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Abstract
Mouse models of transplantation have been indispensable to the development of bone marrow
transplantation (BMT). Their role in the generation of basic science knowledge is invaluable and
is subject to discussion below. However, this article focuses on the direct role and relevance of
mouse models towards the clinical development and advances in BMT and adoptive T-cell therapy
for human diseases. The authors aim to present a thoughtful perspective on the pros and cons of
mouse models while noting that despite imperfections these models are obligatory for the
development of science-based medicine.

Ever since we learned to apply science-based approaches to medicine and used in vivo
model systems, the mouse has become a scientific powerhouse. One doesn’t have to be true
cognoscenti to appreciate the value of mice towards enhancing our understanding of most
basic science knowledge. The application of these advances to the betterment of humanity
and specifically towards clinical medicine is also apparent to every practicing physician.
From the advances in the understanding of molecular biology, cloning, and recombinant
technology human genetic and immune diseases, to the development of life-saving drugs,
including penicillin,1 vaccinations,2,3 blood transfusions,4 surgical sutures and
techniques5—all marvels of modern medicine—mice have served as invaluable models.
Nonetheless, the reasons for why so much medical research is done with mice, what makes
them suitable for research, the relevancy of the information gained from them for human
diseases, all need to be revisited periodically, just as any scientific method ought to be. It is
obvious that humans and mice are different: mice are smaller, have a shorter life span, in
most cases are genetically in-bred, live closer to the ground, and possess limitations that are
germane to any scientific model system. However, humans and mice share >95% of
genomes and also suffer from many of the same diseases, for many of the same genetic
reasons.6–9 Experimental findings in mice often correlate to human biology and have as such
served as a research stand-in for a human patient.

This review will focus on the relevance of murine studies to hematopoietic stem cell
transplantation or bone marrow transplantation (BMT) and adoptive cellular therapy against
viruses and tumors. We will provide a perspective on the relevance and the advances that
were made “directly” from mouse models towards the clinical development of BMT and
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cellular therapy in humans. To this end, we will not attempt to enumerate the “basic”
discoveries (of which there are too many), but instead try to demonstrate how murine studies
can be relevant and have directly led to translation of most aspects of BMT as are currently
practiced today. However, we will also discuss how excessive reliance on imperfect animal
models can needlessly impede successful clinical progress.

BENEFITS OF MOUSE MODELS
Mouse models have been of value from the inception to the development of BMT as a
therapeutic modality, the use and development of hematopoietic stem cells (HSCs), the
selection of donors, the understanding of complications like graft-versus-host disease
(GVHD), the curative potency of graft-versus-tumor/leukemia (GVT/GVL), currently used
immunosuppressive strategies, the utilization of growth factors, and the development of
supportive care. In making a case for the utility, relevance, and value of murine models, our
intent is neither to suggest that these are “infallible” nor “sufficient” models, nor to indicate
that they somehow supplant the need for carefully designed human clinical trials. On the
contrary, the intent is to demonstrate that they are “necessary,” “critical,” and have been
absolutely essential for the development of clinical BMT.

Bone Marrow Transplantation
Murine models have directly led to many aspects of the current day practice of BMT. As
listed above and in more detail elsewhere, there are several models that are employed in
studying the different aspects of BMT.10,11 While any single model system is likely to be
better suited for any one specific feature/outcome of BMT than others, collectively over the
years they have facilitated not only generation of new knowledge, but also better
understanding and clinical development of both autologous and allogeneic BMT. Seminal
studies by Medawar and colleagues in mice led to the scientific basis for the concept of
allograft tolerance and transplantation.12 Even earlier, at the turn of last century,
observations by Loeb on the inability to transfer tumors across different strains of mice led
to the notion of tumor rejection by alloreactivity.13–16 Initially from Medawar's observations
on the role of histocompatibility in allograft rejection, and later, more specifically, to the
groundbreaking immunological research in mice by Gorer and Snell, we owe the
identification of the major histocompatibility complex (MHC) genes, the H-2 system.17–24

