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Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality
for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities.
Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models
for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the
poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such
as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this
paper, the authors present a new automatic segmentation method to address these problems.
Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT
segmentation by using patch-based sparse representation to (1) segment bony structures from the soft
tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registra-
tion strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-
based label propagation strategy is employed to estimate a patient-specific atlas from all aligned
atlases. Finally, the patient-specific atlas is integrated into a maximum a posteriori probability-based
convex segmentation framework for accurate segmentation.
Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effective-
ness of the proposed region-specific registration strategy and patient-specific atlas has been validated
by comparing with the traditional registration strategy and population-based atlas. The experimental
results show that the proposed method achieves the best segmentation accuracy by comparison with
other state-of-the-art segmentation methods.
Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based
sparse representation and convex optimization, which can achieve considerably accurate segmenta-
tion results in CBCT segmentation based on 15 patients. © 2014 American Association of Physicists
in Medicine. [http://dx.doi.org/10.1118/1.4868455]
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1. INTRODUCTION

Segmentation of the cone-beam computed topographic
(CBCT) image is an essential step for generating three-
dimensional (3D) models in the diagnosis and treatment plan-
ning of the patients with craniomaxillofacial (CMF) defor-
mities. It requires segmentation of bony structures from soft
tissues, as well as separation of mandible from maxilla. CBCT
scanners are becoming popularly used in the clinic, even in the
private practice settings, due to its lower cost and lower dose
compared to the conventional spiral multislice CT (MSCT)
scanners.1 However, the quality of CBCT images is signifi-
cantly lower than that of spiral MSCT [Fig. 1(a)]. Also, there
are many imaging artifacts [Fig. 1(b)], including noise, beam
hardening, inhomogeneity, and truncation, that are inherent in
CBCT units due to the nature of imaging acquisition and re-
construction process.2 For example, CBCT machines for the
purpose of dose reduction are often operated at milliamperes
that are approximately one order of magnitude below those
of medical CT machines. Thus, the signal-to-noise ratio of
CBCT is much lower than that of CT. These artifacts af-
fect image quality, and eventually the accuracy of subsequent
segmentation.3, 4 Furthermore, based on the clinical require-
ment for correctly quantifying the deformity, CBCT scans
are often acquired when the maxillary (upper) and mandibu-
lar (lower) teeth are in maximal intercuspation, i.e., the upper
and lower teeth closely bite together as shown in Fig. 2. This
leads to the display of both upper and lower teeth on the same
cross-sectional slice as in Fig. 2(c), thus making it extremely
difficult to separate them in the same slice.5 To date, in order
to use CBCT clinically for the diagnosis and treatment plan-
ning, the segmentation has to be done completely manually
by the experienced operators.

However, manual segmentation is tedious, time-
consuming, and error-prone.6, 7 Although automated
segmentation methods have been previously developed
for CBCT segmentation, they were mainly based on simple
thresholding and morphological operations,8 thus sensitive
to the presence of the artifacts. Recently, statistical shape
model (SSM) has been utilized for robust segmentation of the
mandible.9, 10 However, these approaches are only applicable

FIG. 1. Comparison between (a) spiral MSCT and (b) CBCT images. Com-
paring to the MSCT, CBCT scans have severe image artifacts, including
noise, beam hardening, inhomogeneity, and truncation.

to the objects with relatively regular and simple shapes
(e.g., mandible). They are not applicable to the objects with
complex shapes (e.g., maxilla). On the other hand, interactive
segmentation approaches5, 11 were also proposed to integrate
automatic segmentation with manual guidance. For example,
Le et al. proposed an interactive geometric segmentation
technique to separate upper and lower teeth in CT images.5

However, these interactive methods5, 11 also have difficulty
in producing plausible segmentations due to the presence of
artifacts such as strong metal artifacts of dental implant.5 In
Ref. 12, Duy et al. proposed a fully automatic method for
tooth detection and classification in CT image data. However,
they only focus on the upper teeth extraction in the CT image
and their separation algorithm does not work as well on
CBCT as it does on CT due to the low contrast in CBCT.13 To
the best of our knowledge, our work is the first study aiming
to fully automatically segment (and separate) the mandible
from the maxilla on CBCT images.

