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Purpose: In this pilot study, the authors examined associations between image-based phenotypes
and genomic biomarkers. The potential genetic contribution of UGT2B genes to interindividual vari-
ation in breast density and mammographic parenchymal patterns is demonstrated by performing an
association study between image-based phenotypes and genomic biomarkers [single-nucleotide poly-
morphism (SNP) genotypes].

Methods: This candidate-gene approach study included 179 subjects for whom both mammograms
and blood DNA samples had been obtained. The full-field digital mammograms were acquired using
a GE Senographe 2000D FFDM system (12-bit; 0.1 mm-pixel size). Regions-of-interest, 256 x 256
pixels in size, selected from the central breast region behind the nipple underwent computerized
image analysis to yield image-based phenotypes of mammographic density and parenchymal texture
patterns. SNP genotyping was performed using a Sequenom MassArray System. One hundred twenty
three SNPs with minor allele frequency above 5% were genotyped for the UGT2B gene clusters, and
used in the study. The association between the image-based phenotypes and genomic biomarkers was
assessed with the Pearson correlation coefficient via the PLINK software, and included permutation
and correction for multiple SNP comparisons.

Results: From the phenotype-genotype association analysis, a parenchyma texture coarseness feature
was found to be correlated with SNP rs451632 after multiple test correction for the multiple SNPs
(p = 0.022). The power law B, which is used to characterize the frequency component of texture
patterns, was found to be correlated with SNP rs4148298 (p = 0.035).

Conclusions: The authors’ results indicate that UGT2B gene variation may contribute to interindivid-
ual variation in mammographic parenchymal patterns and breast density. Understanding the relation-
ship between image-based phenotypes and genomic biomarkers may help understand the biologic
mechanism for image-based biomarkers and yield a future role in personalized medicine. © 2074
American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4865811]
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1. INTRODUCTION

Breast cancer is the most commonly diagnosed cancer among
women in the United States, with approximately 232 340 new
cases of invasive breast cancer and 64 640 new cases of in
situ breast cancer expected to occur among women during
2013."! An estimated 39520 breast cancer deaths were ex-
pected in 2013.! Currently, mammography is still the best
available imaging modality for breast cancer detection, and
it can detect breast cancer at an early stage.>3

Several studies have used either qualitative (Breast Imag-
ing Reporting and Data System, BI-RADS) or quantitative
estimates of breast density or percentage, the fibroglandular
area relative to the whole breast area, to assess its associa-
tion with breast cancer risk. Their results showed that women
with dense breasts have an increased risk of developing breast
cancer relative to women with fatty breasts.*’

In addition to mammographic breast density, the relation-
ship between mammographic parenchymal patterns and the
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risk of developing breast cancer has been studied®'> exten-
sively. Since the human visual system has difficulty assess-
ing higher-order statistics texture information,'® computer-
ized texture analysis becomes an important and useful tool
to extract unique and clinically meaningful information from
mammographic images. Our previous studies!”-'® from com-
puterized texture analyses of mammographic parenchymal
patterns showed that women at high risk of developing breast
cancer tend to have dense breasts with coarse and low-contrast
texture patterns.

The UDP-glucuronosyltransferases (UGTs) are coded by
a gene superfamily and catalyze the glucuronidation of nu-
merous endogenous and exogenous compounds, including
bilirubin, bile acids, steroid hormones, and many carcino-
gens. The glucuronidation reaction transfers the glucuronosyl
group to substrate molecules that contain oxygen, nitrogen,
sulfur, or carboxyl functional groups, making the substrates
more polar and water soluble. These water-soluble products
are readily eliminated from the body through the biliary and
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renal systems.'*>! There are two families within the UGT
superfamily, UGT1 and UGT2, and the UGT2 subfamily in-
cludes UGT2A and UGT2B gene clusters. There are seven ac-
tive members — UGT2B4, UGT2B7, UGT2B10, UGT2B11,
UGT2B15, UGT2B17, UGT2B28 in the UGT2B gene clus-
ters located on chromosome 4, which are mainly expressed in
liver, breast, prostate, colon, and kidney.?*??

