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For symmetrically dividing cells, large variations in the cell cycle time are typi-

cal, even among clonal cells. The consequence of this variation is important

in stem cell differentiation, tissue and organ size control, and cancer develop-

ment, where cell division rates ultimately determine the cell population. We

explore the connection between cell cycle time variation and population-

level fluctuations using simple stochastic models. We find that standard

population models with constant division and death rates fail to predict the

level of population fluctuation. Instead, variations in the cell division time

contribute to population fluctuations. An age-dependent birth and death

model allows us to compute the mean squared fluctuation or the population

dispersion as a function of time. This dispersion grows exponentially with

time, but scales with the population. We also find a relationship between the

dispersion and the cell cycle time distribution for synchronized cell popu-

lations. The model can easily be generalized to study populations involving

cell differentiation and competitive growth situations.
1. Introduction
All cell types reproduce by repeated cycles of division and growth. If a cell divides

symmetrically, then both daughter cells are expected to divide roughly at the

same rate when environmental factors and cell population densities are kept con-

stant. In a recent experiment where individual bacterial cell division events were

monitored, it was shown that the time between cell divisions (or generation time)

is a highly stochastic variable, even for clonal cells [1]. Furthermore, the gener-

ation time distribution is a non-monotonic functions of chronological cell age, a,

defined as the time since its birth. Typical probability distributions of the time

between successive cell divisions from experiments are shown in figure 1b,c.

This behaviour is not restricted to prokaryotes, and is also true for eukaryotes.

It is known that the probability for cell division depends both on age and on

cell size [1,2]. For instance, for cells of the same size (mouse lymphoblasts

L1210) the probability of division increases with cell age and for cells of the

same age, the probability of division increases with cell size [2]. Cell division

and cell growth cycles seem to be interrelated [3]. Other factors are also involved

in the division decision. For instance, in Escherichia coli cells the specific growth

rate of a population is found to linearly correlate with RNA/protein ratio and ribo-

some production [4]. The linear correlation holds for cell growth with doubling

times varying from minutes to hours. These studies and others demonstrate

that the cell cycle decision is an intrinsically noisy process where cell age and

other factors are important, but biochemical noise also dominates.

Given the probabilistic nature of cell division events, we ask how cell division

time variation ultimately translates to cell number fluctuations in a growing

population. Understanding this connection is important for understanding

tissue growth and homeostatsis, where not just the average population but also

population fluctuations must be carefully controlled [5]. Quantitative models

for this question must be stochastic in nature. The simplest model for studying
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Figure 1. Cell age and division time distributions. (a) For symmetrically dividing cells, the time between cell divisions is stochastic, and can be described by a
probability distribution function (PDF). (b) Histogram of division time distribution for human dermal fibroblast cells studied in the present work (133 cells). The
average division time is t ¼ 19.8 h. The solid line represents the fit by the shifted gamma distribution with parameters a ¼ 12.5, b ¼ 0.72 h and a0 ¼ 10.4 h.
(c) Division time distribution for E. coli, MG1655 strain (22 959 cells) with t ¼ 21.4 min and s ¼ 5.4 min from Wang et al. [1] shown by red line. Blue line is the
best fit by the shifted gamma distribution with parameters a ¼ 22.9, b ¼ 0.87 min and a0 ¼ 0 min with tfit ¼ 20.0 min and sfit ¼ 4.2 min. (d ) Theoretical
generation time distributions v(a) studied in the present work are described by shifted gamma distributions with parameters a ¼ 6 (I – IV), and b ¼ 0.91, 1.82,
2.86, 3.33 arb. units, and a0 ¼ 14.55, 9.09, 2.86, 0 arb. units for I, II, III, IV, respectively (see equation (2.17)). The average generation time for distributions I – IV is
the same t ¼ 20 arb. units. (e) The function k(a) is the probability per unit time that a cell divides into two new cells for theoretical distributions of generation
times I – IV (see legends in (d )). The asymptotic value of k(a) is 1/b (arb. units) – 1.
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stochastic population dynamics is a Markovian master

equation (or a birth–death process) with constant division

and death probabilities per unit time [6]. The average popu-

lation and population fluctuations for this model can be

solved exactly (see the electronic supplementary material,

section A). At long times, the relative population fluctuation is

lim
t!1

sðtÞ
NðtÞ ¼

1ffiffiffiffiffiffi
N0

p kb þ kd

kb � kd

� �1=2

; ð2:1Þ

where N(t) is the average population and s(t) is the average

population fluctuation (dispersion). kb and kd are the cell

birth and death rates, respectively. N0 is the initial population

at t ¼ 0. This scaling result is simple. However, since the

model assumes constant division and death probabilities, it is

in fact not applicable to typical cell division processes since

the division probability per unit time is clearly not constant

(figure 1). A constant division rate amounts to the assumption

that a newly born cell has just as much likelihood to divide as a

mature cell. But this is not the case, as shown in figure 1. In this

paper, we develop a stochastic model where division and death

probabilities are functions of cell age, and use experimentally

measured division time distributions to predict population

fluctuations. We consider a homogeneous cell population

and with no correlation between interdivision times for cells

in different generations. The age a of cells is considered expli-

citly as the variable determining the propensity of cell

division. We examine growth dynamics when the mean div-

ision time is kept constant, but the spread of the division

time distribution changes (figure 1d). We show that our

model is equivalent to the solution of the von Foerster equation

when considering the average population. However, we also

obtain quantitative results regarding population fluctuations
as a function of time. We find that there is a direct link between