Recently, there is a rapidly growing interest in using
patch-based sparse representation.14–16 This approach makes
an assumption that image patches can be represented by
sparse linear combination of image patches in an overcom-
plete dictionary.17–20 This strategy has been applied to a
good deal of image processing problems, such as image
denoising,17, 18 image in-painting,21 image recognition,19, 22

image super-resolution,20 and deformable segmentations,23

achieving promising results.
In this paper, we propose a new method for fully auto-

mated CBCT segmentation by using patch-based sparse rep-
resentation to (1) segment bony structures from the soft tis-
sues and (2) further separate the mandible from the max-
illa. Specifically, we first propose a region-specific registra-
tion strategy to warp all the atlases to the current testing sub-
ject and then employ a sparse-based label propagation strat-
egy to estimate a patient-specific atlas from all aligned at-
lases. Then, the estimated patient-specific atlas is integrated
into a convex segmentation framework based on maximum
a posteriori probability (MAP) for accurate segmentation.
In this paper, the atlases consist of both spiral MSCT and
CBCT images. The reasons for also using spiral MSCT im-
ages as a part of the atlases include (1) although image for-
mation process is different between spiral CT and CBCT,
they share the same patterns of anatomical structures (e.g.,
the bones generally have high intensities while the soft tis-
sues have low intensities), which are captured in a patch fash-
ion in our method to estimate the probability; (2) the spiral
MSCT images have better contrast and less noise than the
CBCTs, thus needing less processing time to construct atlases
by manual segmentations (i.e., taking around 30 min for each
MSCT image), compared to the CBCT images (i.e., requiring
around 12 h for each CBCT image even by an experienced
operator).

In summary, the novelty of our work includes the
following:

� To clinically use CBCT for the dental diagnosis and
treatment planning, we propose a fully automated seg-
mentation method for the dental CBCT images, which
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FIG. 2. (a) Maximal intercuspation. (b) Zoomed view of the teeth. (c) Both upper and lower teeth are displayed on the same cross-sectional slice.

currently has to be done completely manually by the
experienced operators (taking around 12 h as mentioned
above). This automated method shows its potential in
solving the important clinical problem based on our di-
verse data from 15 patients with different ages and con-
ditions.

� We also propose using the MSCT samples to estimate a
patient-specific atlas for each CBCT image by employ-
ing a recently proposed patch-based sparse representa-
tion technique, since the basic patterns in MSCT and
CBCT were found to be very similar.

� We further integrate our estimated patient-specific atlas
into a convex segmentation framework, based on maxi-
mum a posteriori probability, for more accurate CBCT
segmentation. This type of atlas-guided level sets seg-
mentation method has not been previously developed for
the challenging CBCT image segmentation.

� Most importantly, the performance of our proposed
method is much better than any of other state-of-the-art
methods, including auto segmentation, and multi-atlas
based labeling with majority voting (MV) or conven-
tional patch-based method (CPM).

Note that partial results in this paper were reported in our
recent conference paper.24 The remainder of this paper is or-
ganized as follows. The proposed method is introduced in
Sec. 2. The experimental results are then presented in Sec. 3,
followed by the discussion and conclusion in Sec. 4.

2. METHOD

In this study, we aim to segment a CBCT scan into
three structures/regions: mandible, maxilla (the skull with-
out the mandible), and background. Let � be the image
domain and C be a closed subset in �, which divides the
image domain into three disjoint partitions �3

i=1, such that
� = ⋃3

i=1 �i . For every voxel χ ∈ �, we first estimate its

patient-specific probability belonging to each class pi(χ )
�=

p(χ ∈ �i), and then use this patient-specific probability map
(also called as atlas) as a prior to segment the CBCT im-
age based on maximum a posteriori probability. Finally, a
convex segmentation framework is proposed for precise seg-
mentation. The flowchart of the proposed method is shown in
Fig. 3.

2.A. Subjects

The CBCT scans of 15 patients (6 males/9 females)
with nonsyndromic dentofacial deformity and treated with a
double-jaw orthognathic surgery were included in this study.
Their average age at the time of surgery was 26 ± 10 years
(range: 10–49 years). These CBCT scans were acquired with
a matrix of 400×400, a resolution of 0.4 mm isotropic voxel,
and the time of exposure of 40 s. The details of imaging pro-
tocol are provided in Table I. On the other hand, additional
30 subjects with normal facial appearance scanned at maxi-
mal intercuspation were randomly selected from our HIPAA
deidentified MSCT database. Their ages were 22 ± 2.6 years
(range: 18–27 years). The MSCT images were acquired with a
matrix of 512×512, a resolution of 0.488×0.488×1.25 mm,3

and the time of exposure of less than 5 s. All the MSCT and
CBCT images were HIPAA deidentified prior to the study.
The study was approved by The Methodist Hospital Institu-
tional Review Board. These 30 CTs and 15 CBCTs were man-
ually segmented to serve as the ground-truth segmentations
by the two experienced CMF surgeons using Mimics 10.01
software (Materialise NV, Leuven, Belgium).

