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Purpose: To investigate the feasibility of a new two-dimensional (2D) multichannel response (MCR)
analysis approach for the detection of clustered microcalcifications (MCs) in digital breast tomosyn-
thesis (DBT).

Methods: With IRB approval and informed consent, a data set of two-view DBTs from 42 breasts
containing biopsy-proven MC clusters was collected in this study. The authors developed a 2D ap-
proach for MC detection using projection view (PV) images rather than the reconstructed three-
dimensional (3D) DBT volume. Signal-to-noise ratio (SNR) enhancement processing was first ap-
plied to each PV to enhance the potential MCs. The locations of MC candidates were then identified
with iterative thresholding. The individual MCs were decomposed with Hermite—Gaussian (HG) and
Laguerre—Gaussian (LG) basis functions and the channelized Hotelling model was trained to produce
the MCRs for each MC on the 2D images. The MCRs from the PVs were fused in 3D by a coinci-
dence counting method that backprojects the MC candidates on the PVs and traces the coincidence of
their ray paths in 3D. The 3D MCR was used to differentiate the true MCs from false positives (FPs).
Finally a dynamic clustering method was used to identify the potential MC clusters in the DBT vol-
ume based on the fact that true MCs of clinical significance appear in clusters. Using two-fold cross
validation, the performance of the 3D MCR for classification of true and false MCs was estimated
by the area under the receiver operating characteristic (ROC) curve and the overall performance of
the MCR approach for detection of clustered MCs was assessed by free response receiver operating
characteristic (FROC) analysis.

Results: When the HG basis function was used for MCR analysis, the detection of MC cluster
achieved case-based test sensitivities of 80% and 90% at the average FP rates of 0.65 and 1.55 FPs per
DBT volume, respectively. With LG basis function, the average FP rates were 0.62 and 1.57 per DBT
volume at the same sensitivity levels. The difference in the two sets of basis functions for detection
of MCs did not show statistical significance.

Conclusions: The authors’ experimental results indicate that the MCR approach is promising for the
detection of MCs on PV images. The HG or LG basis functions are both effective in characterizing
the signal response of MCs using the channelized Hotelling model. The coincidence counting method
for fusion of the 2D MCR in 3D is an important step for FP reduction. Further study is underway to
improve the MCR approach for microcalcification detection in DBT. © 2014 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4868694]

Key words: computer-aided detection (CADe), digital breast tomosynthesis (DBT), multichannel re-
sponse (MCR) analysis, Hermite—Gaussian (HG), Laguerre—Gaussian (LG)

1. INTRODUCTION

Breast cancer remains one of the leading causes of cancer
mortality among women. Mammography can detect small
cancers, when they are at an early stage and most responsive
to treatment. However, the performance of mammography
is limited by the overlapping fibroglandular tissues that can
cause both false negative diagnosis and false positive recalls.
Digital breast tomosynthesis (DBT) (Ref. 1) is a new imag-
ing modality that builds on the full-field digital mammogra-
phy (FFDM) technology. In DBT, a series of projection view
(PV) images is acquired as the x-ray source is moved over a
limited range of angles. The total dose required for DBT is
kept at nearly the same or only slightly higher than that of a
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regular mammogram. Tomosynthesized slices of the imaged
volume are reconstructed from the series of PV images. Al-
though DBT can only provide quasi three-dimensional (3D)
information with limited resolution along the depth (Z) di-
rection, the reduced overlap of breast tissue provides superior
conspicuity and detectability of subtle lesions in comparison
with conventional projection mammograms.>=®

Despite its success in improving the detection of soft tis-
sue lesions, the ability of DBT in microcalcification (MC)
detection is still under investigation.”-® Detection of MC in
DBT is more challenging because of the large search space,
the separation of a cluster into a number of DBT slices, and
the potential blurring of MCs from the image acquisition
and reconstruction processes. The synthesis of an FFDM-like
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two-dimensional (2D) image from the DBT scan is one of
the potential solutions to help visualization of MCs in DBT.
Alternatively, computer-aided detection (CADe) has been
shown to improve radiologists’ accuracy for MC detection in
mammography. It can be expected that CADe will also play
an important role in DBT interpretation.

Development of CADe system for breast cancer on DBT is
still at an early stage because the availability of patient DBT
cases is still limited for this new modality. One of the common
approaches for CADe on DBT, referred to as 3D approach,
is to use the reconstructed DBT slices, or the DBT volume,
as input. The multiple-PV information is combined by im-
age reconstruction techniques before computerized analysis.
Bernard et al.’ developed an algorithm for the detection of
MC clusters on filtered backprojection reconstructed slices.
On a data set of 13 DBT volumes containing MC clusters
and 37 normal DBT volumes, their method had a sensitiv-
ity of 85% at an average of 1.4 FP marks per breast volume.
Sahiner et al.'? developed a CADe scheme for MC clusters by
using an enhancement-modulated 3D calcification response
function in combination with iterative thresholding and 3D
region growing techniques. This approach achieved a sensi-
tivity of 85% at an average of 3.8 FPs per DBT volume on a
data set of 144 two-view DBT volumes from 72 breasts. The
strength of 3D approaches is that it takes advantage of the
image reconstruction that accurately combines the informa-
tion from the low dose PVs and increases the signal-to-noise
ratio (SNR). The SNR of MCs in the reconstructed DBT is
affected by the reconstruction methods and parameters used.
Therefore, the performance of the CADe system may depend
on the reconstruction algorithm used for the tomosynthesis.