division time distribution, v(a), and population fluctuations. In

the case of synchronized populations, a simple relationship

between v(a) and s(t) is found. We also examine more realistic

models of cell population homeostasis where the death rate (or

the net growth rate) is controlled by the overall population.

Note that in the long time limit, population growth

described by the age-dependent model exhibits some proper-

ties of the age-independent (stationary) stochastic model, e.g.

the average number of cells grows exponentially. However,

the predicted exponential population growth rate and popu-

lation size fluctuations (dispersion) around the mean are

different in these models, even when the average cell cycle

times are kept constant. These differences are highlighted in

this paper. There have been other quantitative studies of cell

growth with time-dependent division rates [5,7–10]. For

instance, Horowitz et al. [7] consider a probabilistic model of

microbial growth and mortality in which both cell division

and cell death transition probabilities depend on time, e.g. in

the form of logistic expressions. Two simulation algorithms

are considered: one for tracking the fates of individual cells;

another for simulation at the population level using a simplified

model. Although the authors have succeeded in reproducing

the experimental growth curves for a bacteria, the age of cells

as an important characteristics of mitosis is not considered.

Another approach is applied for stochastic modelling of popu-

lation growth by Pin & Baranyi [8] based on the assignment of

division times from the empirical generation time distributions.

Other theoretical studies have considered stochastic pro-

cesses in cell division, synchronous growth curves and/or

age distributions of exponential cultures within deterministic

models [11–15]. For instance, Bremer [14] has reduced the

cell cycle variability of E. coli to variability of times between
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the end of DNA replication and the next cell division. This is

also a variation of the original idea by Smith & Martin [11]

that there exists a highly variable period before DNA replica-

tion. Engelberg [16] has derived a simple model establishing

the relationship between the loss of synchrony in cell divisions

and the width of division time distribution in synchronized cell

cultures. However, there is a lack of systematic studies analys-

ing population size fluctuations of growing cell colonies. Our

paper is aimed at providing such analysis and establishing

the link between population size fluctuations and the stochastic

nature of the cell division process at different growth con-

ditions (both in the absence and in the presence of cell death,

for conditions of restrictive growth, etc.).

Our age-dependent model is in principle applicable to any

cell growth situation, e.g. in vitro in a reactor as well as in vivo
where multiple cell types may influence each other. In con-

ditions of saturating nutrient and low cell densities, cell

division and cell death probabilities are known and the appli-

cation of our model is straightforward. In conditions of limiting

nutrient and/or space, competition between individuals cells

results in death rate proportional to total number of cells.

A simple example of this situation is also considered below.

For multiple types of interacting cells, cell division and death

probabilities will depend on signalling, cooperative as well as

competitive interactions. Additional models and information

are needed to quantify cell division and cell death probabilities.

Our model is not applicable, however, to cell division proba-

bilities that has memory of prior growth conditions. This is

because our model is Markovian. In addition, our model

currently does not consider spatial patterns of growing cell

colonies, only the overall population in a well mixed situation.
2. Model
2.1. Cell population and division in the age-time

representation
Before discussing the stochastic dynamics of cell population,

it is useful to consider deterministic dynamics of the average
population as a function of time. For this purpose, the von

Foerster equation describes the cell number density as a func-

tion of cell age a and time t [17]. The age of a cell, a, is defined

as the time elapsed since its birth. The ongoing time, t, can be

chosen arbitrarily, but it is natural to measure this from the

time of cell culture seeding. In the age-time representation

the equation is written as

@n
@t
þ @n
@a
¼ �lðaÞn; ð2:2Þ

where n(a,t) da represents the number of cells in the age inter-

val from a to a þ da at time t and l is a cell loss factor. The

total number of cells at time t is therefore

NðtÞ ¼
ð1

0

nða; tÞda: ð2:3Þ

The loss factor l is assumed to be due to both cell division

(mitosis) as well as cell death or disappearance. The von

Foerster equation is a form of a conservation equation that

describes the flow of population densities. From conservation

of population, the number of cells n(a þ Da, t þ Dt)Da of the

age a þ Da at time t þ Dt equals the number of cells that

have matured from an earlier age a at time t, i.e. n(a, t)Da
less the number of cells that have been lost. The number of
lost cells is assumed to be proportional to the number of cells

