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Pharmacology is currently transformed by the vast amounts of genome-associated information available for system-level
interpretation. Here | review the potential of systems biology to facilitate this interpretation, thus paving the way for the emerging
field of systems pharmacology. In particular, | will show how gene regulatory and metabolic networks can serve as a framework for
interpreting high throughput data and as an interface to detailed dynamical models. In addition to the established connectivity
analyses of effective networks, | suggest here to also analyze higher order architectural properties of effective networks.

Introduction

In their seminal paper on ‘network medicine’ Barabasi et al.
argue that ‘[gliven the functional interdependencies
between the molecular components in a human cell, a
disease is rarely a consequence of an abnormality in a
single gene, but reflects the perturbations of the complex
intracellular and intercellular network[.]' [1]. Systems
biology attempts to incorporate this systemic view into its
modelling and data analysis endeavours. In its simplest
form, systems biology is the systemic contextualization of
large numbers of individual observations. At the core of
systems thinking in biology is the concept of networks. In
particular, the notion of diseases as coherent network
states that can, in principle, be destabilized and trans-
ferred into healthy coherent network states is currently
challenging our conventional perspective on diseases
[1-4]. The sections ‘Network-based data analysis and the
concept of effective networks’ and ‘A brief primer on
network architecture’ focus on the general idea of biologi-
cal network concepts, as well as their main architectural
parameters.

The main data sources for pharamacogenomics, which
can be incorporated into such a view, are genome-wide
association studies (GWAS), transcriptome profiles and,
particularly on the way towards pharmacoepigenetics,
methylation profiles. Individual differences in DNA
sequence are the genetic basis of human variability. In

particular, single-nucleotide polymorphisms (SNPs) are the
most abundant form of DNA variation in the human
genome (see, for example, [5]). SNPs are the basic unit
of GWAS data. However, any such ‘genome-wide data
mining’ is complicated due to the large inherent complex-
ity of these networks [6].

Modelling in systems biology has contributed (and is
still making progress towards) high level concepts allow-
ing us to view diseases as coherent states of a system,
which can be transformed into alternative coherent
states, very much in the spirit of coexisting stable fixed
points with their respective basin of attraction and their
alterations in stability upon parameter variation (bifurca-
tions). But modeling has also contributed a set of specific
models (for metabolic systems, individual signalling path-
ways, important building blocks or ‘motifs’ of regulation,
etc.). An important trend is to estimate the (often very
numerous) parameters of these models from high
throughput data of individual patients and then use this
‘individualized model’ to predict disease progression
and treatment responses for individual patients (see, for
example, [7, 8]). This aspect will be briefly explored in
‘Outlook 1: some of the next challenges in systems
biology'.

Beyond the standard networks considered in systems
biology (gene regulatory networks, metabolic networks,
signalling networks and protein—protein interaction
networks), in which each link corresponds to a specific
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biological process, several relational networks have been
explored in the past years, which are capable of serving
as very efficient sources of information for pharmaco-
genomics: the diseasome, a network where a disease
(node type 1) is linked to a gene (node type 2), when there
is data evidence relating the gene to the disease [2, 9] and
the drug-target network, where drugs and proteins linked
by drug-target associations [10].

Such networks consisting of two types of nodes are
called ‘bipartite networks’. Frequently, they serve as a
starting point for considering projections to single types of
nodes. These projections are very powerful in revealing
unexpected relationships among nodes (see, for example,
[1).

How can the network perspective facilitate the
interpratation of GWAS data (as well as high throughput
data from other sources)? It has been pointed out that
most SNPs discovered via GWAS have small effects on
disease susceptibility and thus may not be suitable for
improving health care through genetic testing (see, for
example, [11]). Further, the linear modelling framework
that is employed in GWAS often considers only one SNP at
a time thus ignoring their genomic and environmental
context and the network perspective. Precisely due to the
enormous successes of network approaches, there is now
a shift away from the purely biostatistical approaches
towards GWAS data to a more holistic approach that rec-
ognizes the complexity of the genotype—phenotype rela-
tionships, as well as gene-gene and gene-—environment
interactions (see [12] for details).

An example of a complex multifactorial disease is
amyotrophic lateral sclerosis (ALS). Several tens of genes
have been associated with the disease and no clear ‘big
picture’ of involved pathways etc. emerges from the avail-
able high throughput data, leading to the assumption of
multiple rare variants [13]. The challenge of interpreting
high throughput data in a situation of complex, multifac-
torial, rare diseases is enormous. Employing individually
tuned mathematical models as virtual patient representa-
tions may constitute an important step forward in person-
alized medicine. Pharmacogenomics could in this context
be a principal driving force paving the way towards per-
sonalized medicine.