Alternatively, a 2D approach may be used for lesion detec-
tion in DBT in which the individual PVs are used as input and
then the information from all PVs is merged by using the geo-
metrical information of the DBT system. This approach offers
the potential advantage of being independent of reconstruc-
tion techniques although it may not be practical for human
readers. In addition, current CADe algorithms developed for
regular mammograms can be applied to the PVs since each of
the individual PVs can be treated as a regular mammogram
with proper image preprocessing. However, due to the low
SNR of the input PVs, it is challenging to design effective
CADe methods for breast cancer detection. Reiser et al.'! in-
vestigated a 2D approach for MC detection. On a data set of
30 image sets with MC clusters and 30 image sets without
visible findings, their detection method achieved a sensitivity
of 86% with 1.3 FP clusters per DBT volume.

We are developing methods and evaluating the usefulness
of CADe for MCs in DBT. In this study, our purpose is to in-
vestigate the feasibility of a 2D multichannel response (MCR)
analysis approach to clustered MC detection in DBT.

2. MATERIALS
2.A. DBT acquisition

A GE second generation prototype DBT system at the Uni-
versity of Michigan was used to acquire DBT scans. The sys-
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tem has a Csl phosphor/a:Si active matrix flat panel digital
detector with dimensions of 19.20 x 23.04 cm and a pixel
pitch of 0.1 x 0.1 mm. The detector is stationary during im-
age acquisition. The system uses a step-and-shoot design and
acquires PV images from a total of 21 angles in 3° increments
over a £30° range in less than 8 s. The distance from the x-ray
focal spot to the center of the rotation is 64 cm and the focal
spot to the detector distance is 66 cm. The x-ray source rota-
tion plane is parallel to the chest wall edge of the detector. For
visualization of the MC clusters in the data set, the DBT was
reconstructed with in-house developed software based on the
simultaneous algebraic reconstruction technique (SART).!"?
The reconstructed image volumes were only used to mark the
locations of MC clusters and individual MCs for generating
reference standard and training purposes. The voxel resolu-
tion of the reconstructed DBT volume in the X-Y plane was
chosen to be the same as the pixel pitch of the detector (0.1
x 0.1 mm) while the slice spacing in the Z direction was cho-
sen to be 1 mm. The same voxel size was used for the ray-
tracing operations in the coincidence counting method, to be
described later.

2.B. Image set

This study was IRB approved and HIPAA compliant. Hu-
man subjects who were recommended for biopsy of clustered
MCs (Breast Imaging Reporting and Data System, BI-RADS
4 and 5) in our Breast Imaging Division were recruited with
written informed consent. Two-view, craniocaudal (CC) and
mediolateral (MLO), DBTs of the affected breast were ac-
quired. The dose per DBT view was set to be about 1.5 times
of that of a single-view conventional mammogram. A data
set of 82 DBT views from 41 breasts was collected from
40 patients including one patient with MC clusters in both
breasts. An experienced Mammography Quality Standards
Act (MQSA) radiologist marked the location of the biopsied
MC cluster with a 3D bounding box in each DBT volume
based on all available clinical and imaging information and
provided a subtlety rating on a scale of 1-10 (10 = most sub-
tle). A total of 32 malignant and 10 benign biopsy-proven
MC clusters were included in the data set. The radiologist
also provided an estimate of breast density based on the four
BI-RADS categories by reading the corresponding mammo-
grams of the breasts since there is not yet BILRADS density
categories designed for DBT. Figure 1 shows an example of
a region of interest (ROI) containing clustered MCs. The dis-
tributions of the breast density and cluster subtlety in DBT
volume are shown in Fig. 2.

3. CADe SYSTEM

We developed a CADe system for MC detection using the
2D PV images as input rather than the reconstructed DBT
volume. The 3D information is utilized by the coincidence
counting method that backprojects the detected MC candi-
dates on the PVs and traces the coincidence of the ray paths
in 3D. A schematic diagram of our CADe system is shown in
Fig. 3. The pixel value in each PV has a linear relationship
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FI1G. 1. Image example. Left: ROI on the central slice of the reconstructed
DBT volume. Right: the same ROI on the projection view at 0°.

with the x-ray intensity incident on the detector over a wide
exposure range. Assuming that the x-ray spectrum has an ef-
fective monoenergetic energy and the effects of beam hard-
ening and scatter can be ignored in the design of computer-
ized image processing methods, a logarithmic transformation
was applied to the raw pixel intensities of the PV which was
then input to the CADe system. The MC cluster detection pro-
cesses are described below.