n(a, t)Da and the time interval Dt. Cell loss due to mitosis

should be understood as the mother cell of age a is replaced

by two replicas of zero age (a ¼ 0). If there are no other reasons

for cell loss besides mitosis, then l ¼ k(a), where k(a) is an

age-dependent probability per unit time that a cell undergoes

mitosis. The solution and the properties of the von Foerster

equation regardless the initial and boundary condition have

been discussed by Trucco [18,19]. Rubinow [13] gave a solution

for the specific initial and boundary conditions

nða; 0Þ ¼ N0 dðaÞ; ð2:4Þ

and cell birth is described by the boundary condition

nð0; tÞ ¼ 2

ð1

0

kðaÞnða; tÞda: ð2:5Þ

Thus, the age-dependent function k(a) accounts for the variabil-

ity in observed generation times. Here, we note that the total

number of cells N(t) at time t is obtained by integrating n(a,t)
for all ages and is found as the infinite sum of terms ( j ¼ 1,

2,. . .), each represents the contribution of the jth generation

(see the electronic supplementary material, section B).

The probability per unit time that a cell undergoes

mitosis is related to probability density function v(a) for

cell division times:

kðaÞ ¼ vðaÞ
1�

Ð a
0 vða0Þda0

: ð2:6Þ

This relation is derived as follows. Let us assume that we have

N � 1 cells of zero age at time t ¼ 0. In this case, time t and age

a are synchronized and can be considered as a single variable,

say a. By time a . 0, the number of cells that remain undivided

is Nð1�
Ð a

0 vða0Þda0Þ. The number of cells that undergo mitosis

during a time interval from a to a þ Da is Nv(a)Da. Thus,

the conditional probability that a cell divides between a and

a þ Da (provided it had not divided earlier) is given by the

ratio of the number of cells divided during this time interval

to the total (remaining) number of cells at time a, i.e.

DPcðaÞ ¼ vðaÞDa=ð1�
Ð a

0 vða0Þda0Þ ; kðaÞDa. The cell division

probability per unit of time k(a) is obtained from DPc(a)

above resulting in equation (2.6).

Following Powell [12], in the limit of long times, the sol-

ution of the von Foerster equation reduces to exponential

growth: NðtÞ ¼ N00 expðvtÞ with the steady-state growth rate,

v, determined by generation time distribution v(a) only.

The pre-factor N00 depends on the initial age distribution

and is proportional to the initial number of live cells N0.

The following ansatz satisfies the von Foerster equation at

long times:

nða; tÞ ¼ expðvtÞrðaÞ; ð2:7Þ

where r(a) is a function that only depends on the age a.

Substitution equation (2.7) into equation (2.2) gives

dr
da
¼ �½vþ kðaÞ�r; ð2:8Þ

and the solution is

rðaÞ ¼ rð0Þexp �va�
ða

0

kða0Þda0
� �

: ð2:9Þ

Using equation (2.9), we re-write the boundary condition

equation (2.5) in the form (after cancelling the non-negative
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term exp(vt)r(0) on both sides)

1 ¼ 2

ð1

0

kðaÞexp �va�
ða

0

kða0Þda0
� �

da: ð2:10Þ

From equation (2.6), one may show that

kðaÞexp �
ða

0

kða0Þda0
� �

¼ vðaÞ: ð2:11Þ

This equation has a simple physical interpretation. If we

consider mitosis as a one-step irreversible transition, the

first term is the transition probability per unit of time,

while the second term is the survival probability V(a).

Thus, the distribution of cell division times can be expressed

through the survival probability as v(a) ¼ 2(dV(a))/(da).

Equation (2.10) then becomes

2

ð1

0

expð�vaÞvðaÞda ¼ 1: ð2:12Þ

This equation gives the fundamental relationship between

division time distribution, v(a), and the long time growth

rate of the population, v.

Using the long time ansatz solution, we can also find the

steady-state age distribution g(a), which is

gðaÞ ¼ nða; tÞÐ1

0 nða; tÞda
¼ ev trðaÞ

ev t
Ð1

0 rða0Þda0
: ð2:13Þ

Since rðaÞ=rð0Þ ¼ exp[�
Ð a

0 ðkða0Þ þ vÞda0], and in light of

equation (2.10), we haveð1

0

rðaÞ
rð0Þ da ¼

ð1

0

exp �
ða

0

kða0Þda0
� �

e�va da

¼ 1

2v
; ð2:14Þ

where we have used the fact that exp �
Ð1

0 kðaÞda
� �

¼ 0. Thus,

for the age distribution, we obtain

gðaÞ ¼ 2vexpð�vaÞ
ð1

a
vða0Þda0: ð2:15Þ

We now can examine the behaviour for different genera-

tion time distributions v(a). When the generation time is

not dispersed and all cells divide exactly at the same age,

then v(a) ¼ d(a 2 t), where d(a 2 t) is the Dirac delta func-

tion satisfying the condition
Ð1

0 dða� tÞda ¼ 1. The growth

rate is v ¼ ln 2/t by equation (2.12) and the doubling time of

the cell population equals the average generation time t* ; ln

2/v ¼ t. The age distribution is

gðaÞ ¼ 2 ln 2

t
exp � a ln 2

t

� �
for a , t

¼ 0 for a . t:

ð2:16Þ

The age distribution described by equation (2.16) is an ideal

age distribution assuming that the population has reached

the steady state. In reality g(a) is smoothed-out. The average

age of population with an ideal age distribution is obtained

as �a ¼
Ð1

0 agðaÞda ¼ ð1=ln2� 1Þt � 0:44t. Let us consider

another hypothetical case when the rate of cell division is

age-independent k(a) ¼ 1/t corresponding to exponential

distribution for generation times v(a) ¼ 1/t exp(2a/t).

In this case, the average growth rate is equal to v ¼ 1/t

by equation (2.12) and the average doubling time is equal to

t* ; ln 2/v ¼ t ln 2. The age distribution is the exponential

function g(a) ¼ 2/t exp(22a/t) with the average age of

population equal to a half of the average generation time
�a ¼ t=2. Powell has pointed out that in general (see equa-

tion (2.12)) the average doubling time t* is not equal to the

average generation time t but in practice this difference

varies depending on the division time distribution.

For most cells, experimental data show that the cell div-

ision time distribution is neither exponential nor a delta

function. Some typical results are given in figure 1. The realis-

tic generation time distribution is often best described by the

a0-shifted gamma distribution [9,12,13,20–22]

vðaÞ ¼ ða� a0Þa�1exp[�ða� a0Þ=b]

baGðaÞ ; ð2:17Þ

where a . 1, b . 0 and a0 � 0 are parameters of shape,

scale and shift of generation time distribution, respectively.

Typically, data show that v(a) is not symmetric but skewed

towards higher values (the skewness of gamma distribution is

2=
ffiffiffi
a
p

). The gamma distribution is widely used in chemi-

cal kinetics for dwell-time distributions (e.g. in analysing

enzyme kinetics) [23,24]. The probability distribution of

first passage times for a multi-step irreversible process

A!k1 X1!
k2 � � � !km�1 Xm�1!

km B with m rate-limiting steps can

be shown to correspond to equation (2.17). The average

growth rate of the population is the solution of equation (2.12)

which reads

a0vþ a lnð1þ vbÞ ¼ ln2: ð2:18Þ

For simplicity, take a0 ¼ 0. The average doubling time in this

case is t* ¼ ln2/v ¼ bln/(21/a 2 1), whereas t ¼ ab. For

a� 1, the average doubling time, t� � ab ¼ t, equals the

average generation time.

Interestingly, for E. coli the division time distribution

(figure 1 and [1]) is not completely described by the shifted

gamma distribution. Rather, it is better described by a combi-

nation of two exponential functions with a sharp peak. The

mechanistic argument for this was discussed by Bremer [14].

In addition to cell birth, cell death can also contribute to

cell loss. In this paper, we consider constant cell death prob-

ability per unit time kd. In this case, l ¼ k(a) þ kd in equation

(2.2) with the same boundary condition given by equation

(2.5). If we are interested in the long time limit solution iden-

tical to equation (2.7), the net growth rate in the presence of

cell death becomes v ¼ v0 2 kd, where is v0 is the growth

rate in the absence of cell death found in equation (2.10). Of

course, if kd depends on the cell age, this simple relation

does not hold. The electronic supplementary material,

figure S1 of SI shows simulation results of v as a function

of constant kd for age-dependent cell division. Note that cell

death with age-independent probability does not perturb

steady-state age distribution since cells of different ages die

with the same rate. Constant cell death rescales both numer-

ator and denominator of equation (2.13) by a factor e�kdt.

The von Foerster equation describes the average age-depen-

dent population change. In this sense, it does not contain

information about population fluctuations. In order to obtain

fluctuation information, we must incorporate age dependence

in a stochastic model of cell population growth. In §2.2, we

describe a stochastic simulation of age-dependent population

growth and analyse the results. In general, the mathematical

quantity we have to consider is the probability distribution of

cell number density as a function of age P[n(a),t]. This quantity

is a functional and it is possible to write a stochastic equation to

describe its evolution. The theoretical treatment of this model

will be discussed elsewhere.
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Figure 2. Growth of a clonal cell colony using age-dependent stochastic model. (a) The average number of cells, N(t), grown from a single cell of age a ¼ 0
(synchronized initial condition) for division time distribution II is shown from 1000 simulations (thick green line). Magenta lines represent N(t) plus and minus the
standard deviation s(t). The red line is the analytical solution of the von Foerster equation for synchronized populations. The thin curves (with maxima) represent
the contributions from different generations (see the electronic supplementary material, section B). The results of our simulations are in excellent agreement with
analytic solution. The inset depicts the probability density function of division times obtained from simulations (106 runs) for the theoretical division time distri-
bution II (see caption to figure 1d ). Our simulation recovers the original division time distribution v(a) (red line). (b) the computed average doubling times
compared to the theoretical result of equation (2.12) for division time distributions (I – IV) and the exponential distribution (V). There is complete agreement
between the theoretical prediction and our simulation.
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2.2. Stochastic simulations of age-dependent
cell populations

