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Because of the large variation in the response to psychoactive medication, many studies have attempted to uncover genetic factors
that determine response. While considerable knowledge exists on the large effects of genetic polymorphisms on pharmacokinetics and
plasma concentrations of drugs, effects of the concentration at the target site and pharmacodynamic effects on brain functions in
disease are much less known. This article reviews the role of magnetic resonance imaging (MRI) to visualize response to medication in
brain behaviour circuits in vivo in humans and assess the influence of pharmacogenetic factors. Two types of studies have been used to
characterize effects of medication and genetic variation. In task-related activation studies the focus is on changes in the activity of a
neural circuit associated with a specific psychological process. The second type of study investigates resting state perfusion. These
studies provide an assessment of vascular changes associated with bioavailability of drugs in the brain, but may also assess changes in
neural activity after binding of centrally active agents. Task-related pharmacogenetic studies of cognitive function have characterized
the effects in the prefrontal cortex of genetic polymorphisms of dopamine receptors (DRD2), metabolic enzymes (COMT) and in the
post-synaptic signalling cascade under the administration of dopamine agonists and antagonists. In contrast, pharmacogenetic
imaging with resting state perfusion is still in its infancy. However, the quantitative nature of perfusion imaging, its non-invasive
character and its repeatability might be crucial assets in visualizing the effects of medication in vivo in man during therapy.

Introduction

Notwithstanding the large effects of genetic poly-
morphisms on the pharmacokinetics of drugs [1], indi-
vidual response is still poorly characterized [2]. For this
reason, there is a need for tools that visualize response in
brain behaviour circuits in vivo in humans. Over the last 15
years, magnetic resonance imaging methods (MRI) have
been used to assess the effects of centrally acting pharma-
cological agents on brain networks in vivo, giving rise to
the kind of studies collectively known as pharmacological
MRI (phMRI, [3, 4]). In parallel with the development of
phMRI, imaging methods have also provided biomarkers
of genetic variability of relevance for psychiatric disorders
[5–7]. In this article, we will focus on the potential impor-
tance for the field of pharmacogenomics of the simul-
taneous investigation of pharmacological and genetic
variability with phMRI, and its potential contribution in

understanding how the genetic makeup of patients may
affect their response to pharmacological therapy. Even if
they may never rival positron emission tomography (PET,
[8]) in molecular specificity, MRI techniques offer superior
temporal and spatial resolution. Furthermore, they are
cost-effective, radiation-free and widely available. These
properties are essential for the collection of large samples
(as required by clinical research or genetic imaging), and
for the applicability of these methods in both preclinical
models and in patients. For this reason, they may be of use
not only in research on pharmacological effects, but also in
future applications in the clinic.

A unifying concept underlying both pharmacological
and genetic imaging research is that of ‘intermediate
phenotype’ [6, 9], corresponding to the notion of
‘endophenotype’ of psychiatric geneticists [10, 11].
Endophenotypes are state-independent heritable traits,
not visible to the unaided eye but measurable with the
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appropriate instrumentation, that co-segregate with
disorders within families [11]. In contrast, the term inter-
mediate phenotype is typically used in the context of
neuroimaging research, where the role of intermediate
phenotypes as biomarkers is not restricted to an associa-
tion with genotype. Intermediate phenotypes are func-
tional and quantifiable biomarkers of brain activity
obtained in vivo with neuroimaging methods that may
provide an assessment of brain function that is closer to
the biological substrate affected by brain-related disor-
ders, their treatment or genetic variation (Figure 1). The
importance of this notion lies in the relative lack of speci-
ficity of symptomatic indices of improvement or remission
from psychiatric disorders. Furthermore, by mapping these
markers to what is known about brain circuits active
during healthy functioning, intermediate phenotypes may
provide proof-of-concept models of processes affected by
therapy or individual differences. A related notion is that of
Research Domain Criteria (RdoC). These are well-defined
tasks recruiting fundamental processes, whose systematic
investigation has been advocated as key to establish valid
diagnostic criteria [12].

