
rsbl.royalsocietypublishing.org
Research
Cite this article: Verberk WCEP, Bilton DT.

2013 Respiratory control in aquatic insects

dictates their vulnerability to global warming.

Biol Lett 9: 20130473.

http://dx.doi.org/10.1098/rsbl.2013.0473
Received: 22 May 2013

Accepted: 15 July 2013
Subject Areas:
environmental science, ecology

Keywords:
climate change, eutrophication, hypoxia,

multi stressor, oxygen limitation,

respiration physiology
Author for correspondence:
Wilco C. E. P. Verberk

e-mail: wilco@aquaticecology.nl
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsbl.2013.0473 or

via http://rsbl.royalsocietypublishing.org.
& 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
Global change biology

Respiratory control in aquatic insects
dictates their vulnerability to global
warming

Wilco C. E. P. Verberk1,2 and David T. Bilton2

1Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Radboud
University, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
2Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, University of
Plymouth, Davy Building, Drake Circus, Plymouth PL4 8AA, UK

Forecasting species responses to climatic warming requires knowledge of

how temperature impacts may be exacerbated by other environmental stres-

sors, hypoxia being a principal example in aquatic systems. Both stressors

could interact directly as temperature affects both oxygen bioavailability

and ectotherm oxygen demand. Insufficient oxygen has been shown to

limit thermal tolerance in several aquatic ectotherms, although, the general-

ity of this mechanism has been challenged for tracheated arthropods.

Comparing species pairs spanning four different insect orders, we demon-

strate that oxygen can indeed limit thermal tolerance in tracheates. Species

that were poor at regulating oxygen uptake were consistently more vulner-

able to the synergistic effects of warming and hypoxia, demonstrating the

importance of respiratory control in setting thermal tolerance limits.
1. Introduction
Climatic warming is currently affecting ecosystems throughout the globe at rates

unprecedented in recent geological history [1,2]. Furthermore, ecological impacts

of increased temperatures can be exacerbated by other environmental stressors,

hypoxia being a principal example in water [3]. There is an urgent need to take

such interactions into account to accurately predict biological responses to

change, although in most systems, a suitable framework for forecasting responses

to multiple stressors remains lacking. Analyses of physiological traits at the orga-

nismal level could provide the mechanistic framework required, offering a

promising approach to understanding the possible impacts of rapidly changing

climate [4,5]. Warming increases ectotherm metabolism and hence oxygen

demand, while also increasing the availability of dissolved oxygen via thermally

dependent oxygen diffusivity and solubility [6]. Insufficient oxygen has been

shown to limit thermal tolerance in several aquatic ectotherms [7–10], as increases

in metabolism outweigh increases in availability of dissolved oxygen [6]. This

oxygen limitation hypothesis is one of the few paradigms available to understand

and predict the relative vulnerability of species to the interactive effects of climate

warming and hypoxia; however, its generality has been challenged. In insects,

studies to date suggest that hypoxia does not reduce heat tolerance [11,12] and

that the oxygen limitation hypothesis may not apply to these tracheated arthro-

pods, which comprise the bulk of biodiversity in inland waters [13]. Here, we

revisit the oxygen relations of aquatic ectotherms and demonstrate that oxygen

can indeed limit the heat tolerance of aquatic tracheates. Importantly, we resolve

the discrepancy between earlier studies on terrestrial arthropods and marine

ectotherms by showing that the extent of oxygen limitation at thermal extremes

depends on gas exchange mechanism. Our work provides a novel framework,
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in which the ability to regulate gas exchange (i.e. respiratory

control, see §4) is seen to determine the relative vulnera-

bility of taxa to the synergistic effects of global warming

and hypoxia.
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Figure 1. Thermal tolerance limits of four species pairs belonging to (a) bee-
tles, (b) bugs, (c) mayflies and (d )dragonflies. In each case, the species with
better respiratory control is shown in blue; the other in red. Data points are
offset slightly to increase visibility. (Online version in colour.)
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2. Material and methods
Species were collected in southwest England and maintained in

the laboratory at 10+18C in a 12 L : 12 D regime, in aquaria con-

taining artificial pond water, buffered and diluted to reflect the

pH and conductivity of field sites. Before recording critical temp-

eratures, all species were acclimated for at least seven days to

reduce variability in thermal history [14].