Our stochastic algorithm takes explicitly into consideration the

age-dependence of rates of ‘elementary’ events. Mitosis is con-

sidered in the present work as a one-step event with a

probability per unit time k(a) that depends on the cell age a,

i.e. the time elapsed since its birth. Our simple simulation

model is a version of the kinetic Monte Carlo algorithm in

which the acceptance probability of any event for each cell

depends on the exponential factor exp[2(k(aj) þ kd)Dt],
where k(aj) and kd are cell division and cell death probabilities

per unit time for the jth cell, respectively. Dt is a time step. A

random number 0 , r1 , 1 is compared with exp[2(k(aj) þ
kd)Dt] to determine whether an event occurs. At each time

step, t ¼ mDt, a particular cell remains alive but undivided if

r1 , f1(aj) ¼ exp[2(k(aj) þ kd)Dt]. Otherwise this cell dies or

divides. If an event occurs for the jth cell, the choice between

mitosis and cell death is made by comparing another random

number 0 , r2 , 1 with f2(aj) ¼ k(aj)/(k(aj) þ kd). Thus, cell

division occurs if r1 . f1(aj) and r2 , f2(aj), giving rise to a

pair of newborn cells with ages equal to 0. The jth cell dies

if r1 . f1(aj) and r2 . f2(aj). Note, that if no event occurs with

a particular cell at a given time step, the cell becomes older

by a ¼ a þ Dt. As time is incremented by Dt, a small portion

of the cells undergoes mitosis or death. Thus, ages of cells

are tracked explicitly. This procedure generates a histogram

of cells with different ages nh(a, t)Da, from which we can

obtain the number density of cells as a function of cell age at

time t, where Da is the bin size of the histogram. nh is the

cell number density from the particular simulation trajectory.

This algorithm amounts to a Markovian stochastic simulation

of age-dependent cell division and growth.

Note that since the model is stochastic, for each simu-

lation, the obtained cell number density is different. The

proper interpretation is that the age distribution averaged

over many simulations, knhða; tÞl, will reproduce the von

Foerster equation result. The average is over many simu-

lations. From the average population density, we can also

compute the total number of cells by integrating over age.

We also compute the population fluctuation, which is the
average variation of a particular simulation from the mean,

defined below in equation (3.3).

Figure 2 shows the average number of cells N(t) plus and

minus standard deviation s(t) of the mean obtained from our

simulations. The population is grown from a single cell of age

a ¼ 0. Results of our simulations are in excellent agreement

with analytical solution of the von Foerster equation shown

also for comparison in figure 2. The contributions from differ-

ent generations to N(t) are also shown. All contributions

excluding the initial generation go through a maxima. In sep-

arate short runs, we analyse the distribution of waiting times

to first cell division starting from a single cell of zero age. This

histogram is also in the full agreement with theoretical gener-

ation time distribution (see the inset in figure 2). Thus, these

two comparisons demonstrate the relevance and accuracy of

our simulation algorithm.
3. Results
3.1. Average growth rates of cell colonies and

doubling times
We first examine growing clonal populations with no cell

death. In most of the simulations, cells are grown from a

single clone with age a ¼ 0. In some simulations, we start

with more than one cell. We perform simulations for (a)

initially synchronized and (b) non-synchronized cell popu-

lations. In the first case (a), the initial age of the cell (or

cells) is taken to be zero. In the second case (b), the initial

age of the cells is chosen randomly between 0 and T (typi-

cally, T ¼ t). We find that in all cases at long times the

average number of cells N(t), defined

NðtÞ ¼ k
ð1

0

nhða; tÞdal; ð3:1Þ

grows exponentially (see the electronic supplementary material,

figures S2 and S3 of SI). For initially synchronized populations

for the case of the distribution with the smallest spread (distri-

bution I, see electronic supplementary material, figure S4), we

observe the step-like pattern in the average growth trajectory
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(‘mitotic waves’) [25–27]. However, eventually these ‘oscil-

lations’ are damped at long times. The loss of synchrony

results from the variation in division times. The growth rates v
are found from exponential fits to the average number of cells

as a function of times. For comparison, for the exponential distri-

bution of division times V, the cell division rate is constant, so

synchronization does not matter. Note that for all these distri-

butions I–V, the average generation times are the same (t¼

20 arb. units) but their spreads are different. We characterize

the width of generation time distributions by the dimensionless

coefficient of variation of t defined as

cv ¼
1

t

ð1

0

ða� tÞ2vðaÞda
� �1=2

: ð3:2Þ

For the exponential division time distribution cv ¼ 1. For div-

ision time distributions I–IV in figure 1, 0 , cv , 1. We run

the simulation many times and obtain the average growth rate.

