The evaluation of the
BBDD is given in section IV.

II. Blob-Like Detectors
Blob detection methods are usually designed for general-purpose tasks such as object
recognition, motion tracking, robot localization, etc. An attempt has also been made to use
SIFT detectors for classification of brain MRI data in [15]. However, our aim here is more
specialized, in that we are only interested in a limited range of sizes and shapes of blobs
relevant to two types of blob-like structures: “sulcal blobs” and “gyral blobs.” These blob-
like structures along the cortex of a human brain can be seen in Fig. 1 and Fig. 3. As seen in
these figures, these blobs are particular in their size, location, and structure.

For instance, a sulcal blob has a dark center surrounded by gray matter and extends into
white matter, whereas a gyral blob has the reverse order (this is used later on to discriminate
them). In this work we examine blob detectors (LOG, entropy, DOG, and DOH) and the
well-recognized methods that use these detectors (SNL, Salient regions, SIFT, and SURF)
for extracting blob-like features in human brain MR images.

Fig. 1 shows features that we extracted using SIFT (red dots), SURF (black circles), SNL
(cyan squares), and Salient regions (white cross) in 2D (which produces more features for
visual evaluation in a given slice than its 3D counterpart). The parameters of these
algorithms are set to the suggested values by the original papers [7,8,9,10]. It is obvious that
these results are not satisfactory, which is due to the fact that these algorithms were
originally designed for other tasks. Their objective was focused on robustness (repeatability)
under affine transformations without regard for the structures around these features. In our
application, we are interested in extracting features that are not only robust, but are
associated directly with sulcal and gyral blobs. To tailor our detector accordingly, we
analyzed the structure of the blob detector's impulse response function. From a signal
processing point of view, these detectors are simply band-pass filters. Since blobs are local
features, their impulse response can simply be analyzed in the spatial domain.

A. Blob Detector Impulse Response
SNL blob detectors are based on normalized LOG filters, which are simply the summation
of the second derivative of the Gaussian filters with variance of σ along all axes. Equation
(1) gives its impulse response function in 3D. This function is convolved with a 3D image
and the local maxima (not only in spatial domain but also in scale-space) indicate the
existence of blob-like structures,

(1)

where x=(x,y,z)t is the coordinate in the 3D Cartesian system and |x| is the norm of the
vector x. Fig. 2 shows a cross-section of a LOG filter for σ =2. SIFT blob detectors are
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based on the DOG filter, which is simply the difference of two Gaussian filters with
different variances σ and kσ:

(2)

where k is the factor used for the adjustment of the filter, and x and |x| are the same as in
equation (1). Fig. 2 also shows a cross-section of a DOG filter for σ =2 and k=1.5. The
SURF algorithm uses the DOH as its blob detector, which is the determinant of the Hessian
matrix at the given scale, σ:

(3)

where Lab(x,σ) is the second derivative of the Gaussian with respect to a and b axes, and x is
the same as in equation (1). Fig. 2 also shows the cross-section of the DOH filter with σ =2.
Finally, Salient regions detectors are based on an entropy measure,

(4)

where p(i) is the probability of the intensity i taking place in a spherical volume of radius σ
and centered at x. This probability is computed by the normalized histogram of the Gaussian
smoothed image. Since histograms are non-linear functions, obtaining their impulse
response is quite challenging, if not impossible. Moreover, entropy is a measure of
randomness in a dataset that is very sensitive to noise and is generally not focused on any
particular structure. Fig. 1 clearly indicates such behavior. Therefore we do not consider
entropy detector any further.

Table 1 summarizes the zero crossings and the locations of the maxima for the LOG, DOG,
and DOH impulse responses. These locations are crucial in designing our specialized filters
in the next subsection. As can be seen in Table 1 and Fig. 2, all three detectors have almost
the same type of impulse response. However, the DOH response is not symmetric around
the x=0 axis (not visible in Fig. 2 since it only shows a cross-section of the response), which
reduces the rotation invariance of the DOH filter. Gaussians are optimal for scale-space
analysis [7], but in practice they have to be discretized and cropped. This leads to an error in
their implementation. Blob detectors should be invariant to the luminance level of an image,
so the area/volume under the LOG, DOG, and DOH impulse response curves should be
zero. Discretizing and cropping of these filters alters this property, making them sensitive to
the luminance level of the image. The advantage of the DOG is that its Gaussians can be
normalized to one after discretizing and cropping, and their difference can be set to zero.
Such an advantage does not hold for the LOG or DOH filters. That is why we select DOG
filters in our method. In addition, DOG has smoother end tails which makes it more
attractive, as described in the next section.