We placed animals in flow-through chambers to assess ther-

mal limits. Water was supplied to these chambers from a 25 l

header tank via a tubular counter-current heat exchanger.

Water in the header tank was of the same composition as that

used to maintain animals and was bubbled with a mixture of

O2 and N2, obtained using a gas-mixing pump (Wösthoff,

Bochum, Germany). Individuals were left resting for 1 h at the

equilibration temperature of 108C, after which temperature in

the experimental chambers was increased at 0.258C min21,

using a Grant R5 water bath with a GP200 pump unit (Grant

Instrument Ltd, Cambridge, UK) connected to the heat exchan-

ger. Temperatures were logged using a HH806 AU digital

thermometer (Omega Engineering Inc., Stamford, CT, USA).

Critical temperatures were assessed at normoxia (20 kPa) and

hypoxia (5 kPa). Such hypoxic conditions (25% saturation) may

seem extreme from the perspective of terrestrial insects but are

quite commonly observed in aquatic habitats [15]. In addition,

many terrestrial insects live in an essentially aquatic environment

for part of their life cycle where they may encounter such

hypoxic conditions (e.g. endoparasites, endophytic species,

some rotten wood/fruit specialists, etc.). The gas mixture was

adjusted 10 min after placing the animals in the small flow-

through chambers to allow for gradual exposure to hypoxic

conditions during the resting period. The critical maximal temp-

erature, CTmax, was defined as loss of all movement; reliably

scoreable across all taxa. In this state, animals lose their ability

to escape from conditions that will lead to their death [16].

Heat tolerance was assessed in pairs of species differing in

their ability to regulate gas exchange (i.e. with contrasting

degrees of respiratory control). Species pairs were selected

from four different orders of aquatic insects (Ephemeroptera,

Odonata, Hemiptera and Coleoptera) allowing independent

tests. Breathing underwater is a major challenge as less oxygen

is dissolved in water and oxygen diffuses much more slowly in

water than in air [6]. Consequently, many aquatic ectotherms

have evolved a range of respiratory adaptations. By including

four different orders, our comparative approach included taxa

with different respiratory modes (tegument, gill, plastron and

surface exchange). While species from different orders have

different capacities for oxygen uptake [15] and thus different

levels of heat tolerance at normoxia [10], we selected species care-

fully to obtain pairwise contrasts in respiratory control within

each order: the beetles Agabus bipustulatus (Linnaeus, 1767) and

Limnius volckmari (Panzer, 1793) are surface exchanging and plas-

tron breathing adults, respectively, as are the bugs Ilyocoris
cimicoides (Linnaeus, 1758) and Aphelocheirus aestivalis (Fabricius,

1794). The mayfly and dragonfly nymphs all have gas exchange

across their body surface and tracheal gills. The mayfly species

differ in their ability to move their gill plates and hence degree

of respiratory control, Ecdyonurus insignis (Eaton, 1870) being

able to beat its gills; Rhithrogena semicolorata (Curtis, 1834)

having immovable gills. Within the odonates, the dragonfly Cor-
dulegaster boltonii (Donovan, 1807) has the rectum modified into a

heavily tracheated branchial chamber whose surface acts as a gill.
Being able to force water across the respiratory surface through

abdominal movement provides greater respiratory control rela-

tive to the damselfly Calopteryx virgo (Linnaeus 1758), which

has instead external gill lamellae. All species are predators/sca-

vengers except the mayflies, which are algal scrapers. Despite

dietary differences, taxa were easily sustained during acclimation

on chironomid larvae and field substratum.
3. Results
In all taxa examined, hypoxia reduced lethal temperatures, but

the strength of this effect differed across species (figure 1; elec-

tronic supplementary material, table S1). The degree to which

species showed such oxygen limitation of thermal tolerance

was governed by their ability to regulate oxygen consump-

tion rates—i.e. their respiratory control (ANOVA: interaction

between oxygen and respiratory control; F1,160 ¼ 39.59;

p ¼ 3.14�1029). As stated above, we compared heat tolerance

under normoxia and hypoxia in species pairs which differ in res-

piratory mode, taken from four different orders of aquatic insects.