Numerous studies’*>” have shown that exposure to in-
creased concentrations of estrogens, androgens, and proges-
terone may contribute to the development of breast cancer and
other hormone-dependent cancers. Since UGT2B enzymes
play an important role in the metabolism of steroid hormones,
it has been proposed that variations in the UGT2B enzymes
may contribute to the development of breast cancer.>* More-
over, considering the fact that steroid hormone levels are cor-
related with mammographic density,”® it has been suggested
that genetic variation in UGT2B family can influence mam-
mographic density by altering enzyme activity or gene ex-
pression and, as a consequence, steroid hormone levels.?*?
Therefore, an analysis of the association between UGT2B ge-
netic variation and mammographic parenchymal patterns and
breast density may provide useful insights into the mecha-
nisms of breast cancer susceptibility.

However, little work has yet been done to characterize how
genetic risk factors may interact with image-based pheno-
types. Thus, we examine a potential genetic contribution of
UGT2B gene variants to interindividual variation in breast
density and mammographic parenchymal patterns by per-
forming an association study between image-based pheno-
types and genomic biomarkers (i.e., genotypes).

2. MATERIALS AND METHODS
2.A. Database

Patients included 179 women, including 103 breast can-
cer patients and 76 women without breast cancer, which
were retrospectively recruited to this study under an insti-
tution review board (IRB) approved protocol from the Uni-
versity of Chicago Medical Center. Of the 179 subjects,
there were 140 Caucasian women, 30 African-American
women, 5 Asian women, 3 Hispanic women, and one woman
of unknown ethnicity. Both full-field digital mammograms
(FFDM) and blood DNA samples were available for the
study.

2.B. Genotyping

Single-nucleotide polymorphisms (SNPs) are the most
common type of genetic variation in the human genome. Each
SNP represents a single DNA sequence variation where a nu-
cleotide differs between chromosomes in one or across differ-
ent individuals.

Fifty-six unrelated haplotype map (HapMap) samples
were resequenced at the UGT2B gene cluster to discover se-
quence variation. By using IdSelect with > > 0.8 and mi-
nor allele frequency (MAF) > 0.05 as selection criteria, 314
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SNPs were identified as tagging SNPs. IdSelect is a software
package that uses information on the extent of association
(measured by %) between alleles at linked SNPs to identify
the minimal set of maximally informative SNPs, i.e., tagging
SNPs, which can capture a large fraction of the total varia-
tion in a given genomic region.’>** The tagging SNPs in the
UGT2B gene cluster were genotyped in all 179 subjects by
iPLEX SNP genotyping assay (Sequenom Inc., San Diego,
CA) and described in detail in Ref. 35.

The genotype data were preprocessed by quality control
on genotypes. Three filtering criteria were applied to the SNP
genotype data in this study. The call-rate threshold of 95%
was used to include a SNP for the analysis, since a low call-
rate suggests that the SNP assay is of low quality. An ex-
act Hardy-Weinberg equilibrium (HWE) p-value threshold of
0.001 was used to filter out those SNPs that deviated from
HWE, probably reflecting genotyping errors. SNPs with MAF
less than 5% were excluded from the study.’

After applying these three filtering criteria, 123 maximally
informative SNPs were included in the subsequent association
study as genomic biomarkers, i.e., genotypes.

2.C. Computerized texture feature extraction

All FFDM images were acquired with a GE Senographe
2000D FFDM system with 0.1 mm pixel in size and 12-
bit quantization level at the University of Chicago Medical
Center. Craniocaudal (CC) view mammographic images were
used in the study. Regions-of-interest (ROIs), 256 x 256 pix-
els in size, were manually selected from the central breast re-
gion immediately behind the nipple. A sample ROI is shown
in Fig. 1.