This directly led to the discovery and use of large animal and eventual human leukocyte
antigen (HLA) typing in the selection of donors in human transplantation.25–31 The first
demonstration that HSCs exist and that they can be engrafted and give rise to multiple
lineages following transfer into secondary hosts came from the pioneering murine studies by
Till, McCulloch, and colleagues.32,33 A series of critical shielding experiments in mice by
Jacobson and later Lorenz et al and subsequently in other larger animals with radiation
followed by transplantation of marrow grafts provided the basis not only for understanding
concepts of allograft transplantation but also led directly to the use of radiation in modern
day preparative regimens.34–39 The notion that HSCs are required for recovery, ie, the
fundamental step of BMT, was a direct consequence of observations by Barnes and Louitit
and others in mice.40 Experiments by Barnes and colleagues in the treatment of murine
leukemia by supralethal irradiation and marrow grafting directly led to the first human
clinical marrow transplantation by Mathe and colleagues in Europe and to the incomparable
body of work by Don Thomas and colleagues in the United States. Thus, “direct” translation
of observations from murine models led to the birth of the field of clinical BMT.38,40–43

Even the clinical use of the intravenous route as the preferred method of administration of
BMT and peripheral blood stem cell transplantation is directly based on murine studies.44
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Graft-Versus-Host Disease
GVHD is the most significant toxicity of clinical allogeneic BMT and cell therapy. This
entity was first noted, predicted, and understood in mice.10 GVHD reaction was first
recognized when irradiated mice were infused with allogeneic marrow and spleen cells.45,46

Although mice recovered from radiation injury and marrow aplasia, they subsequently died
with “secondary disease,” a ‘runting’ syndrome that causes diarrhea, weight loss, skin
changes, and liver abnormalities. This phenomenon was subsequently recognized as GVHD.
Billingham postulated three requirements for the development of GVHD based on murine
models,46,47 and these postulates still hold true for both experimental and clinical GVHD.
Over the subsequent decade the introduction of rudimentary tissue typing paved the way for
the classical murine studies of Korngold and Sprent, which confirmed the T-cell dependence
of GVHD.48–50 This observation has directly led to the scientific and clinical development
of targeting donor T cells for GVHD.51

Methotrexate is one of the first and still is a key component of most current immune-
prophylaxis strategies. Its efficacy in reducing GVHD after allogeneic BMT was first shown
in mice in 1958 by Uphoff and was then successfully translated into humans.52

Cyclosporine, which is extracted from a species of fungus, was discovered in 1972 and
found to be a potent immune-suppressor of GVHD in mice.53–55 The development of
cyclosporine and also FK506,56,57 the calcineurin inhibitors, which form the foundation for
current prophylaxis strategies, was thus directly translated from murine studies. The
development of rapamycin for GVHD prevention was a result of direct translation of studies
in murine models of GVHD by Blazar and colleagues in 1993.58 Another currently used
medication, mycophenolate mofetil, was also first shown to be efficacious in murine models
of GVHD by van Leeuwen et al before its subsequent clinical translation.59 Other model
systems, including canine and nonhuman primate models, played important roles in the
development of strategies for clinical prophylaxis and treatment of GVHD.

The presence of well-characterized inbred strains, availability of knock-out and transgenic
animals, easy availability of reagents, and the relative low cost have made mouse models the
most utilized systems for investigating the complex biological mechanisms of GVHD. They
have and continue to facilitate a deeper, better, and more refined understanding of basic
biology and also provide direction for development of potential translational avenues.60 In
light of space constraints, only a few examples will be provided of how the recent advances
in our basic understanding of the biology of GVHD from mouse models have continued to
lead to the translation of novel avenues for the prevention and treatment of human GVHD.
The notion that cytokines are key amplifiers of GVHD and that their blockade could be
useful was first observed in mice.60–64 Although blockade of a single cytokine has not been
as efficacious in clinical GVHD, recent clinical evidence suggests it might be a viable
strategy in a selected few patients.64 The discovery and role of regulatory T cells in GVHD
was made by a series of seminal observations in mice.65–67 These observations are now
being translated into humans.68 The identification of a role for co-stimulation and check-
point blockade and the development of antibodies to target these check-points in mice has
led to the recent, direct, and successful translation of these strategies in GVHD and also in
immunotherapy against cancers.60,69 The understanding and application of clinically altering
gut microbiota was made in mice by van Bekkum and colleagues, and further refined by
current studies in murine models.70,71 Studies from mouse models on mixed chimerism and
memory T-cell subsets are being directly translated into human clinical trials.72–75 Other
recent clear examples of murine studies that have led to “direct” translation and
development of drug-based approaches for mitigating or preventing GVHD include the use
of post-BMT cyclophosphamide, proteasome inhibition, and histone deacetylase
inhibitors.76–81 Many of these approaches have shown value in not only small but also large
phase II trials and are now being tested in randomized multicenter clinical trials under
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Clinical Trials Network consortium for their efficacy. The above examples are limited and
do not include many other interventions that have been informed by murine studies.