2.B. Region-specific registration with guidance
of landmarks

Traditionally one can align the template image with the
to-be-segmented image based on image intensity. However, it
imposes two limitations in the application of MSCT/CBCT
registration: (1) Head MSCT is usually acquired with differ-
ent field of view (FOV) from CBCT [cf. Figs. 4(a) and 4(b)].
If we directly register them using image intensity, the reg-
istration error could be very large. (2) Precise separation of
the closely bitted mandibular and maxilla teeth requires ac-
curate registration of two images on the teeth region. Since
teeth region only takes a small part of the entire image, by
using global image registration, the registration accuracy of
teeth region is usually limited. To overcome these limitations,

FIG. 3. The flowchart of the proposed method.
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TABLE I. Summary of dental imaging protocols for MSCT and CBCT used
in this study.

FOV, mm Voxels, mm Dimensions

Image kV mA (s) X, Y Z X, Y Z X, Y Z

MSCT: GE
LightSpeed RT 120 120 250 300 0.488 1.25 512 240
CBCT: i-CAT 120 0.25 160 160 0.4 0.4 400 400

we propose a region-specific, landmark-guided registration,
with the landmark guidance coming from the two levels as
described next. In the whole head level, we automatically de-
tect 15 anatomical landmarks [Fig. 4(a)] using a robust land-
mark detection algorithm25 to affine align MSCT atlases [e.g.,
Fig. 4(b)] with the CBCT testing image [Fig. 4(c)]. In this
way, the affine alignment is not subject to different FOVs,
since it is purely estimated from the detected landmarks. After
landmark-guided affine alignment, MSCT/CBCT would have
the same FOV and thus we can use deformable registration al-
gorithm to further improve the registration accuracy. In fact,
there are many registration methods26–30 that we can employ.
In this paper, B-spline registration algorithm based on the
mutual information31 is adopted for deformable registration.
This algorithm was implemented in the free-access Elastix
toolbox.32 Figures 4(d) and 4(e) show the warped results with-
out and with head-level landmarks, respectively. It can be seen
that the result without guidance of head-level landmarks miss

matching with the testing CBCT. In the teeth level, we also
rely on the automatically detected anatomical landmarks to
improve the registration accuracy. Specifically, to align teeth
regions of MSCT/CBCT, we use only eight teeth landmarks
[Fig. 4(a)] for estimating the affine registration. Ideally, af-
ter head-level landmark-guided affine registration, we could
adopt deformable registration to further improve the registra-
tion accuracy. However, as shown in Fig. 2, due to the beam
hardening and complex bone structure, it is difficult for the
current state-of-the-art deformable registration algorithms to
work well. Figure 4(e) shows a typical result after deformable
registration on the teeth region, which is worse than the reg-
istration result using only teeth-landmark-guided registration
as shown in Fig. 4(f). In Sec. 2.C, we will use two separate
registrations to estimate the patient-specific atlas at two dif-
ferent regions, i.e., teeth region and other remaining regions.
Specifically, to estimate the patient-specific atlas at teeth re-
gion, we will use only those eight teeth landmarks to derive
the registration. To estimate the patient-specific atlas for other
regions, we will use all 15 landmarks to derive an initial affine
registration and then adopt Elastix32 for further refinement.

2.C. Estimating a patient-specific atlas

Atlas-based segmentation has demonstrated its robust-
ness and effectiveness in many medical image segmenta-
tion problems.33 Specifically, a population-based atlas, in the
context of this work, is defined as the pairing of a template
image and its corresponding tissue probability maps.34 The

FIG. 4. (a) Fifteen anatomical landmarks: #1–#15 are used to estimate the affine matrix to warp the atlases onto the testing subject; #8–#15 are used to estimate
the affine matrix to warp the teeth joint regions between the template images and the testing image. (c) is the same as (a). (d) and (e) show the registration results
without and with head-level landmarks, respectively. (f) shows the registration result with both head-level and teeth level landmarks.
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FIG. 5. (a) Original image. Comparison between population-based atlas (b) and patient-specific atlas (c). The proposed patient-specific atlas produces a more
accurate estimation than the population-based atlas, especially in the regions indicated by the arrows.