The ROI extraction and subsequent computerized feature
extraction to assess the mammographic parenchymal patterns
in the images are described in detail in Refs. 18, 37-40
and briefly summarized here. Extracted were a total of 45

Fi1G. 1. A sample ROI of size 256 x 256 pixels selected from the central
breast region behind the nipple in a digital mammogram.
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computerized features describing texture characteristics of
(i) contrast/magnitude related to denseness and (ii) texture
related to parenchymal patterns. These features were calcu-
lated based on (a) absolute value of gray levels and gray-
level histogram analysis to provide denseness of the region
and local tissue composition information, (b) spatial relation-
ship among gray levels to provide contrast and homogeneity
measures within texture patterns, (c) fractal analysis, includ-
ing fractal dimensions from both box-counting method and
Minkowski method to provide self similarity measure of the
image, (d) edge-frequency analysis, including MaxEdgeGra-
dient to provide the coarseness measure in the image, and
(e) Fourier analysis, including power law B to characterize
the spatial frequency content within texture patterns. These
computer-extracted features served as image-based pheno-
types in the association study.

2.D. Statistical analysis

The computer-extracted features (image-based pheno-
types) are continuous variables and before correlation assess-
ment each feature was normalized by a quantile normalization
method so that they would have similar magnitudes.*! The
genomic biomarkers (i.e., SNPs) are categorical ordered vari-
ables (i.e., genotypes) defined by the number of copies of the
allele out of the two at a given SNP (i.e., 0, 1, or 2) with the
lower frequency in our sample [i.e., the MAF allele]. We used
the number of copies of the minor allele in the analysis, based
on an additive genetic model. For example, the three geno-
types of a particular SNP (AA, AT, and TT) can be assigned a
value of 0, 1, and 2, respectively, indicating the number of T
allele.

Association between the image-based phenotypes and
genomic biomarkers was assessed using a Pearson correlation
analysis. The top two performing phenotypes in terms of
high correlation coefficient with genotypes were analyzed
using PLINK*? association analysis [PLINK: whole genome
association analysis toolset (http://pngu.mgh.harvard.edu/
purcell/plink/)] to correct for multiple testing issues due to
the multiple genomics biomarkers.

The PLINK outputs included an adjusted p-value after per-
mutation of 100000 times for correction for multiple SNP
testing.***® An association was deemed statistically signifi-
cant if the adjusted p-value was less than 0.05.

The number of permutation of 100 000 was used to obtain
more accurately estimated p-values (so the minimum p-value
can be 0.00001). In terms of permutation procedure, the ge-
nomic biomarkers (genotype data) are retained, but the image-
based phenotypes are randomly permuted to generate a new
dataset. This permutation procedure satisfies the null hypoth-
esis of no association between phenotype and genotype, and
controls for the pattern of linkage disequilibrium (LD) be-
tween SNPs in the data. Only the phenotype-genotype con-
cordance is destroyed by permutation. A fixed seed is used
for the permutations to ensure the results are reproducible.

The association analyses were performed both for the en-
tire dataset and within ethnic groups.
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3. RESULTS
3.A. Association study for entire dataset

The Pearson correlation coefficient map and corresponding
—log(p) map between the quantile-normalized image-based
phenotypes and genomic biomarkers are shown in Fig. 2. The
correlation coefficients ranged between 1.0784 x 1073 and
0.2713.

The results from association analysis between image-
based phenotypes and genomic biomarkers are listed in
Table I, where the adjusted p-values are also listed by permu-
tation method including correction for multiple comparisons
among the SNPs. Note that Pearson correlation only assesses
the additive effects for the particular locus on the image-based
phenotypes.

The parenchyma texture coarseness feature (MaxEdge
Gradient)'® was found to be correlated (p = 0.022)
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FIG. 2. Visualization of the association between the mammographic image-
based phenotypes and the SNP genotypes: (a) The Pearson correlation coeffi-
cient map; and (b) corresponding —log10(p) map. The green circles indicate
the two phenotypes with the highest correlation coefficients.
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TABLE I. Association analysis results for the two image-based biomarkers (phenotypes) and the genomic biomarkers (genotypes) from Pearson correlation
analysis (both unadjusted and corrected p-values are listed). *Corrected p-values from permutation for correction for multiple testing. *SNP positions are based

on the human reference sequence (NCBI Build 36.1).