Graft-Versus-Tumor/Leukemia
It is now widely appreciated that the potency and curative potential of allogeneic cell
therapy comes from the immunological mechanisms commonly referred to as GVT/GVL
effects, a term first used in murine models.82 Mouse models have played, yet again, a
fundamental role in the conception and in translation of this idea. The concept of leukemia/
tumor destruction by the immune system was originally envisioned by Ehrlich and later
refined by Burnet.83,84 Although clinical observation of such a process was made by
Coley,85 who noted regression of tumors in patients that developed infections, the first
tangible and seminal demonstration of superior leukemia elimination by adoptive transfer of
allogeneic cells than syngeneic cells was made40 in murine models. This was attributed to an
immunologic reaction by the donor cells against the non-self–host type leukemia. Barnes
noted that extrapolation of this observation from mouse to man for treatment of leukemia
might be possible under certain contexts. The observation of the tight link between GVHD
and GVL, their temporal association, and that lymphohematopoietic tissue is the primary
target of GVH reaction was made from mouse models.86 Thus, mouse and other animal
models have been pivotal in making the early and fundamental observations on the presence
and potency of GVL. Many of these observations have been confirmed in human patients.
Recent murine studies have showed that cognate interactions between T cells and tumors
and T-cell cytotoxic (CTL) pathways are critical for GVL,87,88 elucidating the pathways of
CTL that are critical for tumor elimination. Observations on the role of donor NK cells in
murine models of GVT/GVHD have led to better understanding and potential clinical
implications for these observations in large scale human studies.89–94 The murine models
used to study GVL do have several caveats, including dependence on the type of HSCT
protocol, the timing and dose of leukemic cell infusion, homogeneity from inbreeding, lack
of concomitant immuno-suppression, limitations of tumor cell line biology (despite
exhibiting the classic hallmarks), and immune repertoire variations due to development in
the context of absence of sculpting by the process of immunoediting.11,95 Murine models
clearly help in understanding the biological principles in a reductionist manner, and inform
us about what is more probable for clinical translation despite not reflecting the entire
complexity of the clinical situation. However, it is important to note, as has been observed
by every clinician, that there is a spectrum of responses to currently established practices on
and outcomes from BMT (GVHD, GVT) even between human patients, where results from
subsets of patients also cannot be extrapolated to other contexts.

Stem Cell Mobilization
Although the half-lives of human and murine HSCs vary somewhat, on a weight-adjusted
basis, the total number of HSCs stem cells and progenitors is comparable in the marrow. The
daily production rate of red blood cells, platelets, and granulocytes in the mouse is also
comparable on body weight basis to humans.96 Thus, increased basic understanding of
HSCs and their niche in mice has led to many insights into human HSCs, which will not be
addressed here. But from the clinical translational perspective, the 1962 discovery that HSCs
can be detected in peripheral blood of mice led to the subsequent concept and development
of harvesting PBSCs in humans.97 The development of dimethyl sulfoxide (DMSO)-based
strategies for preservation of lymphocytes was also first developed in mice.98,99 Pioneering
murine-based studies by Stanley and Metcalf and colleagues in the 1970s and 1980s led to
the identification and development of growth factors granulocyte colony-stimulating factor
(GCSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF).100–102 These
results have directly been translated into HSC mobilization from PBMCs and to the use of
growth factors for promoting engraftment after clinical BMT.103,104
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Cord Blood
The development of human cord blood transplantation has been yet another major
development in the field of BMT. As noted by Broxmeyer and Boyse et al in their seminal
paper in 1989, the use of human umbilical cord blood for therapeutic reconstitution was
proposed and developed as result of direct observation of successful hematopoietic
reconstitution of lethally irradiated inbred mice with syngeneic neonatal blood by Gengozian
et al in 1961.87,105