A typology of imaging studies of
pharmacological and
genetic effects

Task-related activation studies
Pharmacological and genetic imaging studies belong into
two broad categories, assessing intermediate phenotypes
with different properties. In the first type of study, partici-
pants are asked to perform a task while in the scanner
(task-related activation studies). A control condition allows

the identification of the brain structures associated with
the recruitment of processes required by the task [13]. Par-
ticipants or scan sessions are further randomized to treat-
ment with the active agent or placebo to assess the effect
of the drug on the neural correlates of the process elicited
by the task [4]. For example, this approach successfully
demonstrated modulation of the brain response to a
painful stimulus under increasing analgesic concentra-
tions [14]. An advantage of this approach is the specificity
of the brain function circuits assessed by the task, although
the real degree of specificity depends on a careful choice
of the task and control conditions (for a critical discussion,
see [15]). Because many such circuits may exist, studies of
this type are usually guided by previous knowledge on the
process that may be affected by the drug, or on the func-
tion of the polymorphic gene. Note, however, that the
existence of learning or habituation effects in most tasks
[16–18] complicates the longitudinal monitoring of the
effects of medication.

The physiology and methodological underpinning of
the signal in task-related activation studies has been
extensively investigated [19]. This signal is based on the
blood oxygenation level dependent (BOLD) haemo-
dynamic response [20, 21] and on the tight coupling
between brain metabolism and perfusion [22] (here
we use the term ‘coupling’ to refer specifically to the
mechanism through which a change in brain function is
translated into an MRI signal). The increased glucose con-
sumption accompanying neural activity brings about a
vascular adjustment response, which increases blood
oxygenation in the involved areas with a latency of 2–3 s.
The MRI signal is generated by the different magnetic
properties of haemoglobin at different oxidation levels
[23]. Task-related differences in metabolism or perfusion
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Figure 1
Intermediate phenotypes provided by imaging techniques are biological markers of brain function that may clarify the association between therapy,
individual factors, including the genetic makeup, and response. In this article we review mainly the role of task-activated and resting perfusion phenotypes.
A third emerging phenotype, connectivity, has just begun to be applied to pharmacological imaging studies in man
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may also be detected with PET techniques or arterial spin
labelling (ASL, [24]) that measure the changes of these
physiological parameters directly.

Resting state studies
A second approach historically preceded task-related acti-
vation studies and was common at the time when PET and
related techniques were the only available neuroimaging
probe. In this approach, an index of brain function such as
metabolism or blood perfusion at rest provides the inter-
mediate phenotype to associate with the effects of the
pharmacological agent or to predict response [25]. A pos-
sible disadvantage here is the lack of specificity of brain
metabolism or perfusion at rest, compared with the former
approach. In the absence of compelling hypotheses on the
function affected by the drug or the genetic polymor-
phism, however, this may be an asset. In contrast, task-
related activation studies are restricted to testing the
modulation of the drug on one neural substrate among
many, and one that was specified a priori. Furthermore, the
signal from metabolism or perfusion at rest is stable over
time, making it suitable to longitudinal investigations
[26]. More recently, the MRI technique of ASL [24] has
been used as an alternative to PET for the assessment of
brain perfusion at rest (Figure 2). While as yet less used
than task-related phMRI, the coming of age of ASL may
greatly expand the type of information obtainable with
neuroimaging in pharmacogenetic research [27, 28].

Studies of brain metabolism or perfusion at rest have
shown that psychoactive substances affect the brain
according to different regional patterns. Neuroleptics, for
example, bring about an increase of metabolism and per-
fusion in the basal ganglia, and a variable degree of
decrease in the cortex, especially in the frontal lobes (see
[29, 30] for a review of early work, and [31–33] for more

recent ASL studies). These differences may be due to
the very different receptor profiles of neuroleptics accom-
panying dopaminergic antagonism [33, 34]. Likewise,
comparative studies of brain perfusion at rest of antide-
pressants with different profiles show different perfusion
patterns [35].