The doubling time of the cell cultures is t*¼ ln2/v. Figure 2b
shows the comparison between theory and simulation results

for the doubling time. Excellent agreement is observed. For gen-

eration time distribution with larger spread (larger cv), the

difference between the average generation time t and the aver-

age doubling time t* is larger than for more narrow

distribution of t in full accord with theory.

The effect of initial age distribution on the average growth

rates is negligible (see the electronic supplementary material,

figure S4 of SI). For instance, for distribution I the doubling

times for initially synchronized and non-synchronized cell

populations are t* ¼ 19.972+ 0.004 and t* ¼ 19.934+0.001.

For wider distribution II, these values are t* ¼ 19.713+
0.002 and t* ¼ 19.695+ 0.001, respectively.

3.2. Steady-state age distribution in the growing colony
At long times, the age distribution of cells in the colony should

not depend on time, as indicated from the long time ansatz of

the von Foerster equation. Indeed, we observe stationary age

distributions in our simulations, regardless of the initial age

distribution (figure 3). We also observe oscillations in the

average age of populations because of sequential cell

divisions. However, these oscillations eventually disappear at

long times. The rate at which these oscillations disappear

depends on cv of the division time distribution (figure 4). The

age distribution at long times in all cases has a maximum at

zero age a ¼ 0 and decreases monotonically for a . 0. For the

narrowest distribution (case I with the smallest cv), the age dis-

tribution is closer to the ‘ideal’ age distribution with two

distinct regions: exponential decrease of probability density

g(a) � exp(2va) for a , t followed by much faster decay of

g(a) for a . t. Our simulation results for the steady-state age

distributions are in excellent agreement with theoretical ones

obtained by equation (2.15).

3.3. Population fluctuations in initially synchronized
growing clones

Beyond the average clone population and the age distribution,

we obtain results for population fluctuations defined as

s2ðtÞ ¼ k
ð1

0

nhða; tÞda�NðtÞ
� �2

l: ð3:3Þ

Simulations show that s(t) grows exponentially at long

times with the same rates as the average numbers of cells
N(t). Thus, relative standard deviations defined as s(t)/N(t)
converge to constant values at long times. The results of our

simulations for different generation time distributions I–IV in

the absence of the cell death are shown in figure 4. Distribution

V is the exponential generation time distribution, which corre-

sponds to a constant division probability per unit time (see

above). Exact analytic results are available (see the electronic

supplementary material, section A). Note that these popu-

lations have the same average division time. Thus, we see

that the width (or the dispersion) of the generation time distri-

bution has a dramatic effect on the population fluctuation; this

dependence should have important consequences in real

biological settings.

We will consider the asymptotic value ofs(t)/N(t) at t!1,

which we denote as (s/N)lim. However, if we consider the time

dependence of the relative fluctuation, we will keep t in the

notation. In general, the asymptotic value is less than 1. From

our simulations, it appears that the following simple relation

for (s/N)lim for initially synchronized cell populations is valid:

s

N

	 

lim
¼ cvffiffiffiffiffiffi

N0

p ; ð3:4Þ

cv being defined earlier by equation (3.2). It is easy to see that

equation (3.4) is valid for delta function (cv ¼ 0) and exponential

(cv ¼ 1) generation time distributions. However, the initial

population must be synchronized to satisfy the simple relation

ðs=NÞlim ¼ cv=
ffiffiffiffiffiffi
N0

p
. Note that for the constant cell division rate

(exponential distribution), the asymptotic value of standard

deviation remains the same regardless of the initial age distri-

bution. This conjecture seems to be reasonable because the

more dispersed distribution of division times results in larger

variation of the growth rates and eventually the larger relative

fluctuations of sizes of cell populations around mean values.
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Note that only the dispersion but not the general shape of

v(a) matters. For other shapes such as the combination of two

exponential functions proposed by Bremer [14], equation (3.4)

is also valid.

3.4. Effect of cell death and initial conditions on
population fluctuations

We now examine other aspects of typical cell population that

effect population fluctuations. First, we model cell death with

a constant death rate kd that does not depend on the age of indi-

viduals. The results show that cell death has a significant effect

on the average population N(t) and population fluctuations

s(t) (figure 5). The average growth curves for kd . 0 are

shown in electronic supplementary material, figure S5 of SI.