Low Intensity
The development of non-myeloablative BMT has been a significant advance in the history
of BMT therapy and has allowed the expansion of allogeneic BMT as a therapy for
hematologic and nonhematologic diseases, especially in the older population. The concept of
mixed chimerism played a significant role in the eventual development of this approach. The
finding by Ildstad and Sachs in 1984 that mice reconstituted with a mixture of donor and
recipient strain bone marrow after myeloablative conditioning became specifically tolerant
of skin allografts from the bone marrow donor laid the groundwork for further experimental
studies.106 Work by Sachs and Sykes et al demonstrated development of mixed chimerism
with non-myeloablative regimens in murine models.107 Seminal studies in murine models by
Slavin and colleagues and by Storb and colleagues in canine models led directly to the
development of non-myeloablative condition for allogeneic BMT.108,109

Supportive Care and Ethical Concerns
The ability to give blood products has not just facilitated clinical BMT but revolutionized
medical and surgical care. Much of this ability is a result of the direct translation of the role
of citrate for longer preservation of blood in murine models.110 Finally, murine models
serve to help prevent unethical medical practices. Their utilization with other animal model
systems is in line with the Declaration of Helsinki and Nuremberg Code that outline the
requirement of animal models for ethical concerns associated with human experimentation.
Large experimental models in this context can be useful and have the advantages of being
outbred with longer life spans, but they are too expensive, lack tools for mechanistic
dissection, and the prohibitive processes involved in working with them often do not allow
for replication and statistical robustness. Mouse models do not have these limitations and,
more importantly, can be designed to better mimic certain clinical scenarios (like the use of
aged mice, multiple strains, spontaneous tumor models, etc) that could provide for a more
realistic assessment.

Antiviral and Anti-tumor–Directed T-Cell Therapy
Development of adoptive T-cell therapy for post-transplant viral/ lymphoproliferative
diseases and T cells that express chimeric antigen receptors (CARs) targeting specific
antigens has been an exciting development. As will be described below, these developments
occurred largely without the utilization of or despite the lack of a relevant mouse model
system. However, it is well known that many, if not all of the necessary key developmental
principles and technology are direct off-shoots of seminal observations in mice. For
example, the discovery of T cells by Miller,111 CD8/4 T cells by Cantor and Boyse,112,113

Th1/2 subsets by Mosmann and Coffman114, T-cell receptor by Kappler et al,115,116

McIntyre and Allison,117 and Davis et al,118 and dendritic cells by Steinman and Cohn119

were made in mice. The ability of T cells to eliminate viral infections, the very first CTL
studies of viral immunity, and the demonstration of MHC restriction by Doherty and
Zinkernagel were in the murine lymphocytic choriomeningitis virus (LCMV) model.120,121

The first example of “gene transfer” was made by Szybalski and Szybalska in 1962 using
hypoxanthine-guanine phosphoribosyltransferase (HPRT)-deficient cells in murine
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models.122 The discovery of reverse transcriptase by Baltimore and many other key
advances in the development of molecular biology have resulted from murine studies.123

Thus, despite the lack of appropriate murine models that fully mirror human post-transplant
viral infections and lymphoproliferative diseases, the development of adoptive T-cell
therapy could not have been conceived or investigated in humans without the insights
provided from murine studies. Thus, although a bit indirect, there nonetheless are murine
“toe-prints” on each and every aspect of adoptive T-cell therapy strategies.

LIMITATIONS OF MURINE MODELS FOR ADOPTIVE CELLULAR THERAPY
The crucial contribution of “standalone” mouse models notwithstanding, cellular therapies,
including stem cell transplantation, are complex biological treatments that can only be
developed for human use by combining systematic and controlled preclinical (murine and
human) and clinical studies; these studies may need to include iterative cycles of preclinical
and small-scale clinical studies in which the approach can be validated in humans and the
preclinical models modified to better reflect clinical realities. In other words, for almost
every cell therapy project, the linkage between preclinical and clinical data is dynamic and
evolving, and while datasets from a single murine model may contribute to the decision on
whether or not to proceed to clinical study, it is unwise to allow these models to become the
critical arbiter. Nowhere is the need for caution better illustrated than in the interpretation of
murine models in which T-cell therapies are used to modulate allogeneic HSCT. In HSCT,
T-cell therapies are used to prevent and/or treat post-transplant complications such as
infections, disease relapse, or GVHD.124 The history of HSCT clearly demonstrates the
general axiom outlined above, that the absence of positive results from murine models
should not preclude clinical development,125 and that the clinical development of complex
biological therapies may need to be parallel, or even sequential, to the development of
animal models. When a specific cellular therapy is contemplated, therefore, it is crucial not
just to determine whether an appropriate model exists, but also to be aware of its advantages
and limitations and to draw only those conclusions that are adequately substantiated by this
model. Table 1 gives an overview of several mouse models used in HSCT research and
points out their advantages and limitations.