While all task activation studies are based on the well-
understood BOLD response neurovascular coupling,
several mechanisms may be responsible for the rest perfu-
sion changes associated with the administration of an
active agent (Table 1). An unfavourable setting is when the
mechanism is a direct action on vascular regulation. For
example, a serotonomimetic compound may bind to vas-
cular receptors and alter perfusion directly, masquerading
as, or obscuring, a neural effect. However, the potential
relevance of the effect on vascular tone and its informative
value is dramatically different if it is serotonin itself which
binds to vascular receptors. Then the study may assess
the extracellular availability of the neurotransmitter, for
example after transporter blockade [36], or the activation
of intrinsic neurovascular regulatory circuits [37], thus pro-
viding an indirect assessment of drug activity in the brain.
Most neurotransmitters have an effect on the regulation of
cerebrovascular tone [37], so that the haemodynamic
effect of the drug on vascular regulation through changes
in the bioavailability of neurotransmitters [38] replaces the
BOLD haemodynamic response as the coupling between
stimulation (by the drug) and the signal (perfusion
changes) [39]. Validation of this concept comes from
studies in laboratory animals showing the dependency of
rest perfusion haemodynamic response on lesion of key
receptor systems [36, 39–41]. In a third possibility, centrally
acting compounds may alter neural activity, thus leading
to changes detectable through the BOLD haemodynamic
response coupling. For example, in an ASL rest perfusion
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Figure 2
(A) Schematic illustration of the ASL technique. An inversion pulse inverts the spins of the water molecules in the blood in the neck, disrupting the signal
from these molecules when they are sampled after reaching the brain.The cerebral blood flow (CBF) is estimated from the difference between two images,
one taken with and one taken without the inversion pulse. (B) Regional CBF maps created from the ASL signal,averaged from about 300 hundred individuals.
The maps represent transversal slices taken at the level of the midbrain, the thalamus and basal ganglia, and the cerebral hemispheres immediately above
the corpus callosum (the coordinates are in Montreal Neurological Institute space). The figure shows that cortical and subcortical grey matter and regions
rich in vessels are brighter than white matter and ventricular spaces, reflecting higher regional perfusion values
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study, changes in the brainstem under paroxetine and
bupropion were observed that were consistent with
neurophysiological changes in the firing rates observed in
laboratory animals [35]. A final interpretive strategy takes
into account the broad range of receptor affinities of many
drugs in clinical use. Because the effects on these receptors
might involve any of the previous couplings, sometimes
simultaneously, one may view changes in rest perfusion as
multi-determined signatures or fingerprints of the recep-
tor profiles of these drugs.An example of the issues tackled
by this interpretive model arises in rest perfusion studies of
neuroleptics,where the comparison of cortical decrements
involves the discussion of notions of atypicality and the
associated receptor profiles [32, 33, 42, 43].

Connectivity studies
Recently, a third type of study has emerged based on the
estimation of correlations between seed voxels and the
rest of the brain (‘intrinsic connectivity’, [44]), which may be
due to vasomotor activity reflecting structural or func-
tional associations between brain areas [45]. These corre-
lation maps are obtained by regressing the signal in each
voxel separately on the signal of a predefined voxel (‘seed’)
in data collected with standard BOLD-sensitive techniques.
These analyses show that variations of the BOLD signal, not
due to changes in activity elicited by experimental tasks,
tend to correlate with variations in other specific areas of
the brain. These correlation patterns are stable, being
qualitatively unchanged at rest and during the execution
of a task [46]. Several studies have shown modulation of
strength of connectivity by pharmacological agents [47–
54] and by genetic variation [55, 56]. However, little is
known about the nature of the physiological coupling
between pharmacological or genetic variability on the one
hand and signal changes in intrinsic connectivity on the
other. Because they are usually collected at rest, intrinsic
connectivity studies are sometimes assimilated to rest
studies. However, no association has been found between
mean levels of perfusion at rest and connectivity patterns
elicited by common seeds [57]. It therefore appears that

intrinsic connectivity and rest activity levels provide infor-
mation about distinct properties of the brain. This result,
however, like others in this field, may be dependent on the
seeds chosen to elicit the connectivity maps. Key studies in
laboratory animals are starting to investigate the physi-
ological bases of connectivity changes caused by pharma-
cological agents [58], showing that connectivity analyses
may profit from the use of specific seeds located in the
subcortical centres most directly affected by the drug.

Methodological issues in
interpreting imaging studies of
drug effects and genetic
polymorphisms

Several issues may compromise the valid interpretation of
results in genetic or pharmacological MRI studies, but
affect task-related and baseline perfusion studies differ-
ently. For the inference in task-related activation studies to
be valid, the medication or the genetic polymorphism
should not alter the BOLD haemodynamic response
mechanism. Furthermore, effects detected in task-related
phMRI studies may be caused by the effects of drugs on
the vascular tree or its regulation, rather than by changes
in the functional activity of neurons [59]. Two well-known
cases are caffeine [60–62] and indomethacin [63]. These
effects are readily detectable with rest perfusion studies
[27], where, as noted above, they constitute a powerful
instrument to assess drug activity at target sites [39].