B. Gyral and Sulcal Blob Detector
As mentioned in the introduction, the purpose of this research is to detect gyral and sulcal
blobs. It is crucial that we extract a minimum number of false blobs, so we adjust the center
lobe of our filters to the average radius of the sulcal blobs (3.32 ± 2.18 mm) and average
radius of gyral blobs (6.21 ± 3.18 mm). The side lobes of the filter's impulse response
should be set to the average thickness of gray matter (2.74 ± 0.34 mm, derived from 248
normal and healthy MRI brain data). Our investigation of the impulse response of the
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detectors indicates that the width of the central lobe is a factor of the width of the side lobe.
Therefore only one degree of freedom exists in designing our filters. For instance, side lobes
should be set to the average thickness of gray matter (2.74 ± 0.34 mm). In this case, the
central lobe has to have a width of 9.49 ± 1.18 mm, whereas the average width of the sulcal
blobs and gyral blobs are about 6 mm and 12 mm, respectively. Fortunately, the tails of the
DOG impulse response smoothly converge toward zero which ensures that the variability in
gray matter width has a negligible impact on our detectors. Thus designing the filters is done
purely based on fitting the central lobe width to the average radius of the sulcal blobs (3.32
± 2.18 mm, ranging from 2.14 to 6.50 mm), requiring 6 DOG filters (σ = {1.14, 2.14, 3.14,
4.14, 5.14, 6.14}) for the detection of sulcal blobs, and fitting to the average radius of gyral
blobs (6.21 ± 3.18 mm, ranging from 3.032 to 9.39 mm) requiring 3 filters (σ = {7.39, 8.39,
9.39}) for detection of gyral blobs. The remaining gyral blobs are in the range of sulcal blob
detectors; with the differences that they respond negatively to gyral blobs. All the filters here
are designed for images with isometric voxels (1mm) but are easily scalable to other voxel
sizes. In either case, these designs are robust to a small deviation in the size of the voxels
due to the scale-space framework of the algorithm [7,8,9,10].

Detected blobs with weak responses are either due to noise or minimal similarity to blob-
like structures. In addition, MR images are highly variable in their contrast, noise level, and
intensity inhomogeneity. Under such conditions, it is impossible to set a fixed threshold to
discard the weak blobs (as is done in SIFT, SURF, and SNL). In BBDD the features are
selected by their response magnitudes, such that the original detected blobs are sorted by
their magnitudes and a certain number of them with highest response values are selected.
This process is performed for sulcal and gyral blobs separately, since the sulcal blob
responses are often stronger than the gyral blobs. This makes BBDD able to extract an exact
number sulcal blobs and gyral blobs (not necessarily the same number) for every brain.

Detected features outside the brain are discarded by measuring the normalized average
energy of the image intensity in the circular area around the features. The radius of the area
is equal to the scale in which the feature is detected. Also, if the locations of the detected
features are close (within a distance equal to their scales), the feature with smaller response
magnitude is discarded.

Fig. 3 shows the result of the new BBDD detector applied to brain MR images with 1mm
isometric voxels in 2D (which produces more features for visual evaluation in a given slice
than its 3D counterpart). As can be seen, only sulcal and gyral blobs are extracted. The white
circles around each point indicate the scale in which these features were detected.

III. Descriptors
After detecting the sulcal and gyral blobs, they should be assigned descriptors which
distinguish them from each other within and across individuals. A comparison of ten
descriptors was done in [11]. The two top-performing descriptors were the gradient location
and orientation histogram (GLOH) [11] and SIFT [9]. The SIFT descriptor is represented by
a 3D histogram of gradient locations and orientations. GLOH is an extension of the SIFT
descriptor designed to increase its robustness and distinctiveness. There are two new
descriptors (SURF and RIFT) which are not included in [11]. The SURF descriptor is based
on Haar wavelets, which is computed for subregions of a 20x20 window on each feature
point, oriented with the original feature orientation. The general issue with these descriptors
is the reference direction upon which all other directions are computed. Even a small
deviation in this reference has a significant effect on the result. This disadvantage is address
by the RIFT descriptor which computes the gradient directions with respect to the directions
pointing outward at each location. The RIFT descriptor places four concentric rings of equal
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width around the feature point. For each ring a histogram of the gradient directions is built
with eight bins, resulting in a vector of 32 components for each feature.