template image often refers to an intensity image, equally or
weighted averaged from a number of aligned intensity images
of the training subjects. Given a population-based atlas, im-
age registration could be used to warp this atlas to the query
image, to yield a transformation that allows the atlas’s tis-
sue probability maps to be transformed and treated as tissue
probabilities for the query subject. However, a population-
based atlas often fails to provide useful guidance, especially
in the regions with high intersubject anatomical variability,
thus leading to unsatisfactory segmentation results [Fig. 5(b)].
One way to overcome this problem is to integrate the patient-
specific information35–37 in the atlas construction. To this end,
we propose to construct a patient-specific atlas by combining
both population and patient information as detailed below.

Specifically, we propose to estimate the patient-specific at-
las by using a patch-based representation technique.38, 39 The
rationale is that an image patch generally provides richer in-
formation, e.g., anatomical pattern, than a single voxel. First,
N intensity images of atlases Ij(j = 1, . . . , N) and their cor-
responding segmentations Sj are aligned onto the space of the
testing image I according to the registration method described
in Sec. 2.B. Then, for each voxel χ in the testing image
I, its corresponding intensity patch with size of w × w × w

can be represented as a column vector Q(χ ). Similarly, at
the same location, we can obtain patches Qj(χ ) from the jth
aligned atlas. An initial codebook B can be constructed us-
ing all these atlas patches, i.e., B(χ ) = [Q1(χ ), Q2(χ ), . . . ,
QN(χ )]. To alleviate the effect of possible registration errors,
the initial codebook B is extended to include more patches
from the neighboring search window (i.e., a w′ × w′ × w′

cubic) of all N aligned atlases, thus generating an overcom-
plete codebook with superior representation capacity.40 In the
codebook B(χ ), each patch is represented by a column vector
and normalized with unit �2 norm.40, 41 To represent the patch

Q(χ ) by the codebook B(χ ), its coding vector c could be esti-
mated by many coding schemes, such as vector quantization,
locality-constrained linear coding,42 and sparse coding.43, 44

In this paper, we utilize the sparse coding scheme43, 44 to
estimate the coding vector c by minimizing a non-negative
Elastic-Net problem,45

min
c≥0

1

2
‖ Q(χ ) − B(χ )c‖2

2 + λ1‖c‖1 + λ2

2
‖c‖2

2, (1)

where the first term is the least square fitting term, the second
term is the �1 regularization term used to enforce the sparsity
constraint on the reconstruction vector c, and the last term
is the �2 smoothness term used to enforce the similarity of
coding coefficients for similar patches. Equation (1) is a con-
vex combination of �1 lasso46 and �2 ridge penalty, which
encourages a grouping effect while keeping a similar spar-
sity of representation.45 Each element of the coding vector c,
i.e., cj(y), reflects the similarity between the target patch Q(χ )
and the patch Qj(y) in the codebook. Based on the assumption
that the similar patches should share similar labels, we use the
sparse coding c to estimate the prior probability of the voxel χ

belonging to the ith structure/region (e.g., mandible, maxilla,
soft-tissue, or background), i.e.,

pi(χ ) = 1

Z

∑
j

∑
y∈W (χ)

cj (y)δi(Sj (y)), (2)

where Z is a normalization constant to ensure
∑

i pi(χ ) = 1,
and δi(Sj(y)) = 1 if the label Sj(y) = i; otherwise, δi(Sj(y))
= 0. By visiting each voxel in the testing image I, we can fi-
nally build a patient-specific atlas pi. The constructed patient-
specific atlas for the image shown in Fig. 5(a) is provided
in Fig. 5(c), which captures more accurate patient-specific
anatomical structures than the traditional population-based
atlas [Fig. 5(b)], which was constructed using Joshi et al.’s
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FIG. 6. Evaluation of Dice ratios on mandible and maxilla with respect to different sets of atlases: 15 CBCT subjects (excluding the testing one), 30 MSCT
subjects, and 15 CBCT + 30 MSCT subjects (excluding the testing one).

groupwise registration method.47 Finally, the patient-specific
atlas can be used as a prior to accurately guide the subsequent
level-sets based segmentation.