3.A. Prescreening of MC candidates

We previously developed a difference-image technique
based on a box-rim filter to reduce the structured background
and improve the SNR of the MC candidates in FFDM.'? In
this study, we used the same technique for prescreening of
MC candidates in PVs of DBTs. Briefly, in the difference-
image technique, a signal-enhancement filter is used to en-
hance the signal and smooth the random noise and a signal-
suppression filter is used to remove the signal and again
smooth the random noise. The two filtered images are then
subtracted to produce a difference image in which the low-
frequency structured background is removed and the high-
frequency noise is suppressed. If the two filters are linear,
the two processes can be combined into one which is effec-
tively a bandpass filter. An 8 x 8 pixel box-rim filter was se-
lected for MC enhancement in FFDMs of 0.1 x 0.1 mm pixel
size. With an iterative global thresholding technique, a vari-
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[ Projection views ]
v
Detection of MC candidates on
individual projection views
v
Multi-Channel Response (MCR)
analysis of MC candidates
v
Fusion of 2D multi channel signal
response in 3D by coincidence counting

[ Clustering of MCs in 3D ]

FIG. 3. Schematic diagram of our CADe system for MC detection in DBT
using a 2D approach.

able threshold that will extract about 160—180 individual MC
candidates having top ranking of filter response on each PV
is automatically chosen. The MC candidates are segmented
and their size and shape are refined with a region growing
method adaptive to the local contrast-to-noise ratio (CNR). In
this method, the local mean pixel value and root-mean-square
(RMS) noise within a 51 x 51-pixel kernel centered at the
MC candidate centroid is estimated. The central pixels of the
kernel that contain the signal candidate are excluded from the
estimation. With the eight-connectivity criterion, the candi-
date is grown to the neighboring pixels. A connected pixel is
retained as a part of the candidate if its CNR value is larger
than a predefined CNR threshold of 1.9 chosen for segmen-
tation in the noisy PV images. The shape, size, CNR, and a
refined centroid location of each candidate are determined af-
ter the local segmentation.

3.B. Multichannel response analysis
of MC candidates

The MC candidates detected in the PVs are subjected to the
MCR analysis that will be used to discriminate MCs from FPs
by analyzing the channelized image components at potential
MC locations within the breast region. Theoretically, one can
describe the signal detection problem with an ideal observer
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FIG. 2. Characteristics of our data set. Left: distribution of breast density in terms of BI-RADS category estimated by a MQSA radiologist. Right: distribution
of the subtlety ratings of the MC clusters in DBT volume judged by the same radiologist. The subtlety rating was estimated for the CC and MLO views of each

cluster independently.
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model.'* In the ideal observer model, an image is represented
as an M x 1 vector g. The likelihood ratio L(g) between two
class distributions is defined by

L(g) = p(gll)’

p(gl2)
where p(g|k) is the probability density of g given by class
k (=1 or 2). Under the assumption that the task is a signal
known exactly and background known exactly (SKE/BKE)
problem, the logarithm of likelihood ratio or test statistic A
can be defined as

(1)

}\(g) = Widealg, (2)
where the weighting vector Wige, is defined as
VVideal = (IL_Z - ’L_I)Tzijiéal’ (3)

1y is the mean vector for class k (= 1 or 2) and Xjgeq is the
covariance matrix for both classes.

A caveat of an ideal observer model is the high dimension-
ality that may lead to the rank-deficient problem. The chan-
nelized Hotelling observer (CHO) (Ref. 14) that has been used
to model signal detection tasks alleviates the dimensionality
problem. Note that we do not intend to model a human ob-
server in this study, but we made use of the idea to extract sig-
nal response from the MC candidates. With the CHO model,
a region of interest (ROI) centered at an MC on a PV image
can be represented by a multichannel filter bank using a set of
orthonormal basis functions {b1, ... by}. The channelized ba-
sis functions are a set of optimal templates each of which can
characterize an image in specific frequency bands. A given
ROI image can be decomposed into a linear combination of
multiple channels:

N
ROI(x, y) = Y fibi(x, ).

The ROI is therefore characterized by a set of channelized
responses {fi, ..., fy} that can be treated as a vector f = {fi,
..., fn} in the space spanned by the set of orthonormal basis
functions {by, ..., by}. With this representation, the task of
differentiating the true and false MC candidates can be for-
mulated as a linear classification model to classify a given
vector f into one of the two classes:

MCR(f) = (m; —m))'S7' f,

where m; is the mean vector for class k£, k = 1,2 and X is
an N x N covariance matrix for both classes. Therefore, the
multichannel response, MCR(f), is a weighted sum of the in-
dividual channel response {fi, ..., fy} that can be used as a
decision variable for receiver operating characteristic (ROC)
analysis.

From the analysis of the channel responses of a set of train-
ing ROI samples containing true MCs and FPs, the type of
multichannel basis functions, the number of channels N that
are effective for characterizing MCs can be determined by
maximizing the separation between the two classes.

In this study, we investigated two types of basis functions:
the Hermite—Gaussian (HG) polynomials, and the Laguerre—
Gaussian (LG) polynomials, for MC representation, as de-
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scribed below. These two particular basis functions were
chosen because, as the product of Hermite or Laguerre poly-
nomials and a Gaussian function, they correspond to pertur-
bations around a circular Gaussian. They also have many re-
markable properties; they form an orthogonal (orthonormal
if properly normalized) set of basis functions, are invariant
under Fourier transforms which leads to an analytical form
for convolution,'> !¢ and can be derived from a generating
function or a recursion relation. The LG and HG functions
have been used in many areas, for example, the HG and LG
functions describe the eigenstates of 2D quantum harmonic
oscillator,’>17 while the LG functions are commonly used in
the CHO model for image quality assessment and simple sig-
nal detection tasks.