While syngeneic mouse models allow mechanistic studies of biological processes in a living
organism, including genetic gain or loss-of-function studies, they have the inherent
limitations of species-specificity and that human cells or tissues cannot be tested directly.
Xenogeneic models, in contrast, allow the direct study of human cells and tissues in a living
animal but have major limitations regarding their consistency, the influence of the murine
microenvironment (eg, tumor stroma of murine origin), and the limited function of human
immune system cells due to suboptimal cytokine and accessory cell support. A major
advance in the use of mice to model cellular therapy after HSCT was the development of
humanized mice that are mouse–human chimeric animals: severely immuno-compromised
mice (such as NOD-SCID-γc-/- [NSG]) are engrafted with human HSCs and/or tissue(s) and
may be genetically engineered to express human genes such as human MHC genes and/or
cytokines/growth factors (recently reviewed126,127). This approach now allows functional
study of the human immune system in specific disease settings. For example, human
species-specific viruses such as the human immunodeficiency virus (HIV) or the human
herpes virus Epstein-Barr virus (EBV) and their interaction with the human immune system
can now be studied in mice, as can cancer stem cell populations, while regenerative
medicine applications such as tissue repair can be examined in greater detail.
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Adoptive T-Cell Therapy for Post-transplant Viral Infections and Lymphoproliferative
Disorders

Despite the availability of potent pharmacologic anti-viral treatments, viral infections remain
a major cause of morbidity and mortality after allogeneic HSCT. Most frequent are
infections with herpes viruses such as cytomegalovirus (CMV) and EBV, or with
adenoviruses, mainly occurring during the period of impaired T-cell function post-
transplant. In immunocompromised patients, CMV reactivation or infection can cause organ
diseases such as colitis, hepatitis, and pneumonitis, as well as retinitis in HIV patients; EBV
can cause malignant transformation of B cells leading to lymphoproliferative diseases
(LPD), while adenovirus may cause lethal damage to lung, liver, gut, and other organs.
These diseases may occur or recur despite the administration of anti-viral agents, which are
also expensive and frequently toxic. An alternative is the prophylactic or therapeutic
adoptive transfer of antigen-specific CTLs targeting one or several viruses simultaneously.
In many clinical studies conducted over the past 20 years, this approach has proven to be
generally safe and effective, producing long-lasting viral control without inducing
GVHD.128 Moreover, virus-specific CTL therapy can rescue patients who have previously
failed anti-viral drug treatment or developed drug resistance.128 Virus-associated malignant
post-transplant complications such as the EBV-associated post-transplant
lymphoproliferative disorders (EBVLPD) are also very effectively prevented or treated with
CTLs without discernible side effects.129,130 More recently, EBV-CTLs have been explored
for the treatment of other EBV-associated malignancies such as Hodgkin lymphomas or
nasopharyngeal carcinomas. Safety and efficacy of EBV-CTLs were also demonstrated
when using only partially HLA-matched banked allogeneic CTL lines in a phase II study for
the treatment of EBV-LPD after solid organ transplant or HSCT in 33 patients that had
failed conventional therapy. The response rates (complete or partial) were encouraging, at
64% at 5 weeks and 52% at 6 months.131 No adverse effects were seen after partially
matched EBV-CTL infusion. The possibility of using partially HLA-matched banked virus-
specific CTLs as an “off-the-shelf” treatment option for multiple common viruses of the
immunocompromised host (including CMV, EBV and adenoviruses) is currently being
investigated in a multicenter phase II study. In this analysis, the safety and efficacy of most
closely HLA-matched multivirus-specific CTL lines is being examined in HSCT patients
with EBV, CMV, or adenovirus infections that are persistent despite standard therapy
(ClinicalTrials.gov identifier NCT00711035).