With suitable methods emerging for a whole genome
assessment of genetic variants, e.g. of treatment respond-
ers against treatment non-responders (in particular with
GWAS), drug efficiency and other relevant parameters
could be related to genetic variants (see, for example, [14]).
In particular, the interplay of environment and genetic
variants affecting drug efficiency can be explored with the
most recent variants of metabolic flux models (e.g. [15,
16]).

In the following | will sketch a set of network-based
methods for contextualizing high throughput data
(transcriptome profiles, GWAS data, methylation patterns)
and facilitating their interpretation.
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Network-based data analysis and
the concept of effective networks

In addition to simulation and prediction, models from
systems biology can also be seen as tools for interpreting
high throughput data and thus helping to translate
molecular information into clinical application. Given a
model prediction of metabolic fluxes, for example, the
subset of matching gene expression data can be inter-
preted as a coherent metabolic state [3, 17, 18]. Further-
more, any gene activity not consistent with the flux
prediction will point to errors in the metabolic model, to
errors in the data set or to a novel mechanism not
accounted for by the current data.

In [3] the analysis strategy described above was devel-
oped and applied to transcriptome profiles from patients
with aldosterone-producing adenomas of the adrenal
gland, revealing two distinct metabolic states in the
patient data. Similar approaches of merging flux predic-
tions with gene expression data have been highly success-
ful over the last years in, for example, establishing cell-type
specific metabolic models [7, 19-21].

Figure 1 illustrates this concept of effective networks
derived from static global networks by incorporation of
high throughput data. In Figure2 the association of
metabolic networks (and their diverse representations)
with different types of high throughput data is further
explored. Just as the relational network structures dis-
cussed in the introduction, a graph representation of
metabolism consists of two types of nodes, metabolites
and enzymes (or reactions), thus also forming a bipartite
graph. From this graph, two projections to single
types of nodes are frequently used - the metabolite-
centric graph and the enzyme-centric graph. In the first
representation, metabolites are the nodes and a link
denotes the involvement of any two (or more) metabo-
lites used by a given enzyme reaction. Distinguishing
between substrates and products of an enzyme reaction
can provide directed links. In the second representation,
enzymes are the nodes and edges indicate shared
metabolites between their individual reactions. Due to
their gene associations, the enzyme-centric metabolic
network can also be represented within the genome.
Each of these three representations is an appropriate
starting point for deriving effective networks (in the
sense of Figure1) from a specific data type: meta-
bolomics data for a metabolite-centric representation,
transcriptome profiles for an enzyme-centric representa-
tion and GWAS data for the enzyme-centric graph
embedded in the genome.

What is the ‘added value’ of a network perspective?
In which way does the interpretation go beyond, for
example, enrichment analysis of gene ontology (GO) terms
or clustering analyses? The benefit of network-based
analyses is on two levels, a practical, methodological level
and a conceptual, systems-theory level. | will first address
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Concept of effective networks. The starting point for an analysis of high
throughput data based upon effective networks is given by static global
network architectures, both on the level of gene regulation (upper
middle network, depicted in red) and on the level of metabolism (lower
middle network, depicted in blue), together with the corresponding
gene-enzyme associations (dotted lines). High throughput data (e.g.
transcriptome profiles or GWAS data) are then translated into a set of
‘flags’ for a subset of genes. Genes highlighted in this way (depicted in
dark red), together with their interactions, form the effective gene
network. All enzymes associated with ‘flagged’ genes, together with their
metabolic interactions, form the effective metabolic network. The statis-
tical properties of these effective networks are highly informative about
the mechanisms underlying the data. Qualitatively speaking, the effective
networks measure the part of the data compatible with the network
architecture at hand. ©, gene; ®, highlighted gene; £Z—7, enzyme; 487,
highlighted enzyme; ®, metabolite; —, regulation; -, gene-

enzyme association; , metabolic reaction (metabolite-enzyme link).

the practical level. The network perspective allows asking
questions about the higher order relationship between
data points: How many shortest paths among nodes pass
through a particular node of the network? Does this ‘topo-
logical centrality’ correlate with biological significance?
How many links are found among neighbors of a node?
Is this ‘clustering’ unexpectedly high? Does a group of
data points also form a group from the perspective of
network architecture? Are there other such ‘topological
modules’?

In the next section such network properties particularly
important for a network-driven data analysis will be dis-
cussed in more detail. Currently the gap between network-

based data analysis and such ‘higher order network
properties’ (beyond the total number of links, the connec-
tivity and the distribution of neighborhood sizes, the
degree distribution) is still enormous. With the following
‘primer’ on network architecture | want to suggest addi-
tional candidates for a detailed analysis of the effective
networks discussed above.