Several observations suggest that results of task-
related phMRI are not all due to confounding effects of this
nature. In a study measuring both electrophysiological and
functional imaging effects, these two measures provided
comparable assessments of the cortical response to stimu-
lation [64]. Medication-induced changes were present in
both measurements, indicating that changes in the func-
tional imaging signal reflected changes in the response of
cortical neurons, not in the BOLD haemodynamic response
mechanism through which neural activity is detected.

Table 1
Neurovascular couplings leading to signal changes in rest perfusion MRI

Mechanism Interpretive model Representative reference

Direct binding of drug to vascular receptor Confound, since rarely of interest Caffeine [60, 105]
Direct binding of transmitter to vascular receptor Assessment of central transmitter availability or

vascular effector activation; assessment of central
drug activity

Dopaminergic agents and vascular modulation [36, 40];
changes in dopamine function after nicotine
withdrawal [106]

Changes in activity of target cell detected
through hemodynamic response

Functional changes across networks Brainstem nuclei after transporter blockade [35]

Essentially unknown, or a mixture of the above Detection of signatures or fingerprints of receptor
profiles

Cortical modulation of metabolism/perfusion by
neuroleptics [42]
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Another indirect line of evidence for the validity of task-
related phMRI is given by the sparseness of task-related
activation effects, in contrast to vascular effects that may
be expected to be distributed across large regions. The
same argument may be applied to regionally identifiable
effects in rest perfusion phMRI. For example, rest perfusion
under serotonin transporter inhibitors is characterized not
only by diffuse cortical decrements that are consistent
with the vascular activity of serotonin [65], but also by
regionally specific effects [35, 66].

A limitation of the BOLD approach in task-related acti-
vation studies lies in the non-quantitative character of
detected signal changes. Hence, it is impossible to tell if
changes in signal amplitudes associated with the task are
due to changes in the activation or in baseline levels.
Several laboratories have demonstrated that reduction in
baseline perfusion levels is associated with higher activa-
tion responses [67–69].This difficulty is overcome by quan-
titative approaches such as ASL that can provide baseline
measurements in task-related studies. However, ASL cur-
rently suffers from lower signal : noise ratio and slow
acquisition times, which makes it unsuitable for the
detection of fast activity changes of some task-related
studies [70].

Pharmacogenetic MRI studies

Because of differences in the intermediate phenotype they
expose through different couplings, task-related activation

phMRI and rest perfusion phMRI have different applicabil-
ity. The former can identify a brain behavioural circuit that
may be affected by neuro-psychiatric disorders, and there-
fore provide an index of change related to a cognitive or
emotional process affected by pathology or therapy. The
latter is closer to the physiological substrate of centrally
active agents, and may be more appropriately used to
assess their biological activity. This broadly suggests the
suitability of task-related activation phMRI and rest
perfusion phMRI for the investigation of individual varia-
tion in pharmacodynamic and pharmacokinetic factors,
respectively.

Pharmacogenetic MRI studies with focus on
pharmacodynamics
Reflecting the state of research in phMRI, most
pharmacogenetic studies conducted to date have
adopted a task-related approach, and targeted the neural
substrates of specific processes affected by medication
and pharmacogenetic polymorphisms to identify the
pharmacodynamic mechanisms underlying individual
variation in response (Table 2). Most efforts have been
directed to study the effects of dopaminergic agonists and
antagonists on intermediate phenotypes exposed by cog-
nitive function. In contrast, pharmacogenetic imaging
studies of affect and antidepressants are in the early
stages [71].

The study by Mattay et al. [72] was among the first
to demonstrate the genetic modulation of the response
to a centrally active drug on a task-related intermediate

Table 2
Task-related phMRI studies with pharmacogenetic implications

Intermediate phenotype/gene Drug Main findings Ref.

Working memory/COMT Amphetamine Performance improvement and modulation of working memory
network (PFC) in carriers of the high activity allele (see text)

[72]

Working memory + declarative memory/COMT Tolcapone Performance improvement and modulation of working memory
network (PFC) in carriers of the high activity allele

[107]

Working memory/DRD2(C957T) Nicotine Polymorphism modulates changes in ventral associative areas [108]
Working memory/COMT Nicotine abstinence Smokers with the high activity allele were more sensitive to

withdrawal and had larger effects in working memory network
(PFC)

[109]

Reward/DRD2(TaqIA) Bromocriptine Increased ventral striatum reward prediction signal in carriers of the
low density D2 receptor allele

[110]