Both N(t) and s(t) grow exponentially as � eðv0�kdÞt with

the net growth rate v ¼ v0 2 kd, where v0 is the mean

growth rate in absence of cell death. The relative standard

deviation s(t)/N(t) converges to an asymptotic value that is

larger than in absence of cell death. Figure 5a shows that the

relative fluctuations grow with increasing cell death rate kd.
Apparently, a similar result is seen in models with constant

(age-independent) cell division k(a) ¼ kb and cell death kd rates.

In this case, s(t)/N(t) actually diverge when kd approaches kb,

i.e. equation (2.1) (see electronic supplementary material,

section A). For kd 	 kb, we have

s

N

	 

lim
� 1ffiffiffiffiffiffi

N0

p 1þ kd

kb

� �
: ð3:5Þ

However, in the age-dependent cell division case, the relative

fluctuation does not agree with equation (3.5). Here, analytical

results are not available, and the quantitative dependence

is an open question. We compare the relative population

fluctuations as a function of constant cell death rate kd for age-

dependent model with age-independent model in figure 5b.

A significant difference between these models is seen. The

effect of cell death on asymptotic relative fluctuations is stronger

for the age-dependent model (cf. the initial slopes of dependen-

cies shown in figure 5b). The dependence is not linear for small

death rates. Since cell division processes are generally age-

dependent, this suggests that a more sophisticated understanding

of population fluctuations is needed.
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In addition to cell death, the initial age distribution of

the cell population also affects the long-term population

fluctuation. In figure 6, we compare the relative population

fluctuation for two different division time distributions.

The initial age distribution is taken to be a delta function,

or a uniform distribution between 0 and t, where t is the

average division time. We see that (s/N )lim is larger for

non-synchronized populations when compared with synchro-

nized cell cultures. The same trend is also true for the absolute

standard deviations s(t). Note that the effect of initial age dis-

tribution is more pronounced for the distribution of division

times with the smaller spread. Again, for constant division

probability, the effect of initial age distribution on s(t) and

s(t)/N(t) is absent.

The initial total number of cells, N0, also affects popu-

lation fluctuation. However, the dependence is trivial since

s(t) generally scales as
ffiffiffiffiffiffi
N0

p
for independent cells. Therefore,

s(t)/N(t) scales as 1=
ffiffiffiffiffiffi
N0

p
. This is true regardless of whether

the model incorporates age-dependent cell division or con-

stant cell division rates (see the electronic supplementary

material, figures S6 and S7 of SI). For asynchronous popu-

lations, the scaling of (s/N )lim with N0 also remains the

same (see the electronic supplementary material, figure S8).

3.5. Growth of competitive populations
In organized and biologically realistic cell colonies, cell div-

ision and cell death are carefully controlled. The control

strategy has a strong effect on the total cellular population

as well as population fluctuations. There are many possible

models to describe these situations. Here, we examine a com-

petitive population model where in addition to natural cell

division k(a) and cell death rates kd the competition gives

rise to an additional death rate g ¼ g0(n 2 1) proportional

to the number of other cells N in the colony at time t. For

the age-independent case, k(a) ¼ kb, and constant kd and g0,

this model is well known as the Malthus–Verhulst problem
[28]. The equation for the average number of cells is

dN
dt
¼ ðkb � kdÞN � g0N2; ð3:6Þ

which has a stable steady-state population Nss:

Nss ¼
kb � kd

g0

: ð3:7Þ

In our model, we consider the age-dependent cell division

rate k(a) and all other rates are taken the same as in the

Malthus–Verhulst problem, i.e. independent of the age of

cells. We analyse the results for the growth of a competitive

population from a single cell of the zero age a ¼ 0 from our

simulations. The ‘natural’ cell death rate is taken to be zero

for simplicity kd ¼ 0, while g0 . 0. Indeed, we observe the

steady state at long times (figure 7a) corresponding to a

population of the macroscopic size equal to

Nss ¼
v
g0

; ð3:8Þ

where v is the growth rate of a population in the absence of

any cell death events. Recall that this growth rate appears

as the solution of the long time ansatz of the von Foerster

equation, see equation (2.12). Thus, for cells with the same

average division time, but different shapes v(a), we expect a

different steady-state population.

At long times, fluctuations around the mean population

approach a steady value as in the Malthus–Verhulst problem.

Interestingly, the standard deviation s(t) of the mean is a non-

monotonic function of time (see figure 7b). At early times when

the cell number is small and death events are rare, s(t) grows

exponentially. In the crossover regime, s(t) goes through

the maximum and at last reaches its steady-state value. The

steady-state value of s(t), however, does depend on g0 and

whether the model considers cell age. Figure 7d shows the com-

parison between the age-independent model (see the electronic

supplementary material, section C) and the age-dependent

model. The population fluctuation at steady-state scales as

g�0:6
0 for the age-dependent model. For the age-independent

model, sss scales as g�0:5
0 (see the electronic supplementary

material, section C). In addition, the behaviours of s(t) before

reaching steady state are also quite different (figure 7d ).