The conceptual benefit of a network perspective is in
the unifying view of seeing high throughput data as coher-
ent states of a biological network. This will be further dis-
cussed in the section ‘Outlook Il: High throughput data as
coherent network states’.

A brief primer on network
architecture

General background

The most famous and widely discussed network property
is the degree distribution P(k), counting the percentage of
nodes in the network with exactly k neighbours. Over the
last 14 years the observation that many biological net-
works have a very broad distribution of node degrees has
been explored from diverse angles and associated with
potential evolutionary ‘construction rules’ (e.g. preferen-
tial attachment) and with functional requirements (e.g. tol-
erance against random failures). In [22] details of these
approaches are given.

How is a broad degree distribution relevant to biology
and to a theoretical interpretation of such networks? A
network with a degree distribution given by a power law
(like the Barabasi-Albert (BA) model, which is based on
nodes preferentially attaching themselves to nodes with
already many links) is called ‘scalefree’, because such net-
works do not contain a particular scale of reference. There
is no typical (e.g. average) degree of a node. The degree is
a node property spread over several orders of magnitude.
In a scalefree network, the vast majority of nodes only have
very few links. At the same time, the network contains
nodes, which have several orders of magnitude more links.
In metabolism, hubs (highly connected elements) are
more conserved across species than low or intermediate
degree nodes [23].

Historically, the connectedness of a graph (i.e. the lack
of fragmentation) has been a focus of interest, both in
theoretical research and in applications. In the famous
Erd6s-Renyi (ER) model of random graphs, connectedness
appears spontaneously, when a critical value of the con-
nectivity is exceeded. This phenomenon is called per-
colation and is associated with additional topological
properties of functional relevance, e.g. the combinatorical
explosion of path multiplicities among nodes above (but
close to) the percolation threshold and the existence of a
giant connected network component below (but close to)
the percolation threshold. These properties can still be
considered an important driving mechanism behind many
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Metabolic networks as bipartite graphs (schematic representation), together with their projections and suitable representations for the interpretation of

different data types. (Figure adapted from [58]). @, metabolite; (E), enzyme

functional observations about networks [22]. Figure 3
gives examples of these two network types, the ER random
graph model, as well as the preferential attachment BA
model. Consistent with these two foci of interest, the con-
nectedness and the degree distribution, many studies of
effective networks have focused on these architectural
parameters (see, for example, [18, 24-26]. Here | would like
to extend the catalogue of network properties, which can
be analyzed in effective networks.

In the following, | would like to explore in more detail,
how topological properties of effective networks can be
informative for the interpretation of pharmacologically rel-
evant high throughput data. Specifically, | would like to
discuss the notions of modularity, hierarchy, centrality,
network motifs and clustering.

Modularity and hierarchy

Very often biological networks do not possess a homoge-
neous distribution of links among the nodes. Some groups
of nodes have a very large number of links among each
other, but these dense regions or modules are sparsely
interconnected. Networks with such dense regions are
called modular networks. Modularity is a fascinating and
important property of many complex networks. It can be
at the same time formally defined on the level of the
graph, as briefly sketched above (see also [27]), as well as
due to functional criteria (see, for example, [28]). Modular-
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ity is also one of the major topological properties known to
shape dynamical processes on graphs. The fact that maps
of random walks reveal the community structure of
complex networks [29, 30] is one of the few very clear
observations about the interplay between network topol-
ogy and dynamics. Starting from the influential review
article by Hartwell etal. [31], this interplay between
network architecture and function has received an enor-
mous amount of attention in biology. One frequent ques-
tion is whether topological modules (or communities)
coincide with functional models. In [31] the analysis of
functional modules was discussed as a suitable step from
molecular observations to a systems level understanding.
Figure 3 shows an example of a modular graph consisting
of five (ER graph) modules.

A variant of modularity (at least in one possible defini-
tion) is nested modularity or hierarchy, where modules
consist of sub-modules, each of which in turn possesses a
modular structure and so on. Figure 3 gives an example for
a hierarchical network, following the definition discussed
in [22].