The results outlined above showing the safe and apparently effective development of
adoptive T-cell therapy for the prevention and treatment of post-transplant infection provide
an excellent example of successful clinical translation of basic immunologic findings
without the intermediate of directly relevant preclinical xenograft or humanized mouse
models. Reliable mouse models to directly test the function of the human immune system in
hosts infected with human herpes viruses only became available about 20 years after the first
successful clinical translation of this approach.132,133 This delay came about because herpes
viruses are highly species-specific, having evolved in parallel with each species.
Consequently the genomes of primate- and rodent-specific herpes viruses are very
distinct.134 Moreover, the fully humanized immunodeficient mice that support the
development and maintenance of a functional human immune system have had a lengthy
period of development.126,127

Because of the lack of directly relevant murine models, investigators relied instead on
human in vitro studies and on general support from studies of unrelated murine viruses
causing murine disease. These immunologic studies from the 1980s revealed how T cells
play a crucial role in the control of herpes virus infections and that individuals with
compromised T-cell functions (whether as a result of primary immune deficiency, HSCT, or
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HIV infection) were at high risk of developing disseminated infection and multi-organ
disease. Studies assessing the immune response to murine herpes viruses had suggested that
virus-specific CD8+ CTLs were a major contributor to effective virus control and that these
cell types could be adoptively transferred to syngeneic mice to confer immunity to murine
viruses.135–139 Subsequently, CD4+ T cells were shown to be important for sustained viral
control and memory formation.140 In vitro studies in human healthy donors and patients
after allogeneic HSCT showed that HLA-matched CMV- or EBV-specific CTL lines
specifically killed CMV- or EBV-infected target cells.141,142 Moreover, in a prospective
single-center cohort study of 20 patients undergoing allogeneic BMT from a CMV-
seropositive HLA-identical sibling donor, patients with detectable CMV-specific T-cell
responses in vitro were protected against CMV pneumonia (10/10), whereas 6/10 patients
without T-cell responses died from this complication.141 Investigators were sufficiently
encouraged by these strong preclinical/associative clinical data to study the adoptive transfer
of CMV- or of EBV-specific T cells to HSCT patients despite the lack of a directly relevant
animal model.

In the first clinical study of CMV-specific T-cell transfer in three patients143 and a
subsequent phase I/II trial investigators showed that infusion of CMV-specific CD8+ CTL
clones was safe and prevented CMV reactivation in 14/14 patients without inducing
GVHD.144 However, sustained responses were only observed in patients that simultaneously
reconstituted the CD4+ T-cell compartment and the durability of this protection was not well
established. To treat EBV-LPD after HSCT, investigators infused lymphocytes obtained
from the stem cell donor. Although this adoptive transfer of unmanipulated donor
lymphocytes containing T cells produced complete remissions of the lymphoproliferation,
the presence of alloreactive T cells within the infused population induced severe GVHD in
several patients, associated with significant morbidity and mortality.145,146 Subsequently,
therefore, investigators infused stem cell donor-derived T cells that were cultured ex vivo
and shown to be EBV-specific. These cells were safe and effective as prophylaxis or therapy
for EBV-LPD, resulting in sustained viral and disease control.129 Because the T cells were
genetically marked (using the neo gene), the fate of the infused T cells could be determined
and demonstrated long-term persistence beyond 10 years.130

Thus, clinical translation of virus-specific T-cell therapies was possible primarily based on
human in vitro preclinical and associative clinical studies. The supporting murine data—
though conceptually crucial—addressed only the general principle of whether (murine) T
cells could control (murine) viral disease. Although it might have been easier and faster to
implement the clinical studies if investigators had animal models that were clinically
relevant, clearly it would have been wholly inappropriate to have waited for these to appear
and deny treatment in the interim. Nonetheless, the recent description of humanized mouse
models to study human EBV infection in the context of the human immune system
recapitulate with great accuracy the hallmarks of EBV infection and immune control in vivo
and have matched clinical findings.132,133 These models will allow us to dissect the in vivo
molecular pathogenesis of EBV-associated malignancies such as diffuse large B-cell
lymphoma147 or hemophagocytic lymphocytosis148 and to serve as preclinical treatment
models. However, even these humanized models will never fully answer the question of risk
for T-cell–mediated allo-reactivity or cross-reactivity with healthy adult human tissue, and
the importance of linking iterative preclinical and clinical studies will remain paramount.