2.D. Convex segmentation based on MAP

The patient-specific atlas could provide a rough segmen-
tation if simply thresholding the priori probability for each
voxel. However, it may result in spatially inconsistent seg-
mentation since the patient-specific atlas is estimated in a vox-
elwise manner. Moreover, in the construction of the patient-
specific atlas, it is difficult to enforce the geometrical con-
straints, e.g., no overlapping between mandible and maxilla.
To address these issues, we propose the following strategy to
integrate the patient-specific atlas into a level-set framework
based on the maximum a posteriori probability rule.

Specifically, to accurately label each voxel χ in the image
domain � of the testing image, we jointly consider its neigh-
boring voxels y ∈ O(χ ), where O(χ ) is the neighborhood of
voxel χ . In fact, we can use a Gaussian kernel Kρ with scale
ρ to control the size of the neighborhood O(χ ).48 The re-
gions {�i} produce a partition of the neighborhood O(χ ), i.e.,
{�i ∩ O(χ )}3

i=1. We first consider the segmentation of O(χ )
based on maximum a posteriori probability. According to the

FIG. 7. Evaluation of average surface distance errors on mandible with re-
spect to different sets of atlases: 15 CBCT subjects, 30 MSCT subjects, and
15 CBCT + 30 MSCT subjects.

Bayes rule:

p(y ∈ �i ∩O(χ )|I (y))

= p(I (y)|y ∈ �i ∩O(χ ))p(y ∈ �i)p(y ∈ O(χ ))

p(I (y))
, (3)

where p(I (y)|y ∈ �i ∩ O(χ )), denoted by pi,χ (I(y)), is the
structure probability density in region �i ∩ O(χ ). Note that
p(y ∈ �i), i.e., pi(y), is the a priori probability of y belong-
ing to the region �i, which has been estimated in Sec. 2.B.
Note that the prior probability was not utilized in the previ-
ous work49 (all partitions were assumed to be equally pos-
sible) and only population-based probability was utilized.50

p(y ∈ O(χ )) = 1O(χ)(y) is the indicator function, and p(I(y))
is independent of the choice of the region and can therefore
be neglected. Accordingly, Eq. (3) can be simplified as

p(y ∈ �i ∩ O(χ )|I (y)) ∝ pi,χ (I (y))pi(y). (4)

Assuming that the voxels within each region are inde-
pendent, the MAP will be achieved only if the product
of pi, χ (I(y))pi(y) across the regions O(χ ) is maximized:∏3

i=1

∏
�i∩O(χ) pi,χ (I (y))pi(y). Taking a logarithm transfor-

mation and then integrating all the voxels χ , the maximization
can be converted to the minimization of the following energy:

ED(C) = −
3∑

i=1

∫
�

∫
�i

Kρ(x − y) log pi,χ (I (y))pi(y)dydx.

(5)

In this way, multiple level set functions could be used to
represent the regions {�i} as in the work of Li et al.48 How-
ever, the minimization problem with respect to the level set
function is usually a nonconvex problem and there is a risk
of being trapped in the local minima. Alternatively, based on
the work of Goldstein and Bresson,51 multiple variables could
be used by taking values between 0 and 1 to derive a convex
formulation. Since, in our project, there are only three differ-
ent regions of interest: mandible, maxilla, and background,
we need just two segmentation variables u1 ∈ [0 1] and u2

∈ [0 1] to represent the partitions {�i}:M1 = u1,M2 = u2,
M3 = (1 − u1)(1 − u2). Therefore, we convert Eq. (5) as

Medical Physics, Vol. 41, No. 4, April 2014
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FIG. 8. Changes of Dice ratio of segmentation with respect to the number of atlases used. Experiment is performed by leave-one-out strategy on a set of 45
atlases.

follows:

ED(u1, u2) = −
3∑

i=1

∫
�

∫
�

Kρ(x − y)

× log pi,x(I (y))pi(y)Mi(y)dydx. (6)

There are many options to estimate pi, x(I(y)). In this paper,
we utilize a Gaussian distribution model with the local mean
μi(x) and the variance σ 2

i (x) (Ref. 52) to estimate it:

pi,x(I (y))

= exp(−(μi(x) − I (y))2/2σ 2
i (x))/(

√
2πσi(x)). (7)

Based on the assumption that there should be no overlap
between mandible and maxilla, we propose the following
penalty constraint term:

EP (u1, u2) =
∫

u1(x)u2(x)dx. (8)

In addition, the length regularization term53 is defined as
the weighted total variation of functions u1 and u2,

ER(u1, u2) =
∫

g(I (x))(|∇u1(x)| + |∇u2(x)|)dx, (9)

where g is a nonedge indicator function that vanishes at object
boundaries.53

Finally, we define the entire energy functional below,
which consists of the data fitting term ED, the overlap penalty
term EP , and the length regularization term ER:

min
u1,u2∈[0 1]

{E(u1, u2) = ED + αEP + βER}, (10)

where α and β are the positive coefficients. Based on Ref. 51,
the energy functional in Eq. (10) can be easily minimized in a
fast way with respect to u1 and u2.