Centrality

The topological concept behind measures of centrality is
very simple: A node in a network is characterized by the
proportion of shortest paths from any node to any other
node (betweenness centrality). Figure 4 shows a small
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Different types of networks. In each of the examples, the size of a node is depicted proportional to its degree to emphasize the differences between these
network types. Erdés-Renyi networks are obtained by randomly (with a probability P) linking each node with each other node. The parameter P regulates
the link density (or ‘connectivity’) of the network. The degree distribution of ER networks is a comparatively narrow unimodal distribution around an
average degree. Barabasi-Albert (BA) networks are obtained via preferential attachment: nodes are sequentially added to the network with m links; for each
of the already present nodes, the probability of receiving one of the m links is proportional to the node’s degree (‘the rich get richer’ principle). The degree
distribution of BA networks is a power law. In modular networks, dense regions (‘'modules’) are sparsely interlinked. In hierarchical networks (see, for
example, [22], for details on this specific model of hierarchy) one finds modules within modules, all organized around central hub nodes on each level.

(Figure adapted from [56]).

random (ER) graph, where the size of each node is propor-
tional to its betweenness centrality. Although, frequently
the centrality correlates with the degree, these quantities
are independent. An interface node between two
modules, for example, will have a high centrality (because
all shortest paths from any node in the one module to any
node in the other module will pass through this node), but
it might have a very low degree. Alternatively, a hub in the
periphery of the the network will, in spite of its high
degree, be visited by comparatively few shortest paths
and thus have a low centrality.

Network motifs and clustering

A hot topic of network research is the functional role of
small subgraphs, like feedforward loops, branching points,
small cycles and feedback loops. Statistically over-
represented subgraphs (compared with randomized
graphs), termed ‘network motifs’, have been hypothesized

to be device-like building blocks capable of explaining
some of the functional properties of complex networks
[32].

Figure 4 gives some examples of three subgraphs in
directed graphs, which are particularly relevant for biologi-
cal considerations, namely a feed-forward loop, a feedback
loop and a clique. ‘Cliquishness’ or clustering is at the same
time a more statistical view on networks, addressing the
question, how many links are found among the neigh-
bours of a node. Intuitively, in a social network, where
nodes are people and a link indicates friendship, high clus-
tering indicates that a large number of a person’s friends
are also friends among each other. Formally, the clustering
coefficient of a node is given by the number of links
among the node’s neighbours divided by the maximal
number of possible links among these neighbours [33].

Motivated by graph theory and non-linear dynamics,
an influential trend of research in systems biology

Br ] Clin Pharmacol / 77:4 |/ 601
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Different levels of complexity in interpreting genome-wide observations

currently attributes properties of biological function to
specific regulatory motifs [34, 35]. Examples include cir-
cuits of negative feedback loops [36], interlinked feed-
back loops acting on different time scales [37], regulatory
devices capable of adaptation [38], the composition of a
system out of regulatory units [39] and their relation to
robustness [40, 41] and the number of positive and nega-
tive feedback loops in regulatory circuits [42]. In order
to understand better the validity of the motif perspec-
tive for transcriptional regulatory networks, in [43] the
interplay between feed-forward loops and larger scale
structures (subsets formed by all nodes topologically
downstream of a reference node) in gene regulatory net-
works has been explored. The goal of this analysis has
been to study the internal logic of gene regulation by
looking at the interplay of two scales within the transcrip-
tional regulatory network of E. coli. It is seen that when
one scale dominates (high subnet usage) few regulatory
devices on the smaller scale are found (low feed-forward
loop occurrence).
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Outlook I: some of the next
challenges in systems biology

Here | would like to briefly discuss some of the current
challenges of systems biology that are of particular rel-
evance to pharmacogenomics and pharmacoepigenetics.
The purely statistical forms of GWAS data interpretation
(data mining, machine learning) face dramatic computa-
tional and bioinformatics challenges due to the fact that
more than a million SNPs can be identified in the human
genome. Even with ideal data about a patient’s geno-
type (via GWAS data) and dynamical system states
(via metabolome and transcriptome profiles), the
bioinformatics and systems biology data analysis and
interpretation pipelines are not yet established. We lack
suitable multiscale modelling methods, as well as efficient
and reliable algorithms to estimate vast numbers of (often
interdependent) parameters from data.