We were not able to locate any extension of the RIFT descriptor to 3D, so we have
computed 3D RIFT descriptors simply by placing four concentric spheres with equal step
radius about each feature point. We compute the gradient direction as the angle between the
3D gradient vector and another vector starting from the center of the sphere and ending at
the feature point. This resolves the issue of directional reference mentioned above.

MR images are noisy and of low contrast, and the regions around each type of blob (sulcal
or gyral) are very similar to each other, thus the existing descriptors do not perform well
even with a small amount of noise added. In the BBDD descriptor, we reduce the size of the
RIFT descriptor to an 8-component vector by PCA. We add five new components (three for
location, one for scale and one for the magnitude of the impulse response), resulting in a 13-
component vector descriptor. Please note that coordinates of the features may change
significantly between different scans. In our BBDD descriptor we transferred the
coordinates to principal component coordinates. This ensures that the deviations between
corresponding coordinates are minimal.

IV. Evaluation
Table 2 shows the average number of extracted blob-like features by BBDD, SIFT, SURF,
and SNL. Total number of sulcal/gyral blobs and the correctly detected sulcal blobs and
gyral blobs are manually counted (in 2D for three center slices of axial, coronal, and sagittal
planes of 36 participants) and the incorrect detections are reported as false positive and
undetected blobs as false negative in Table 2. As can be seen, the error percentage of the
BBDD is significantly lower than existing methods.

As reported in [13], SIFT descriptors are very sensitive to image noise. Since brain MR
images are considered noisy and of low resolution, it is easily inferred that their performance
will not be satisfactory. Since the GLOH descriptors are obtained in the same way as the
SIFT descriptors, they should have similar performance. SURF descriptors are simple and
they seem to be more robust to noise as reported in [10], however they still suffer from the
reference direction issue mentioned in the previous section. In our evaluation, we compared
the performance of the RIFT descriptor and our BBDD descriptor for gyral and sulcal blobs.
Our measure of discriminability was the average Euclidean distance between all pairs of the
descriptors in the image. Descriptor with higher average distance tolerates higher level of
image degradation. We have computed this measure for 36 human brains. We repeated this
process for different levels of added noise (1% to 10%) and report the average and standard
deviation in Fig. 4. As can be seen in Fig. 4, the average distance between the RIFT
descriptors decreases with noise, but is stable for our BBDD descriptor.

V. Conclusion
In this study, we examined the performance of traditional blob-like feature extraction and
matching methods applied to brain MR images. We added a new constraint of the feature
structure to make sure that only sulcal blobs and gyral blobs are extracted. We achieved this
by redesigning the impulse response of the blob detectors and adjusting their center lobe to
the radii of sulci and gyri in the cerebral cortex. The improvement is clearly shown in Fig. 3
and Table 2. We have also introduced a new descriptor based on RIFT descriptors to
maximize the distinctiveness of the features. This descriptor also discriminates sulcal blobs
from gyral blobs and it is more stable to noise as is shown in Fig. 4.
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Fig. 1.
Axial view of a human brain image with SIFT (red dots), SURF (black circles), SNL (cyan
squares), and Salient regions (while crosses) features.
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Fig. 2.
A cross-section of the scaled version of LOG, DOG, and DOH impulse responses for σ =2
and k =1.5.
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Fig. 3.
Axial view of human brain image with extracted blob-like features and their scales.
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Fig. 4.
Evaluation of the RIFT and BBDD descriptors for human brain MR images.
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Table 1

Zero crossings and the location of maxima for LOG, DOG, and DOH filters .

Zero Crossing Maxima Center Lobe Side Lobe

LOG ± 3 σ ± 5 σ 2 3 σ σ

DOG ± 3 σγ ± 5 σγ 2 3 σγ σ γ

DOH ± σ ±1.3 σ 2σ 0.6σ
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Table 2

Comparison of the BBDE, SIFT, SURF and SNL blob detectors

Total Blob-like Total Detection False Positive False Negative

BBDE 231 228 37-16% 40-17%

SIFT 231 633 589-93% 187-80%

SURF 231 252 214-84% 193-83%

SNL 231 492 454-92% 193-83%
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