In spite of the fact that the average cell death rate depends

on time, the age distribution in this case is the same as in

absence of cell death. We have analysed age distributions

for the case of growth of competitive population at two

times. One (t ¼ 252 arb. units) is chosen around the maxi-

mum of s(t), and the other time (t ¼ 450 arb. units) is

within the steady-state regime. For these times, age distri-

butions turned out to be the same (the results are not

shown) and identical to steady-state age distribution in

absence of cell death (figure 3). Since the cell death rate is

age-independent, cells of different ages have the same prob-

ability to die, so the age distribution remains intact.
4. Discussion
In this paper, we consider the relationship between cell

division time variability and the fluctuations in cell population

using a stochastic modelling approach. We examine the simple

case of symmetrical cell division, and explicitly consider the

time-dependent probability of cell division. The average popu-

lation in this model exactly coincides with the deterministic
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von Foerster equation for age-dependent cell populations.

Indeed, our simulations confirm this, and accurately reproduce

the growth curves of cell populations. As expected, the width

of the division time distribution influences the overall cell

colony growth rate, even when the average cell division time

is identical. This is in contrast with models with constant cell

division and death rates, which does not reproduce the correct

population growth.

The main focus of our study, unlike the deterministic von

Foerster model, is to delineate the underlying cause of cell

population fluctuations. We find that the division time distri-

bution, v(a), has a strong influence on the population-level

fluctuation, even for long times. For initially synchronized

cells, we find a simple relation between the asymptotic

values of relative fluctuations (s/N )lim, and the width of

the division time distributions cv. We also find that the initial

age distribution affects the long time population fluctuation.

Asynchronous population has a larger population fluctu-

ation. We also incorporate cell death in the model and

compute the population fluctuation as a function of an age-

independent cell death rate, kd. Results show that cell death

generally increases cell population fluctuation, but the scaling

with respect to kd does not follow equation (2.1). Finally, since

in most cell colonies both cell division and death are affected

by the overall population, we study a simple model of a

competitive growth where the death rate increases with the

overall population. Once again, the age-dependent model

predicts a different fluctuation behaviour. We expect that in
general, age-dependent cell growth models will have quali-

tatively different results than the constant birth–death

models. This fundamental result suggests a revision of the

usual theoretical approach to model growth and evolution

of cell populations.

To predict time evolution of cell populations in biologi-

cally realistic situations, it is important to obtain good

knowledge of the cell division and death rates as functions

of cell age. In our studies, we have incorporated realistic

cell division rates but assumed that the death rate is a con-

stant. Note that our approach is Markovian, i.e. there is no

memory between successive division events. This assump-

tion is justified by our data and others [1] which showed a

lack of correlation between successive divisions. However,

cell division and death rates are regulated by other factors

such as population density and nutrient levels. Cells may

also transform into a different state where cell division is

inhibited. These factors suggest that rich and interesting

population dynamics exist, even in the simplest colonies.

For the living tissue, it is known that several cell types

must coexist, and transformations from stem or progenitor

cells will influence the final population. Our work here

suggests that an age-dependent approach may be appropriate

to understand those situations as well.

Equation (3.4) suggests that the distributions of cell

colony sizes broaden with increasing spread of the generation

time distribution. This result is for exponentially growing

colonies, but similar effects may be present for homeostatic



rsif.royalsocietypublishing.org

10
populations. During organ growth, for example, the final size

of the organ and the variation in organ size may be related to

cell population fluctuations. This fluctuation may be influ-

enced by the age-dependence of cell events. Age-dependent

dynamics are also expected to be important in colonies

seeded by a few cells where population fluctuations may be

significant, e.g. tumour growth, drug-resistant cell popu-

lations. Finally, it is important to note that by measuring

not just the average population, but also the population fluc-

tuation, important information can be obtained about the
underlying growth and control mechanism. We have seen

that the population fluctuation can be quite different, even

when the average population growth rate is the same.

Indeed, the full theory must consider all moments of the

population distribution. Therefore, statistical fluctuations in

population dynamics contain vital information about the

biological mechanisms of growth and evolution.
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N0
 initial number of cells
r
N(t)
 average number of cells at time t
 sif.r
Nlost/Nalive
 ratio of numbers of lost to live cells
 oyal
t* (arb. units)
soc
average doubling time of cell

population
 iety
v (arb. units)– 1
pub
average growth rate of cell

population
lish
g(a) (arb. units)– 1
 PDF of age distribution at steady state
ing.
s(t)
 standard deviation of the mean N(t)
org
(s/N )lim
 asymptotic value of s(t)/N(t) at long t
g0 (arb. units)– 1
 cell death rate for competitive

population
Nss
 steady-state size of competitive

population
sss
 standard deviation of N(t) at

steady state
p(n;t) (dimensionless

value)
PDF of population size distribution

at time t

p(tn) (arb. units)– 1
 PDF of distribution of times tn to

reach n cells
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