Quantile-normalized Image-based
biomarkers (Phenotypes)

Genomic biomarkers p-value Correlation

Image Mathematical (SNPs) (SNP position after Relative with
characteristic descriptors in Chr4*) p-value correction* position expression
Texture MaxEdgeGradient 69630002 0.00026 0.022 86.3kb upstream of UGT2B17

(Ref. 18) (rs451632) UGT2B10, 59.0kb in liver

downstream of UGT2B15

Texture B (Power law) 70499290 0.00044 0.035 103.1kb UGT2B7
and (Ref. 31) (rs4148298) downstream in liver
density of UGT2B4

with the SNP at nucleotide position 69630002 (rs451632) in
chromosome 4, which is approximately 59 kb upstream to
the UGT2B15 gene (Table I; Figs. 3 and 4). The MaxEdge-
Gradient feature characterizes the maximum edge gradient
change within the mammographic texture pattern. A smaller
MaxEdgeGradient feature value corresponds to a coarser
mammographic texture pattern.

The SNP at nucleotide position 70499290 (rs4148298)
(genotype) in chromosome 4 showed an additive effect on
the power law B texture measure (power spectral analysis)?’
with a p-value of 0.035 after multiple test correction (Table I;
Figs. 5 and 6). The power law 8 is used to characterize the
spatial frequency content within texture patterns. A larger

power law 8 value corresponds to a more homogeneous mam-
mographic texture pattern.

3.B. Association study within ethnic groups

As a secondary aim, the two phenotype-genotype pairs dis-
cussed above were further analyzed within ethnic groups. Be-
cause of the limited size of the Asian and Hispanic ethnic
groups, the additional association analyses were performed
only within the Caucasian group and within the African-
American group. These phenotype-genotype association re-
sults are presented in Table II. Association between the tex-
ture measure (power law 8 from power spectral analysis) and
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FIG. 3. Association analysis between an image-based phenotype (MaxEdgeGradient) and UGT2B SNPs (genotype). The x-axis gives SNP positions at chro-

mosome 4, and the y-axis is the —log10(p) from an additive model association analysis.
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Quantile Normalized Phenotype (MaxEdgeGradient)
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FIG. 4. Linear regression of the image-based phenotype MaxEdgeGradient on a genotype SNP position at 69630002 (rs451632) in chromosome 4 resulting in
an adjusted p-value of 0.022. (See Table 1.) Selected image examples from each genotype are shown.

the SNP at nucleotide position 70499290 (rs4148298) (geno-
type) in chromosome 4 was found (p = 0.030) within the Cau-
casian group (as it was within the entire group), although not
within the other ethnic groups.

4. DISCUSSION

In this pilot study, we demonstrated methodology to evalu-
ate the association between image-based phenotypes and ge-
nomic biomarkers from UGT2B gene clusters using an ad-
ditive model. The identified association between phenotypes
and genotypes suggests that some UGT2B SNPs may be
related to imaging characteristics, including mammographic
parenchymal patterns and breast density. Understanding the
relationship between image-based phenotypes and genomic
biomarkers may allow image-based phenotypes to play a role
in personalized medicine.

Medical Physics, Vol. 41, No. 3, March 2014

Our effort identified multiple SNPs that may correlate with
mammographic pattern. Though previous studies reported
associations between mammographic density and SNPs
in the UGT2Bgenes,’! no previous study has identified a
significant association between mammographic parenchyma
texture and the candidate gene variants. Since all the UGT2B
SNPs associated with imaging phenotypes are located far
from genes, we hypothesize that they affect mammographic
density and parenchymal texture pattern by influencing the
function of sequence elements that regulate the expression
of UGT2B genes. To investigate this possibility, we searched
public databases (SCAN database: http://scan.bsd.uchicago.
edu/newinterface/index.html and the eQTL database:
http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/) of gene ex-
pression quantitative trait loci for the SNPs associated with
mammographic features, or the ones in linkage disequilib-
rium with them.3® Two SNPs, rs451632 and rs4148298, were
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FI1G. 5. Association analysis between an image-based phenotype (power law g) and UGT2B SNPs (genotype). The x-axis gives SNP positions at chromosome

4, and the y-axis is the —log10(p) from an additive model association analysis.