Tumor-Directed T-Cell Therapy Using Transgenic T-Cell Receptors
The environment following HSCT is ideally suited to the adoptive transfer of T cells. The
lymphodepletion associated with the conditioning regimen favors production of homeostatic
cytokines such as interleukin (IL)-7 and IL-15 that favor T-cell growth and expansion, while
the absence of endogenous T cells reduces competition for these agents and for residual
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antigen presenting cells. As described in the preceding section, generation of virus-specific
CTLs to prevent and treat viral disease as well as virus-associated malignancies is now well
established and the stage is set for widespread implementation.149 Relatively few tumors,
however, express “strong” antigens such as those associated with oncogenic viruses. Instead,
most tumor-associated antigens (TAAs) are weakly immunogenic self-antigens such as
cancer testis antigens (NY-ESO-1, MAGE, PRAME, SSX2), Wilms tumor 1 protein, or
survivin, an inhibitor of apoptosis protein.150 Cytotoxic T cells with high-affinity T-cell
receptors (TCRs) directed against these weak self TAAs are often deleted or tolerized in the
host, making it difficult to generate high-affinity tumor-directed T cells that will efficiently
recognize and kill tumor target cells. To overcome this problem, we and others have
redirected antigen-specificity against tumor cells by transfer of engineered artificial TCRs
using either CARs targeting tumor-associated cell surface antigens or αβ-TCRs targeting
intracellular TAAs that are processed and presented as peptides in the context of MHC
molecules.151,152 It seems likely that HSCT will represent a useful means of obtaining the
lymphodepleted state that may be optimal for the expansion and anti-tumor activity of the
transferred engineered T cells. While mouse models have proved useful in predicting the
safety and efficacy of many of these approaches, they have also revealed undoubted
inadequacies.

One of the most widely used clinical approaches is to adoptively transfer T cells that express
CARs targeting the CD19 antigen, which is expressed on a high proportion of B-cell
malignancies. In both human and mouse CD19 CAR studies, several critical factors
influenced the persistence, expansion and anti-tumor activity of the CAR T cells, the most
important of which appeared to be the choice of the co-stimulatory endodomains in the CAR
construct, disease model and chemotherapy used for the lymphodepleting conditioning
regimen pre-infusion. Thus, direct comparisons in lymphoblastic leukemia xenograft models
compared the expansion and anti-tumor activity of T cells expressing a CD19 CAR with or
without the CD28 co-stimulatory endo-domain.153,154 While the addition of the CD28
endodomain was beneficial, substitution of an alternative co-stimulatory endodomain
derived from CD137 (4-1BB) was clearly superior in terms of persistence, expansion and
anti-tumor activity when the CAR T cells were infused in lymphodepleted hosts,154 a
superiority that appears to have been confirmed in clinical human studies and could not have
been so clearly predicted from preclinical human in vitro analyses alone.155,156 However,
the murine data did not foreshadow the severe adverse effects from tumor lysis and cytokine
storms observed in several of the human patients.155–159

Less successful have been mouse models that attempt to predict the outcome of clinical
trials using adoptive T-cell therapy employing transgenic αβ-TCRs. Several of these studies
reported lethal GVHD when lymphodepleted mice received synge-neic T-cells expressing
TCR genes encoding receptors for a range of TAAs. This effect was attributed to cross-
pairing of the transgenic TCR with endogenous (“native”) TCR chains, leading to the
generation of mixed TCR dimers with self specificity.160,161 This lethal GVHD can be
prevented if endogenous TCR production is knocked down using zinc finger nucleases that
target sequences in native αβ-TCR chains.162 But despite this severe GVHD that frequently
occurs in these murine models, to date no such gain of cross-reactivity has been observed in
more than 100 human subjects receiving TCR gene-modified T cells for cancer, even after a
lymphodepleting regimen and IL-2 infusions163 and many of these patients with otherwise
refractory metastatic melanoma and synovial cell sarcoma have had complete tumor
responses from the therapy.164,165 However, these and other studies using CARs to target
TAAs have had toxicities due to expression of the targeted epitope by normal tissues or by
cross-reactivity with related epitopes on normal tissue; some of these adverse event have
produced lethal neurotoxicity or cardiotoxicity.166 In no case has the murine model
successfully predicted this genuine adverse event, and by directing our focus towards an as
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yet non-problematic event could be argued to have provided a false sense of security and a
misappropriation of effort and resources.