3.B.1. Hermite-Gaussian polynomials

The HG basis functions can be written as

1 1 2
D,(rls) = [S 2" n! -n%] ’ exp <_5 .

=) (5).
“4)

where n > 0 (n = 0 yields a Gaussian distribution), H,(x) is
a Hermite polynomial of order n, r is the distance between
a pixel in the ROI image and the center of the ROI, and s
is a scaling factor. These functions are orthonormal in the
sense that ffooo dx®,(x)P,,(x) = 8, (8,,,: Kronecker delta).
In this study, we used the “physicists’ Hermite polynomials”
defined by

df’l
H(x) = (1" T(e ™). 5)
x
The HG basis functions form a complete basis for smooth
and integrable functions. Thus, an object profile f{x) can be
expanded as

FO =3 fatn. (6)

From the orthonormality condition, the coefficients are
given by

fo = / dxf (). )

In practice, the HG basis functions in the 2D domain can
be constructed by taking the tensor product of any two 1D
basis functions. In this study, a MC is centered at the cen-
ter of the ROI image and, since MCs are small objects, they
are assumed to be rotationally symmetric in all directions. We
therefore constructed an isotropic 2D basis function by using
the same 1D basis function for both dimensions.

3.B.2. Laguerre—Gaussian polynomials

The LG functions can be expressed as

2
®,(r|s) = */Tiexp< ;Tzr )L (8)

where r is the distance between pixels in the image and the
center of the ROI, s is a scaling factor, and L, is the nth
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Laguerre polynomial. The Laguerre polynomials are defined
by

et d
Ln(x) = ;dx”

where n > 0 (n = 0 yields a Gaussian distribution). An object
profile can be expressed as a linear combination of the LG

basis functions in a similar way as the HG functions, as shown
in Egs. (6) and (7).

(e™x"), ©))

3.C. Coincidence counting method for fusion of 2D
multichannel signal response in 3D

The coincidence counting method based on two-stage ray-
tracing is designed to fuse the 2D MCR into a 3D response by
using the known geometry of the DBT system. The object lo-
cation in the 3D breast volume is estimated as a cone-shaped
path connecting the focal spot location and the segmented ob-
ject image on the PV plane. If the same MC candidate is de-
tected in many PVs, the backprojected paths will intersect in
the breast volume that can be considered the most likely lo-
cation of the MC. In contrast, those without or with very few
coincidence counts in the breast volume will be more likely
to be noise and may be excluded for further processing. The
two-stage ray-tracing consists of a backprojection process to
identify all possible locations (voxels) where the MC candi-
dates detected on the PVs may originate from, and a forward-
projection process to eliminate redundant locations by using
the counts accumulated in the voxels as a guide. Two volumes
are generated to keep track of the coincidence counts and the
accumulated 3D MCR values at a given voxel in the 3D space,
as detailed below.

In the first-stage ray tracing, the x-ray path is backtraced
from the locations of MC candidates to the x-ray source and
the voxels intersecting with the x-ray path are recorded. Con-
sider the backprojection process in matrix form as

Anx =Yy, (10)

where A, is the projection matrix for the nth PV with a; as
its (7, j)th element, n = 1, ..., N; x is a vector containing all
J voxels in the DBT volume with x; as itsjth element, j = 1,
..., J; and y, is a vector containing all  pixels in the nth
PV image with y; as its ith element, i = 1, ..., I. The value
of a targeted element x; in the DBT volume can be estimated
by tracing all x rays traveling through this voxel. The voxel
values of a backprojection volume can be written as

=3 (X @), (an

where ajj-l is the (j,i)th element of the inverse of matrix A,,.

Our coincidence counting method is different from back-
projection reconstruction in that the goal is not to estimate the
linear attenuation coefficients in the volume so that the x-ray
intensity values on the PV images are not used. For the gen-
eration of the volume of coincidence counts, the pixel values
on the nth PV are taken as

1, 2D candidate pixels

yi = ) , (12)
0, otherwise
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1, li >0
aj;' = . (13)
0, ,=0

For the generation of the volume of 3D MCR values, the
pixel values on the nth PV are

2DMCR, 2D candidate pixels

Vi = _ ; (14)
0, otherwise

ail =1, (15)

Jt

where /; is the actual path-length of the ith ray from the x-ray
source to the ith pixel on the nth PV that intersects with the
Jjth voxel calculated from the DBT system geometry.

Each MC candidate from a PV should only contribute to
a single detection in the 3D space, but the traced ray of a
MC candidate can intersect multiple voxels and contribute
to many initial MC candidate voxels in the 3D MCR vol-
ume along the x-ray path. Therefore, the first-stage ray tracing
process may cause an overestimation in the number of initial
3D candidate MCs. A second-stage ray tracing is designed
to identify the most likely MC locations in the 3D volume.
Initial MC candidate voxels are first located as those with co-
incidence counts greater than 2. All of the initial 3D MC can-
didates are then put into a priority queue where the one with
the larger coincidence counts is assigned a higher priority. A
forward ray tracing (from the x-ray source to the detector)
and volumetric updating process will be performed sequen-
tially following the priority from high to low for each initial
3D MC candidate in the priority queue. The forward ray trac-
ing tracks all rays contributing to the candidate. The updating
process updates the two volumetric data obtained in the first
stage along the ray paths by eliminating the potentially redun-
dant counts contributed to the 3D MC candidates as follows.
For the coincidence counting volume, the candidate with the
highest count and thus the highest priority along the ray path
is kept while the counts for other candidates with lower pri-
ority along the same ray path are deducted. For the 3D MCR
volume, the 3D MCR score of the candidate with the high-
est count is kept while the MCR scores for other candidates
with lower counts along the same ray path are reduced by the
amount contributed by the deducted rays. After the two vol-
umes are updated, the set of 3D MC candidates are updated
by excluding the 3D MC candidates that have updated coinci-
dence counts less than 3. The set of remaining 3D MC candi-
dates is then finalized by merging the connected components
based on 26-connectivity in the coincidence counting volume.
The MCR value of each voxel is obtained from the 3D MCR
volume. The maximum MCR value among all connected vox-
els of a MC candidate is taken as the 3D MCR value of the
candidate.