found to be correlated with UGT2B17 and UGT2B7 expres-
sion levels in liver, respectively (see Table I). Interestingly,
these two enzymes are the ones with the highest activity
on steroid hormones within this family.*” The A allele of
rs4148298, which was associated with higher UGT2B7
expression in liver,®® was correlated with smaller power law
B value, and thus lower mammographic density (Fig. 3).
These results are particularly interesting in light of a previous
genome-wide expression profiling study which showed a
correlation between UGT2B gene expression levels and
mammographic density; consistent with our findings, this
study found that higher expression of UGT2B genes is
inversely correlated with breast density.’> No SNPs were
associated with the expression of UGT2B or other genes in
breast or other tissues. These results taken together raise the
possibility that the genetic variations in the UGT2B family
affect mammographic density by altering systemic hormone

levels rather than the levels in the target organ, e.g., the breast.
To explore this possibility further, we further searched for
potential transcription factor binding sites near the significant
SNPs associated with mammographic features, or the ones in
LD with them, by using the program Match in the TRANS-
FAC database (http://www.gene-regulation.com/cgi-bin/pub/
programs/match/bin/match.cgi); consistent with our proposal,
we identified multiple SNPs located in predicted binding
sites for liver-enriched transcription factors.*

Although the datasets were too limited to analyze based
on ethnicity, the association between the power law f
texture phenotype and the SNP at nucleotide position
70499290 (rs4148298) (genotype) in chromosome 4 was
found to be correlated within the entire group as well as within
the Caucasian group, suggesting a potential role of ethnicity
in modulating the image-based phenotypes, which remains to
be verified in future studies with larger datasets. Since allele

TABLE II. Association analysis results between the two image-based biomarkers (phenotypes) and the genomic biomarkers (genotypes) from Table I presented
here within each ethic group. *SNP positions are based on the human reference sequence (NCBI Build 36.1).

All ethnic Caucasian and Caucasian African-American
Quantile-normalized Genomic biomarkers groups African-American group group
Image-based (SNPs) (179 subjects) groups (170 subjects) (140 subjects) (30 subjects)
biomarkers (SNP position p-value after p-value after p-value after p-value after
(Phenotypes) in Chr4*) p-value  correction®*  p-value  correction*  p-value  correction*  p-value  correction*®
MaxEdgeGradient (Ref. 18) 69630002 (rs451632)  0.00026 0.022 0.00016 0.015 0.0023 0.14 0.038 0.98
B (power law) (Ref. 31) 70499290 (rs4148298)  0.00044 0.035 0.0017 0.124 0.00037 0.030 0.81 1

Medical Physics, Vol. 41, No. 3, March 2014
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FIG. 6. Linear regression of the image-based phenotype power law 8 on a genotype SNP position at 70499290 (rs4148298) in chromosome 4 resulting in an
adjusted p-value of 0.035. (See Table 1.) Selected image examples from each genotype are shown.

frequency usually varies by race, the association difference
that we observed in this preliminary study may be caused
by the allele frequency difference from the Caucasian group
to the African-American group. Further investigations on a
larger dataset in the future are warranted.

In an additional analysis, we identified texture features
based on their ability to distinguish between the cancers and
controls in the dataset, thus, making the choice of phenotype
completely independent of the PLINK analysis. A power law
B texture feature was chosen along with a magnitude feature
in feature selection for the cancer/control classification task,
and the linear discriminant analysis combination of these two
features, which was input to PLINK, yielded a correlation
with SNP with a p-value of 0.00097 [p-value after correc-
tion of 0.074 after multiple test correction]. This secondary
analysis further supports the observed association of texture
phenotype and genotype.

Medical Physics, Vol. 41, No. 3, March 2014

There are some limitations in this study, including a rela-
tively small dataset for the limited set of genotypes and mul-
tiple image-based phenotypes. In the future, the image-based
phenotypes and genomic biomarkers (genotypes), along with
gene expression phenotypes, will be studied with a larger pa-
tient dataset from different risk and ethnic groups. Also, use
of both linear and nonlinear data dimension reduction meth-
ods on the phenotype data will be explored.*?

By performing association studies among image-based
phenotypes, gene expression phenotypes, and SNP geno-
types, we hope to be able to better assess breast cancer risk
for specific populations. Since little research has been done
to demonstrate the relationship between image-based phe-
notypes and genomic biomarkers, we believe that the re-
sults from this pilot study will inspire other researchers to
pursue further investigations associating image-based pheno-
types with genomic information.
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