Hence, safety and toxicity assessments for CAR or TCR-redirected T cells must be
performed through a careful clinical dose-escalation approach and cannot yet be predicted
from mouse models. Fortunately, we have now additional tools to effectively improve safety
of clinical gene therapy products by the incorporation of suicide genes such as the herpes
simplex thymidine kinase167 or the inducible caspase 9 (iC9)168 systems. Incorporation of
the iC9 in particular allows for the rapid elimination of transgenic T cells in patients within
30 minutes of administration of the activating drug, apparently without side effects.168

CONCLUSIONS
Many articles in this issue of Seminars in Hematology, including the current one, have
illustrated how remarkably well laboratory mice can mirror human biology despite the huge
differences in body size, life span, genetic diversity, metabolism, pharmacokinetics, and
immune system composition.169–172 Murine models can be excellent tools to understand
BMT in humans, allowing us to learn from both their successes as well as failures. They
illuminate the biological principles, facilitate better understanding of the processes, and
inform the next generation of studies. Their contribution to the field has been almost
immeasurable as has been pointed out here. Nonetheless, mice are not mini-patients and
mouse models do not fully mirror all aspects of human diseases. Investigators must
acknowledge the nuances and differences, and discuss the advantages and limitations of the
models used for their research. Mouse studies do not replace clinical trials; they were never
intended to nor expected to. They, however, always did, do, and will point to what is
probable and what could be attempted in human studies. It is reasonable to ask why murine
studies fail to translate. Yet other reasons can be the poorly conducted human translational
clinical trials, both from lack of complete understanding and also from poor design. There
are many examples of human phase I/II trials that have failed to show demonstrable efficacy
in randomized phase III trials. The reasons for this are many, complex, and beyond the
scope of this review. Failure of clinical trials leads to insights, better ideas, and refinement
of the next generation of clinical studies. Likewise for studies with murine models—simply
because an intervention that worked well in murine models has not translated into humans
should not be viewed as an outright failure of mice as the model, but should lead to
refinement and development of better model systems that mirror more closely the human
complexity. Not doing so would be antiethical to scientific enterprise and inquiry. The
biological principles revealed by mouse models are profound and it is also important to
understand the limitations of their clinical implications. Nonetheless it is critical to
recognize that while mouse models may be imperfect, they have been, and are, invaluable to
the advancement of modern medicine. Stated otherwise, they are imperative for the
development of science-based medicine.
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Table 1

Mouse Models for Cellular Therapies

Advantage Disadvantage

Syngeneic – Immunocompetent host
– Absence of major histocompatibility (MHC) barriers, no GVHD
– Diverse genetically engineered models/strains available to study
molecular mechanisms
– Spontaneous tumor models available, including metastasis
models
– Detailed study of interactions between immune system, tumor
and microenvironment possible
– High reproducibility

– Human cells cannot be tested directly
– Inherent differences between mouse and human
species: immune system, tumor and microenvironment

Xenogeneic – Direct testing of human immune cells against human tumor cells
– Use of cell lines or primary patient tumor samples

– Immunocompromised host
– Cytokine support for human cells suboptimal
– Tumor stroma of mouse origin
– Development of xenogenic GVHD
– Variable reproducibility, depends on passaging
conditions of the tumors

Humanized – Mice reconstituted with a functional human immune system and/
or tissue(s)
– Allows to study oncogenic viruses with human cell tropism (eg,
Epstein-Barr virus–associated malignancies)
– Some transgenic strains available (HLA-A*0201, several
cytokines, growth factors)
– No or minimal xenograft GVHD due to tolerance induction

– Immunocompromised host
– Need 10– 12 weeks to establish human immune system
– Cytokine support for human cells suboptimal
– Tumor stroma of mouse origin (except for the
hematopoietic components)
– Expensive
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