3.D. Dynamic clustering of MCs in 3D

With the detected individual MC candidates (signals) in
the 3D volume after coincidence counting, potential MC clus-
ters are formed by a dynamic clustering procedure based on
the fact that clinically significant MCs generally appear in
clusters. In this process, a location associated with a higher
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[ MC candidates on PVs ]
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[ Coincidence counting ]
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based on local density of MCs
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Dynamic 3D clustering

v

Calculate relevance score
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FIG. 4. Schematic diagram of the identification of 3D MC clusters.

density of potential signals, which is defined as the number of
signals in a 20 x 20 x 20 mm volume of interest (VOI) cen-
tered at each of the potential signals, is given a higher priority
as a starting region to grow a cluster. The dynamic cluster-
ing will search for new members in the neighborhood of the
starting location and updates the cluster centroid after each
new member is added. The inclusion criterion of a potential
signal to the current cluster is that its distance from the clus-
ter centroid is less than 5 mm. The cluster will stop growing
if no more potential signals in the neighborhood can satisfy
the inclusion criterion. Once a signal is included in a given
cluster, it will be marked and excluded from being a candi-
date member of other clusters. The process continues until no
more clusters can be grown in the breast region. The remain-
ing signals that are not found to be members of any potential
clusters will be considered as isolated noise objects and ex-
cluded in further analyses. The cluster relevance score of each
identified MC cluster is defined as the sum of the 3D MCR
values of all its members. Figure 4 summarizes the process of
the identification of 3D MC clusters.

3.E. Performance evaluation

In order to evaluate our 2D approach to MC detection in
DBT, two-fold cross validation was employed for training and
testing. We divided the collected 40 patients with two-view
DBTs into two equal sized independent subsets by case, i.e.,
all views of the same case were grouped into the same subset.
The focus of the training was to select the multichannel basis
functions for MCR analysis and the formulation of the linear
classification model.

To select the basis functions to describe MCs on the PVs, a
set of ROI images with and without MCs were used as train-
ing samples. A 2D PV is basically a low-dose FFDM but the
CNR of individual MCs on the PVs is very low. To obtain
more reliable true MCs, a trained researcher used a graphical
user interface to mark the locations of individual MCs in the
reconstructed DBT volume within the bounding box of the
clusters drawn by the experienced radiologist. Each marked
MC was then ray-traced to the 21 PVs using the known imag-
ing geometry of the DBT system to find the corresponding
locations of the MC on the PVs. A 31 x 31-pixel ROI was
extracted from each of these locations as training samples.

Medical Physics, Vol. 41, No. 4, April 2014

Wei et al.: Multichannel response analysis for microcalcification detection

041913-6

The ROI size was chosen to be large enough to cover an indi-
vidual MC and its surrounding background. In our data set, a
total of 1135 individual 3D MCs were marked in the 82 DBT
volumes. Forward projection of these MCs resulted in 23 835
2D MC candidates on the PVs.

FP training samples were obtained from the MC candidates
in the DBT volume after the prescreening stage of the CADe
system (described above). In this study, the radiologists drew
a 3D VOI around each true MC cluster. To find the corre-
sponding 2D bounding box on the PVs, we projected an ex-
tended VOISs of the MC cluster (10 extra pixels on each side)
onto the 21 PVs in order to allow spaces around the true MCs
for estimation of the background noise during the training.
The location of a prescreening detected MC candidate on a
given PV was compared to the bounding box of the true MC
cluster projected to the PV. The MC candidates outside the
bounding box were considered FPs. A 31 x 31-pixel ROI was
also extracted from each of the FP locations as training sam-
ples. There were a total of 211 344 2D-FPs on the PVs (i.e.,
an average of 122.7 FPs/PV at prescreening). For the twofold
cross validation subsets, one contained 10902 true MCs and
100 820 FPs and the other contained 12933 true MCs and
110524 FPs.