Figure 5 qualitatively describes an idealized data inter-
pretation pipeline that covers the range from the original
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data to network states, individualized models and, even-
tually, to a mechanistic understanding of the relevant bio-
logical processes. Starting from genetic variations (and
other genotype information) and from ‘snapshots’ of the
system’s dynamical states, we can resort to available
network information on various levels of organization
(gene regulatory networks, metabolic networks, signalling
networks and protein-protein interaction networks) and
derive effective networks, which are a network represen-
tation of the static network’s coherent state represented
by the dynamical data (see the section on ‘Network-based
data analysis and the concept of effective networks’). A
next step must be to relate these states with predictions
from genome-wide models, for example, for (steady-
state) metabolic flux patterns. Within the elegant frame-
work of flux-balance analysis [44], the optimal steady-
state distribution of metabolic fluxes can be predicted,
given the structure of the environment (the availability of
nutrients) and the cellular objective function (for
example, biomass production or ATP maximization). In
the future, patient specific, individualized models will be
estimated from high throughput data and, via in silico
predictions of treatment responses and disease progres-
sion, guide medical and pharmaceutical strategies. In
spite of their high dimensionality and their enormous
level of detail, ‘template’ models used as starting points
for estimating individualized models from data still
contain substantial uncertainties, both in model architec-
tures (Which regulatory interactions need to be incorpo-
rated? What are suitable system boundaries? etc.) and in
the exact forms of non-linearities describing regulations.
Here, it is important to construct detailed models
from the precise knowledge of the mechanics of the
underlying regulations (called ‘dedicated modelling’ in
Figure 5).

The purely statistical forms of GWAS data interpreta-
tion (data mining, machine learning) face substantial com-
putational and bioinformatics challenges due to the fact
that more than a million SNPs can be identified in the
human genome [12]. The ENCODE project has recently
provided a remarkable compilation of functional elements
in the genome [45]. Knowing that a substantial number of
SNPs observed in GWAS data are outside the coding
regions of the genome, it is of outstanding interest to use
these inventory of regulatory elements to reinterpret
GWAS data sets (see, for example, [46]).

It is intuitively clear that DNA methylation and the
regulatory action of microRNAs are of relevance for phar-
macological questions. Methylation patterns are dynamic
responses to environmental factors. The epigenetic regu-
lation of drug metabolizing enzymes is established
[47]. DNA methylation could provide explanations for
interindividual variations in drug response in the (many)
cases where genetic variation does not offer a coherent
picture [48]. The DNA methylation maps becoming avail-
able, in particular for clinical cohorts, provide datasets of

outstanding importance for systems biology (see, for
example, [49]).

Currently, from my perspective, the mathematical and
conceptual tools for a systems biology exploration of
epigenetic phenomena are not yet developed. The step
from a methylation pattern to a (dynamical) system is not
yet clearly defined. Also, we currently lack mathematical
models for the underlying processes, which could help us
to look deeper into the regulation, the time scales, the
interdependencies within methylation signals and the
influencing factors. In this light, it will be of high interest to
explore the relation of the ENCODE data to methylation
patterns [46].

Outlook II: high throughput data
as coherent network states

The evidence that network architecture determines
aspects of biological function, both on the levels of gene
regulation and metabolism, is incontrovertible (see, for
example, [22, 24, 32, 50]). Furthermore, a wide range of
abstract model studies have demonstrated that net-
work architecture shapes dynamical processes (see, for
example, [51, 52]).

Modelling biological processes as dynamical systems
has for a very long time been a highly successful strategy
to interpret and understand functionally the underlying
systemic principles (see [53] for an account of this strategy
in modeling gene regulation). Simulating generic dynam-
ics on graphs can be a very efficient way of calibrating
analysis methods based on effective networks, as well as
understanding more deeply, which coherent states or ‘pat-
terns’ are possible on a given network. From my perspec-
tive, such a pattern-oriented view, aiming at a theoretical
framework of pattern formation in networks, could allow
us to interpret and understand high throughput data as
coherent network states.

Theories of spatiotemporal pattern formation have
contributed fundamentally to a deep understanding of
natural processes, particularly in biology. One striking
example is Turing’s concept of reaction-diffusion pro-
cesses, which has a vast range of applications, from
biology to social systems [54]. At the same time, these
theories (or classes of models) are well embedded in the
broader framework of self-organization. Very much in the
light of [55] and [56] we should set out to understand,
what the network equivalents of classical spatiotemporal
patterns are, and how, for example, the presence of loops
and feedbacks in networks relate the processes behind
spatiotemporal patterns to the theory of complex systems.

This pattern view, when properly incorporated in
systems biology, could lead to a new paradigm for the
interpretation of high throughput data: architecture-
compatible collective modes that establish themselves
in a network due to the interplay of architectural and
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dynamical parameters. A few years ago the development
of systems biology, based on molecular and biochemical
information, has been compared with the historical devel-
opment of astronomy [57]: from the design of instrumen-
tation (by Galileo) and accumulation of data (by Brahe) to
an understanding of natural laws (by Newton) progressing
to an interpretation of patterns in the data (by Kepler). If
this analogy holds, systems biology is about to turn to a
most exciting point of this path involving the move from
observing patterns towards an understanding of the
natural governing laws and fundamental principles.
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