3. EXPERIMENTAL RESULTS

3.A. Evaluation metrics

In the following, we mainly employ Dice ratio to evaluate
the segmentation accuracy, which is defined as

DR = 2|A ∩ B|/(|A| + |B|),

FIG. 9. Comparison of results by the proposed method without or with landmark guidance.
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FIG. 10. Average surface distances between the surfaces obtained by three different settings of our method and the manual segmented surfaces, on 15 subjects
in the teeth joint regions.

where A and B are two segmentation results of the same im-
age. We also evaluate the accuracy by measuring the average
surface distance error, which is defined as

D(A,B) = 1

2

(
1

nA

∑
a∈surf (A)

dist(a, B)

+ 1

nB

∑
b∈surf (B)

dist(b,A)

)
,

where surf(A) is the surface of segmentation A, nA is the to-
tal number of surface points in surf(A), and dist(a, B) is the
nearest Euclidean distance from a surface point a to the
surface B.

3.B. Parameter optimization

The parameters in this paper were determined based on
30 MSCT subjects via cross-validation. For example, we
tested the weight for �1-term λ1 = {0.01, 0.1, 0.2, 0.5},
the weight for �2-term λ2 = {0, 0.01, 0.05, 0.1}, the
patch size w = {5, 7, 9, 11, 13}, and the size of neighbor-
hood w′ = {3, 5, 7, 9}. We then compare the sum Dice ra-
tios of mandible and maxialla with respect to the different
combinations of these parameters, and found that the best ac-
curacy is achieved with the parameter λ1 = 0.1, λ2 = 0.05,

w = 9, w′ = 5. Cross-evaluation was also performed to de-
termine other parameters, such as ρ = 3 for the Gaussian ker-
nel Kρ , and the weights α = 10 for the overlap penalty term
EP and β = 10 for the length regularization term ER. Empir-
ically, we found the performance of our algorithm is insensi-
tive to the small perturbation of these parameters. However,
the above range for each parameter was empirically chosen in
our experiments, which could lead to local minimum results
as we will discuss later.

3.C. Atlas selection

In this section, we evaluate the performance of segmenta-
tion accuracy using different sets of atlases, i.e., using (1) 15
CBCT subjects (excluding the testing one), (2) 30 MSCT sub-
jects, and (3) 15 CBCT + 30 MSCT subjects (excluding the
testing one) as atlases. The Dice ratios on mandible and max-
illa, and the average surface distance errors on mandible, with
respect to different sets of atlases, are shown in Figs. 6 and 7,
respectively. It can be seen that the use of CBCT atlases alone
result in slightly lower Dice ratios and higher surface distance
errors than those obtained using spiral MSCT atlases. One
reason may be due to the limited number of CBCT atlases.
It is not surprising that the combination of MSCT and CBCT
achieves the highest Dice ratios and also the smallest surface
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FIG. 11. Segmentation results of three different methods for the case with maximal intercuspation. The first and second rows show the comparison on slice and
surfaces, respectively. In the third row, we rotate the upper teeth and lower teeth to virtually make the mouth open for better visualization. The last two rows
show the surface distance errors by three different methods.

distance errors, due to inclusion of more atlases. Therefore, in
this paper, we finally choose CBCT+ MSCT as the atlases.

3.D. Number of atlases vs accuracy

In the following, we explore the relationship between the
number of atlases and the segmentation accuracy. Figure 8
shows the Dice ratios as a function of the number of atlases.
As we can see, increasing the number of atlases generally im-
proves the segmentation accuracy, as the average Dice ratio
increased from 0.803 (N = 5) to 0.894 (N = 44) for mandible,
and 0.732 (N = 5) to 0.855 (N = 44) for maxilla. However,
the inclusion of more atlases would also bring in larger com-
putational cost. Meanwhile, we found that, in our tests, when
the number of atlases reaches 40, the performance of CBCT
segmentation converges.