Figure 5 showed the training and testing schemes in this
study. Within each of the two cross validation cycles, the best
set of parameters of the multichannel basis functions (HG and
LG), including the number of channels and the best scaling
parameter for the differentiation of true and false MC candi-
dates, was selected using the training subset with tenfold cross
validation resampling. For each of the tenfold cross valida-
tion cycles, the filter bank of selected parameters was applied
to the MC candidates in the PVs of the training subset (90%
of the samples in the training subset) to generate the chan-
nelized responses {fi, ..., fy} and formulate the CHO model.

| |
1 ( ) ) !
! MCR !
| Training with R |
1 90% Samples Training 1
! v N~— !
| |
1 Training Subset /\ 1
| N ) |
S 1
: Validation with sr(l):; ?Id 1
10% Samples alidation 1
! — X
1 N—
1 1
| |
| 10-fold cross-validation 1
[

F1G. 5. Illustration of training and testing schemes in this study. A twofold
cross validation method was used for training and testing of the overall de-
tection performance of the CADe system. When one subset was used for
training, tenfold cross validation was performed within the training subset to
select the parameters of the channelized basis functions. The trained CADe
system was applied to the other subset for testing and a FROC curve was
obtained from each of the twofold cross validation cycle.
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The 2D MCR for each MC candidate in the validation sub-
set (remaining 10% of the samples in the training subset) was
then obtained from the trained CHO model and the area under
the ROC curve (AUC) was estimated for the validation subset
in this tenfold cross validation cycle. The average AUC ob-
tained from averaging the AUCs of the ten validation subsets
was used as the figure-of-merit to guide the selection of the
filter bank parameters within the training subset.

Using the selected parameters from the training subset, the
multichannel filter bank was used in the CHO model to cal-
culate the 2D MCR of each MC candidate in the respective
test subset in the twofold cross validation process. The 3D
MCRs were then generated from the 2D MCRs by the co-
incidence counting method described above and used as the
decision variable for classification of the true and false MCs
in 3D. The AUC was calculated from ROC analysis of the
classification performance for each test subset.

After FP reduction and dynamic clustering in 3D, the over-
all cluster detection performance of the CADe system was
evaluated with a free response ROC (FROC) analysis by vary-
ing a decision threshold applied to the cluster relevance score.
At a given relevance threshold, a cluster was classified as a
true positive (TP) cluster if the center of its bounding box was
located within the box marked by radiologist as a true cluster;
otherwise, it was a FP cluster. FROC curves were obtained on

§0.69 N
8 e
=< c8fe,
;’068 ggzgzxﬂgggQQQQQQQQQQ
E 55 VYV VYV VYV VVYVYVFYVVYVVYY
Oo67{ 7 oo
o o0
s [ sesete 3y
EOGG ©0009°4 0000 v s=3
a 0000°%0000 A s=4
g et s o
Soes{ °° .o
® s=8

§064.. r S

5 10 15 20

Number of Channels
(a) HG — subset 1
G 076
=2
<
o OOQQQQ
> o [ R-K
‘50_75 H?[]D .-l--eiﬂgggggg
o - AAAAA
$ e a

8 o B AA 'Vvv'v.sﬂ
1 0 :AAA v?Y 3::?;
£ -
%074 '!vvvvvv'vvv Doﬁz;g
:
g 53000000298....... i:ig
< o3 L° —

5 10 15 20

Number of Channels

(b) HG — subset 2

Wei et al.: Multichannel response analysis for microcalcification detection

041913-7

both a per-view and a per-cluster basis. For view-based FROC
analysis, the MC cluster in each DBT volume was considered
an independent target. While for cluster-based FROC analy-
sis, the MC cluster imaged on the two-view DBT was con-
sidered to be the same target and detection of the cluster on
either one or both views was considered to be a TP detection.
The clusters in the left and the right breasts of the subject with
bilateral MCs were counted as different targets in the cluster-
based FROC analysis.

4. RESULTS

Figure 6 showed the average test AUCs as a function of the
number of channels for different scaling factors when the 2D
MCR was used for classification of true and false MCs de-
tected on the PVs at prescreening. The results for each train-
ing subset and for the LG and HG basis functions were plotted
separately. With the HG basis functions [Figs. 6(a) and 6(b)],
the average validation AUCs ranged from 0.644 to 0.686 for
training subset 1 and from 0.732 to 0.754 for training sub-
set 2. The maximum AUCs were observed at the parame-
ter setting of n = 3 and s = 7 for both subsets. With the
LG basis functions [Figs. 6(c) and 6(d)], the average valida-
tion AUCs ranged from 0.643 to 0.684 for training subset 1
and from 0.731 to 0.753 for training subset 2. The maximum
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FIG. 6. Dependence of the average validation AUCs obtained from tenfold cross validation within each training subset. (a) and (b) HG basis functions. (c) and

(d) LG basis functions. (a) and (c¢) Subset 1. (b) and (d) Subset 2.
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F1G. 7. FROC curves for detection of clustered MCs in DBT volumes. The average curves were derived from the curves for the two test subsets by averaging
the FPs rates at the corresponding sensitivity level. (a) and (c) View-based FROC curves; (b) and (d) cluster-based FROC curves; (a) and (b) HG basis functions;

and (c) and (d) LG basis functions.

AUCs were observed at the parameter setting of n = 17 and
s = 7 for subset 1 and n = 14 and s = 8 for subset 2.
The parameters with the maximum validation AUCs were se-
lected for the two filter banks in the subsequent performance
evaluation.

After fusion of the 2D MCR into 3D MCR, the AUCs in
classifying individual true MCs from FPs in the two test sub-
sets were evaluated. With the HG basis functions, the AUCs
were 0.872 &£ 0.013 and 0.874 £ 0.012, respectively. With
the LG basis functions, the corresponding AUCs were 0.872
4 0.013 and 0.872 &£ 0.012, respectively. No statistically sig-
nificant differences (p > 0.05 with ROC analysis) between
the HG and LG filter banks were observed for either of the
test subsets.