In each pairwise comparison, across the four orders studied,

the species with high respiratory control was consistently less

impacted by hypoxia (figure 1).
4. Discussion
Understanding how and why respiratory systems are limited

in their capacity to supply oxygen to tissues is fundamen-

tal to the oxygen limitation hypothesis [8]. Disadvantages

associated with maintaining elaborate respiratory structures
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(e.g. susceptibility of gills to abrasion, higher exposure to toxi-

cants, etc.) may seem small in comparison with having a

greater capacity for oxygen uptake (i.e. an overdesigned respir-

atory system). However, to fully understand the challenges of

respiration, we need to think beyond oxygen shortages [17],

because breathing oxygen is intrinsically dangerous: while a

shortage quickly leads to suffocation, too much is toxic

[10,18]. The ability to regulate oxygen consumption rates (i.e.

respiratory control) is therefore at a premium; especially in

small ectotherms where shifts in external temperatures typi-

cally drive metabolic fluctuations. Good respiratory control

will enable ectotherms to balance oxygen toxicity against the

risk of asphyxiation across a wide range of temperatures; a bal-

ancing act which is more challenging for aquatic than aerial gas

exchangers [17]. Underwater gas exchange has higher venti-

lation costs as water is more dense and viscous than air, a

problem which is further compounded by lower oxygen

content and diffusion rates [6,17].

Our comparative approach spanning four insect orders

shows that the extent to which taxa show oxygen limitation

at high temperatures is dictated by their degree of respiratory

control (figure 1). These comparisons explicitly rule out other

potential explanations: the results cannot consistently be

related to the architecture of the tracheal system (species with

open and closed trachea both exhibited reduced heat tolerance

under hypoxia), lower diffusion rate of oxygen in water (an

effect of respiratory control is seen with species pairs of mayflies

and dragonflies even though all these taxa extract oxygen

directly from water) or physiological differences during onto-

geny (reduced heat tolerance under hypoxia is seen in both

larvae/nymphs and adults). Poor respiratory control quickly

results in an organism no longer being able to meet increased

oxygen demand at high temperatures. Aquatic ectotherms

with poor respiratory control are likely to be thermal specialists,

having narrow temperature ranges over which they can balance

risks of asphyxiation and oxygen poisoning, and thermal

specialists are suggested to be especially vulnerable to warming

[4]. The critical thermal maxima of species is strongly linked to

their distribution ranges [2,19], making thermal tolerance one
of the key traits to examine in conservation physiology [5].

The consistent effect of respiratory control on thermal tolerance

provides a novel explanation for the finding that such geo-

graphical ranges apparently conform more closely to thermal

tolerance limits in marine than terrestrial ectotherms [2].

Because of the tight balance between oxygen risks in aquatic

species with weaker respiratory control, they are likely to

have more constrained, predictable ranges than terrestrial taxa

which are inherently better able to regulate oxygen levels [17].

Oxygen plays a key role in mediating temperature effects,

especially in aquatic ectotherms where it explains variation in

body size, heat tolerance and geographical range [2,6,10].

Although ectotherms conducting gas exchange in water will

have inherent difficulties in controlling oxygen delivery, some

species are better able to upregulate oxygen supply under

warmer conditions. We have shown that such variation in

respiratory control dictates the way aquatic invertebrates

respond to heat and to hypoxia (figure 1). In addition to climate

warming, eutrophication is a major stressor in both marine and

freshwater systems [20,21], its negative impact being largely

through resulting hypoxia. Our work shows that oxygen

limitation does shape the thermal tolerance of aquatic trache-

ates, and that respiratory control provides a predictive

framework to understand the relative sensitivity of different

taxa to these interacting stressors. Aquatic ectotherms which

are poor at regulating gas exchange are shown to be especially

vulnerable to the multi-stressor effects of increased water

temperatures and reduced levels of oxygen. Enhancing

water quality, and more specifically improving the degree of

oxygenation, is a promising way to improve environmental

robustness in the face of climate change and could form a key

component of mitigation strategies.
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13. Balian EV, Lévêcque C, Segers H, Martens K (eds)
2008 Freshwater animal diversity assessment.
Hydrobiologia 595, 1 – 637. (doi:10.1007/s10750-
007-9235-6)