3.E. Performance for the case of maximal
intercuspation

As shown in Fig. 2(b), due to the closed-bite position, the
maxillary and mandibular teeth are touched to each other,
which makes the automatic segmentation very difficult to

achieve, as mentioned in the Introduction. To demonstrate
the importance of employing the landmark-guided region-
specific registration for separation of the maxillary (upper)
and mandibular (lower) teeth, we first show the comparison
results of the proposed method (Step 1: estimation of the
patient-specific atlas) without and with landmark guidance
for the teeth region in Fig. 9. The surface distance errors
between the manual segmentations and automatic segmen-
tations are calculated for better comparison. We also rotate
the upper and lower teeth in different directions for a bet-
ter visualization of the opened mouth. It can be clearly seen
that the proposed method with the landmark-guided regis-
tration produces much more accurate results than that with-
out landmark guidance. To show the advantage of the con-
vex formulation in segmentation, we further show the result
of the proposed method with both Step 1 (estimation of the
patient-specific atlas) and Step 2 (convex segmentation) in
the third column of Fig. 9. The average surface distance er-
rors for the mandibular teeth and the maxillary teeth on 15
subjects are plotted in Fig. 10, which clearly demonstrates
the advantage of the landmark-guided registration in estima-
tion of the patient-specific atlas and the subsequent convex
segmentation.
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FIG. 12. Comparison of segmentation results by four different methods on a typical CBCT image. Note that the fourth row shows the segmentation of four
different methods on the image shown in Fig. 1(b).
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FIG. 13. Dice ratios of segmented mandible and maxilla by four different
methods on 15 CBCT subjects.

3.F. Comparisons with the state-of-the-art methods

We first demonstrate the performance of different methods
for the cases with maximal intercuspation [shown in Figs. 2(b)
and 2(c)] in Fig. 11. We compare with other multi-atlases-
based automatic segmentation methods,38, 39, 54, 55 using ma-

jority voting scheme, and conventional patch-based method.39

Note that, for a fair comparison, we perform a similar cross-
validation as in Sec. 3.B to derive the optimal parameters
for the CPM, thus obtaining finally the patch size of 9 × 9
× 9 and the neighborhood size of 5 × 5 × 5. The segmenta-
tion results on a selected slice and two surfaces by different
methods are shown in the first and second rows, respectively.
It can be seen that the proposed method successfully delin-
eates the maxillary and mandibular teeth. We further calcu-
late the surface distance errors between the manual segmenta-
tions and automatic segmentations in the fourth and fifth rows,
which demonstrates that the proposed method achieves the
best accuracy. Note that, for fair comparison, the results from
the proposed method were directly derived from the patient-
specific atlas (Step 1) by simple thresholding, similar to the
CPM.

We then demonstrate the performance of different meth-
ods on a typical subject as shown in Fig. 12. In the first row,
from left to right show the volume rendering of the original
intensity image, and the surfaces obtained by MV, CPM,39

the proposed method by directly using the maximum class
probability from Step 1 (prior estimation) as segmentation re-
sult, the proposed method with both Step 1 (prior estimation)
and Step 2 (convex segmentation), and the manual segmen-
tation. For better visualization, the corresponding results on
slices and zoomed views are also provided in the bottom rows.
Due to the errors in image registration process, the surface by
MV is far from accurate, due to incorrect labeling of some
upper teeth as lower teeth. Due to closed-bite position and
the large intensity variations, the patch-based fusion method39

cannot accurately separate the mandible from maxilla, thus

FIG. 14. The upper row shows the surface distances in mm from the surfaces obtained by four different methods to the manual segmented surfaces. The lower
row shows the surface distances from the manual segmented surfaces to the surfaces segmented by four different methods.
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FIG. 15. Average surface distances from the surfaces obtained by four different methods to the manual segmented surfaces on 15 subjects.

mislabeling the upper teeth and lower teeth. Overall, the pro-
posed method produces much more reasonable results.

We finally use Dice ratio to quantitatively evaluate the
overlap ratio between manual segmentations and automatic
segmentation on 15 subjects, as shown in Fig. 13 and Table I.
As can be observed, by integrating both patient-specific atlas
and convex segmentation, the proposed method achieves the
highest Dice ratios. The upper row of Fig. 14 shows the sur-
face distances from the surfaces obtained by these methods
to the manual segmented surfaces, and the lower row shows
the surface distances from the manual segmented surfaces to
the automatically segmented surfaces. As can be seen from
Fig. 14, the proposed method achieves superior results over
all other methods. The average surface distance errors on 15
subjects are plotted in Fig. 15. Additionally, the Hausdorff
distance

DH (A,B) = max{dist(A,B), dist(B,A)}
was also used to measure the maximal surface-distance errors
of each of 15 subjects. The average Hausdorff distance on all
15 subjects are shown in Table II, which again demonstrates
the advantage of our proposed method.