After 3D clustering, the cluster relevance score was used
as decision threshold to generate FROC curves. The view-
based FROC curves for the two test subsets are shown in
Fig. 7(a) for the HG basis functions and Fig. 7(c) for the LG
basis functions. The cluster-based FROC curves were shown
in Fig. 7(b) for the HG basis functions and Fig. 7(d) for the
LG basis functions. An average FROC curve was also esti-
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mated from the curves of the two test subsets by averaging
the FP rates at the corresponding sensitivity levels.

We have previously developed a prototype CADe system
for detection of clustered MCs in DBT using a 3D approach.'”
Figure 8 showed a comparison of the FROC curves from the
current and the previous approaches for the same data set used
in this study. Table I showed a comparison of the FP rates of
the current and previous approaches at three sensitivity levels.

5. DISCUSSION

In this study, we developed a 2D channelized approach in
combination with a coincidence counting method for detec-
tion of clustered MCs in DBTs. The results indicated the ef-
fectiveness of our detection approach and demonstrated the
feasibility of 2D-based computerized MC detection that made
use of PVs as input and the geometric information of the DBT
imaging system to combine the detection on PVs for FP re-
duction. The channelized approach decomposes the ROI im-
age of each candidate object into a linear combination of lo-
calized basis functions of different shapes. The information
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F1G. 8. FROC curves for detection of clustered MCs in DBT volumes
with our previously developed prototype CADe system using a 3D approach
(Ref. 10). For the HG and LG basis functions, the average curves were de-
rived from the curves for the two test subsets by averaging the FPs rates at
the corresponding sensitivity level. For the 3D approach, the FROC curve
was obtained directly from the entire data set. (a) View-based FROC curves;
(b) cluster-based FROC curves.

True Positive Fraction

about the object is therefore encoded in the channelized re-
sponses, which are then fused in 3D and used for classifica-
tion. In a conventional approach, a set of feature descriptors
is usually extracted from the candidate objects and the true

the multidimensional feature space.

We compared two multichannel filter banks, the HG and
the LG basis functions, for characterization of MC signals.
The LG basis functions have been found to be useful for the
channelized Hotelling Observer model for relatively large and
low contrast signals. In this study, we investigated if the LG
and HG functions may be used as basis representation for
small, higher contrast signals such as microcalcifications in
computerized detection without the human observer. The Her-
mite and Laguerre polynomials are both related to the conflu-
ent hypergeometric function.'® From ROC analysis, we found
that these two basis functions performed similarly on the clas-
sification of MCs from FPs but a smaller size of filter bank
could be used for the HG basis functions. Since the use of
high frequency components may include more noise and com-
putation time will increase with the number of filter channels,
a smaller size of filter bank is usually preferred.

To further understand if the detection performance would
be affected by breast density and the subtlety of the MC clus-
ters, we analyzed the breast density and the subtlety ratings
of the false negative (FN) clusters. Table I summarized the
number of FNs at two decision threshold levels on the FROC
curves for the HG and LG filter banks and the number of FNs
that were common to both. Table III shows the mean and stan-
dard deviation of the breast density and subtlety ratings of the
FN clusters by a MQSA radiologist. In comparison, the mean
and standard deviation of the breast density and subtlety rat-
ings by the same radiologist for the entire data set were 2.76
£ 0.71 and 3.74 £ 2.23, respectively.

These analyses do not reveal noticeable relationship be-
tween breast density and the detection performance of MC
clusters. On the other hand, it appeared that the visual

TABLE I. Cluster-based FROC detection performance of the CADe systems in test subset 1, test subset 2, and
the average over the two test subsets using the HG and the LG basis functions. The detection performance of our
prototype CADe system using the 3D approach by Sahiner ez al. (Ref. 10) on the entire data set is also shown in

the last column for comparison.

FPs per DBT volume

Test subset 1 Test subset 2 Average
Cluster-based - - 3D approach
sensitivity HG LG HG LG HG LG (Ref. 10)
70% 0.26 0.29 0.52 0.50 0.39 0.40 0.91
80% 0.70 0.70 0.59 0.55 0.65 0.63 1.51
90% 2.08 1.95 1.02 1.19 1.55 1.57 1.89
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TABLE III. The mean and standard deviation of breast density and cluster subtlety ratings by a MQSA radiologist
for the FN clusters missed by using the LG and HG basis functions for detection of MC clusters in DBT volume.

041913-10

HG basis functions

LG basis functions

FPs per Number Breast Number Breast

DBT volume of FNs density Subtlety of FNs density Subtlety
1.0 5 320+ 0.84 6.80 £+ 1.68 6 3.00 +0.89 6.25+2.14
0.5 12 3.08 £0.79 6.50 £ 1.94 12 3.08 £0.79 6.83 £1.71

appearance of FNs was subtler than that of TPs for MC de-
tection with our 2D approach. The difference in the mean
subtlety ratings between the TPs and FNs at 0.5 FPs per DBT
volume was statistically significant (p = 0.03) with two-tailed
unpaired ¢ test at 95% confidence level. In our data set, we
have 32 malignant and 10 benign MC clusters. The numbers
of FNs for benign clusters were 1 and 0 at 0.5 and 1.0 FPs per
DBT volume, respectively. The average subtlety rating of the
10 benign MC clusters was 3.77 £ 2.23, while the subtlety
rating of the single benign FN cluster was 6.0. The reason of
miss may more likely be related to the visibility than to the
malignant or benign status of the MC clusters. Note that due
to the limited sample size these stratified analyses may not be
reliable and need to be verified with a larger data set in the
future.