14. Terblanche JS, Deere JA, Clusella-Trullas S, Janion C,
Chown SL. 2007 Critical thermal limits depend

http://dx.doi.org/10.1146/annurev.ecolsys.37.091305.110100
http://dx.doi.org/10.1146/annurev.ecolsys.37.091305.110100
http://dx.doi.org/10.1038/nclimate1539
http://dx.doi.org/10.1038/nclimate1539
http://dx.doi.org/10.1111/j.1365-2427.2008.02112.x
http://dx.doi.org/10.1111/j.1365-2427.2008.02112.x
http://dx.doi.org/10.1098/rstb.2012.0005
http://dx.doi.org/10.1098/rstb.2012.0005
http://dx.doi.org/10.1098/rstb.2011.0422
http://dx.doi.org/10.1890/10-2369.1
http://dx.doi.org/10.1890/10-2369.1
http://dx.doi.org/10.1016/j.dsr2.2006.02.015
http://dx.doi.org/10.1016/j.dsr2.2006.02.015
http://dx.doi.org/10.1126/science.1135471
http://dx.doi.org/10.1126/science.1135471
http://dx.doi.org/10.1371/journal.pone.0022610
http://dx.doi.org/10.1371/journal.pone.0022610
http://dx.doi.org/10.1242/jeb.01023
http://dx.doi.org/10.1673/031.012.10901
http://dx.doi.org/10.1673/031.012.10901
http://dx.doi.org/10.1007/s10750-007-9235-6
http://dx.doi.org/10.1007/s10750-007-9235-6


rsbl.royalsocietypublishing.org

4
on methodological context. Proc. R. Soc. B 274,
2935 – 2942. (doi:10.1098/rspb.2007.0985)

15. Macan TT. 1963 Freshwater ecology. London, UK:
Longmans, Green & Co. Ltd.

16. Lutterschmidt WI, Hutchison VH. 1997 The
critical thermal maximum: history and
critique. Can. J. Zool. 75, 1561 – 1574. (doi:10.1139/
z97-783)

17. Verberk WCEP, Atkinson D. In press. Why polar
gigantism and Palaeozoic gigantism are not
equivalent: effects of oxygen and temperature on
the body size of ectotherms. Funct. Ecol. (doi:10.
1111/1365-2435.12152)

18. Hetz SK, Bradley TJ. 2005 Insects breathe
discontinuously to avoid oxygen toxicity. Nature
433, 516. (doi:10.1038/nature03106)

19. Calosi P, Bilton DT, Spicer JI, Votier SC, Atfield A.
2010 What determines a species’ geographical
range? Thermal biology and latitudinal range size
relationships in European diving beetles (Coleoptera:
Dytiscidae). J. Anim. Ecol. 79, 194 – 204. (doi:10.
1111/j.1365-2656.2009.01611.x)

20. Dudgeon D et al. 2006 Freshwater biodiversity:
importance, threats, status and conservation
challenges. Biol. Rev. 81, 163 – 182. (doi:10.1017/
S1464793105006950)

21. Diaz RJ, Rosenberg R. 1995 Marine benthic hypoxia:
a review of its ecological effects and the
behavioural responses of benthic macrofauna.
Oceanogr. Mar. Biol. Ann. Rev. 33, 245 – 303.
B
iolLett
9:20130473

http://dx.doi.org/10.1098/rspb.2007.0985
http://dx.doi.org/10.1139/z97-783
http://dx.doi.org/10.1139/z97-783
http://dx.doi.org/10.1111/1365-2435.12152
http://dx.doi.org/10.1111/1365-2435.12152
http://dx.doi.org/10.1038/nature03106
http://dx.doi.org/10.1111/j.1365-2656.2009.01611.x
http://dx.doi.org/10.1111/j.1365-2656.2009.01611.x
http://dx.doi.org/10.1017/S1464793105006950
http://dx.doi.org/10.1017/S1464793105006950

	Respiratory control in aquatic insects dictates their vulnerability to global warming
	Introduction
	Material and methods
	Results
	Discussion
	Funding statement
	Data accessibility
	References