4. DISCUSSIONS

4.A. Normal subjects vs patients

The success of applying spiral MSCT atlases of the normal
subjects to the CBCT images of the patients with CMF de-

formity can be mainly attributed to the following two factors:
(1) The deformation between the subject with CMF deformity
and the normal subject is first alleviated by the image regis-
tration; (2) After registration, the probabilities for the CBCT
subject with CMF deformity are then robustly estimated by
the proposed patch-based sparse technique in Sec. 2.C.

4.B. Image quality between MSCT and CBCT

Although the quality is different between MSCT and
CBCT, the influence of the image quality is minimized due
to the following reasons. First, our method works on image
patches, where similar local patterns can be captured although
the whole images may have large contrast differences. Sec-
ond, in the following sparse representation, all the patches are
normalized to have the unit �2-norm to alleviate the inten-
sity scale problem.40, 41 Third, the testing patch from CBCT
can be well represented by the overcomplete patch dictionary
constructed from the MSCT, as they share the same patterns
of anatomical structures (e.g., the bones generally have high
intensities while the soft tissues have low intensities).

4.C. Patch-based sparse representation vs
conventional patch matching method

The conventional patch-based matching methods38, 39, 56–58

are less dependent on the accuracy of registration and
this technique has been successfully validated on brain
labeling38 and hippocampus segmentation39 with promising
results. However, these methods38, 39, 56–58 mainly use a simple

TABLE II. Average Dice ratios and surface distance errors (in mm) on 15 subjects (The best performance is
indicated in boldface).

MV CPM (Ref. 39) Proposed (Step 1) Proposed (Step 1+2)

Dice ratio Mandible 0.82 ± 0.04 0.88 ± 0.02 0.90 ± 0.03 0.92 ± 0.02
Maxilla 0.74 ± 0.05 0.82 ± 0.03 0.86 ± 0.02 0.87 ± 0.02

Average distance error Mandible 1.30 ± 0.33 0.87 ± 0.25 0.72 ± 0.20 0.65 ± 0.19
Hausdorff distance error Mandible 3.71 ± 1.68 2.45 ± 1.43 1.25 ± 0.62 0.96 ± 0.53
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intensity difference based similarity measure (Sum of the
Squared Difference, SSD). Consequently, they are sensitive
to the variance of tissue contrast and luminance, which is of-
ten viewed in CBCTs. By contrast, in the proposed method,
we assume that image patches can be represented by sparse
linear combination of image patches in an overcomplete dic-
tionary. It is a representation problem instead of a directly
patch-matching problem as in Refs. 38 and 39. In the pro-
posed method, all the patches are normalized to have the
unit �2-norm to alleviate the variance of tissue contrast and
luminance.40, 41 The testing patch is well represented by the
overcomplete patch dictionary with the sparse constraint. The
derived sparse coefficients are utilized to (1) measure the
patch similarity, instead of directly using the intensity differ-
ence similarity as used SSD in Refs. 38 and 39 and (2) es-
timate a patient-specific atlas, instead of a population-based
atlas.

4.D. Computational cost

In our implementation, we use the LARS
algorithm,59 which was available in the SPAMS toolbox
(http://spams-devel.gforge.inria.fr), to solve the Elastic-Net
problem. The average computational time is around 5 h
for segmentation of a 400×400×400 image with a spatial
resolution of 0.4 mm isotropic voxel on a linux server with 8
CPUs and 16G memory. In our future work, we will further
optimize the code to reduce the computational time.

4.E. Summary

We proposed a new method for automatic segmentation of
CBCT images. We first estimated a priori probability from
spiral MSCT atlases by using a sparse label fusion technique.
Then, the priori probability was integrated into a convex seg-
mentation framework based on MAP. Comparing to the state-
of-the-art label fusion methods, our method achieved more
accurate segmentation results. In our future work, we will val-
idate the proposed method on more subjects and will also im-
prove its robustness by increasing the variability of the atlases,
such as including more training subjects with different CMF
deformities.
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