For both the HG or LG filter banks, we constructed
isotropic 2D basis functions by using the same 1D ba-
sis functions in the horizontal and vertical directions while
other studies used anisotropic basis functions for different
purposes.'>2? One reason to choose isotropic function is be-
cause most of the MCs are punctate or too small to show
a well-defined shape. In addition, even there are linear or
branching MCs, their orientations are quite random in an
image. If anisotropic filters are used, MCRs at all orienta-
tions will need to be extracted and analyzed. Although we
had 23 835 2D MCs projected from 1135 manually marked
3D MCs in the current data set, subsets of MCs of specific
shape and orientation would be too small for training. Further
study of anisotropic basis functions may be pursued if large
sets of MCs of various shapes and orientations with manu-
ally marked locations become available in the future. A ma-
jor drawback of using the channelized filter bank approach is
that it requires individually identified MCs for training of the
parameters. Manually marking the MC locations is a very te-
dious process and it is difficult to collect a very large training
set.

In principle, the set of PVs together with the geometry of
the DBT system should contain the same information as the
reconstructed DBT volume because the latter is derived from
the former. The reconstruction process that combines the in-
formation from the PVs generally can enhance the signal and
reduce noise. However, the performance of a CADe system
using the reconstructed volume as input may depend on the
reconstruction technique and parameters used because they
affect the resulting image quality. On the other hand, detec-
tion of signals on the individual PVs may be more difficult
because of the low exposure and thus noisy images, but the
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CADe system will be independent of reconstruction. Fusion
of the detected candidates on PVs in 3D using the DBT sys-
tem geometry is a crucial step to differentiate true and false
signals. Our coincidence counting method was found to in-
crease the classification accuracy substantially. However, both
our 2D-PV and 3D approaches are still at the early stage of
development and further improvement and assessment with
large data sets are needed for a more reliable comparison.
Furthermore, the choice between the two approaches would
depend on the expected application of the CADe system.

An important issue with the detection of MCs on PVs is
that, for a DBT system with a large tomographic scan angle
and uniformly distributed exposure over the PVs, the expo-
sure for PVs at large angles decreases rapidly because of the
increasing x-ray path-length through the breast tissue, leading
to increased image noise. The large oblique incidence angle to
the detector also increases image unsharpness. In this study,
we observed that the detection of MCs in the PVs at large
angles was poorer than those at small angles. Figure 9 com-
pared the prescreening of individual MCs in the PVs with and
without the PVs at large angles (i.e., using only the 15 PVs
between 21°). The sensitivity was calculated as the fraction
of MC candidates detected at prescreening that were at the
locations where the manually marked individual MCs were
projected to the PVs. The curve was generated by varying the
CNR threshold chosen for prescreening. It can be observed
that the sensitivity at a given FP rate was substantially higher
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F1G. 9. Comparison of prescreening sensitivities of individual MCs with and
without PVs at large angles (>21°). Solid curve: prescreening on all PVs (21
PVs centered at 0° and between £30°); dashed curve: prescreening on PVs
with narrow angles (using only 15 PVs centered at 0° and between £21°).
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on the PVs at small angles. After the 2D MCRs on PVs were
combined into 3D MCRs by coincidence counting, the clas-
sification performance was greatly improved as indicated by
the AUCs. This suggested that the fusion of the 2D MCRs
from the PVs using the coincidence counting technique did
strengthen the signals and help distinguish them from noise.

Our CADe system included many stages, each of which is
composed with several image processing and machine learn-
ing techniques. The choice of parameters in each stage may
affect the performance of the CADe as a whole. In this study,
we focused on selection of the multichannel filter bank and
their parameters to characterize the individual MCs and the
fusion method to merge the 2D information in 3D. We made
use of the previously developed techniques for microcalcifi-
cation detection on FFDMs for the other stages. Further op-
timization of the techniques may improve the detection accu-
racy of the 2D CADe system for DBT. For example, in the
prescreening stage, the current strategy only achieved a sensi-
tivity ranging from about 49% to 59% on different PVs for the
individual MCs. Retraining the SNR enhancement stage and
other parameters for the detection on PVs may improve the
sensitivity while controlling the FP rate. We refrained from
further tuning of the parameters to avoid overtraining because
of the limited data set in this study.

6. CONCLUSION

We developed a 2D approach for detection of clustered
MCs in DBT that made use of PVs as input. A channelized
approach using a multichannel filter bank for extracting sig-
nal response from individual MCs on the PVs was adapted
from the channelized Hotelling observer model. A coinci-
dence counting method using two-stage ray tracing technique
and the geometric information of the DBT imaging system
was designed to fuse the information from the PVs and to re-
duce noise. Our experimental results indicated the feasibility
of this 2D-based CADe system for MC detection in DBT.
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