Reversal learning/DRD2(TaqIA) Cabergoline Increased striatal signal in carriers of the low density D2 receptor
allele

[111]

Working memory/COMT Olanzapine Response in carriers of the high activity allele, and modulation of
attentional networks (see text)

[78]

Working memory/DRD2(rs1076560), AKT1, GSK-3β Olanzapine Epistatic interactions associated with response and attentional
networks (see text)

[84]

Working memory connectivity/AKT1, COMT, DRD2(rs1076560) Neuroleptics Epistatic interactions associated with response and
cortical-subcortical connectivity (see text)

[85]

Declarative memory/AKT1, COMT, BDNF Lithium/valproate addition
to neuroleptics

Epistatic interaction associated with response and structural brain
changes

[104]

Perception emotional stimuli/CNR1 Antidepressants Association with response paralleled by subcortical signal changes [112]

D2, dopamine D2 receptor; PFC, prefrontal cortex.
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phenotype with phMRI. The cortical activation was
assessed in participants carrying out a working memory
task and receiving amphetamine, a dopamine agonist
that increases alertness and modulates attention, and is
member of a class of drugs used in the clinic to treat atten-
tion deficit hyperactivity disorder [73]. Mattay and col-
leagues hypothesized that individual differences in the
response to amphetamine reflected differences in baseline
dopamine tone [74, 75], associated with prefrontal cortex
function [76]. They therefore tested the modulation of the
effect of amphetamine by the val158-met COMT polymor-
phism, the drug metabolizing enzyme (DME) that removes
endogenous dopamine, on the prefrontal brain circuit
known to be associated with working memory function
[77]. Homozygous carriers of the high activity COMT allele
were characterized by improved reaction times and a
decrease of the prefrontal BOLD signal in the working
memory task under amphetamine, consistently with a
compensation of a lower basal dopamine tone. In contrast,
these improvements were not observed in homozygous
carriers of the low activity COMT allele, whose performance
degraded at high levels of task difficulty. The authors con-
cluded that these findings accounted for an increased risk
of adverse response to amphetamine in the low activity
COMT allele carriers [72].

Following this seminal work, several innovative studies
have explored the genetic modulation of the dopamine
system under neuroleptic medication. Bertolino et al.
assessed the working memory intermediate phenotype to
locate the mechanism through which the same COMT
polymorphism may affect response to olanzapine in a
sample of schizophrenic patients [78]. They reported that
response to treatment was limited to patient carriers of the
high activity allele, and a corresponding modulation
of the signal elicited by the working memory task in the
prefrontal and parietal attentional network. The authors
concluded that the effects of olanzapine on working
memory capacity interact with its response profile. The
same group extended these results with an in-depth inves-
tigation of post-synaptic dopamine D2 receptor trans-
mission, involving polymorphisms of the dopamine D2

receptor (DRD2, [79]), and of AKT1, a kinase in the signalling
pathways of post-synaptic D2 [80] and in the growth factor-
induced cell survival in the developing nervous system
[81]. Polymorphism in these genes was previously associ-
ated with differences in cognitive performance [82, 83].
They found that interactions between polymorphisms
in these two genes were associated with response to
olanzapine treatment in schizophrenic patients. In both
polymorphisms as in the previous COMT study, the alleles
associated with response were those leading to reduced
dopaminergic function. They also reported a modulation
of the signal in the medial prefrontal cortex by the
interaction of these two polymorphisms in an attentional
task [84]. These results were confirmed by subsequent
work by Tan et al. [85], where a sophisticated connectivity

analysis traced the effect of AKT1 polymorphism on
dopaminergic function in the efficiency of the interactions
between prefrontal cortex and striatum in a working
memory task. In schizophrenic patients receiving neuro-
leptic treatment, they replicated the association of D2

receptor and AKT1 polymorphism with response in the
form of a dose-response effect on cognitive change.

Imaging studies with focus on
pharmacokinetics
In contrast with pharmacogenetic studies targeting
pharmacodynamic mechanisms, applications of MRI to
study genetic variation in pharmacokinetics belong to the
future.An issue affecting response is the concentration of a
drug at the target site, which may be only loosely related to
plasma concentrations due to the existence of anatomical
and functional structures such as the blood–brain barrier.
Transporters at the blood brain barrier such as the
organic cation transporters (OCTs, [86]) display functional
polymorphisms that affect the distribution of the drug at
the target site and therapy response [87, 88]. Imaging
methods are valuable here because they provide a means
to quantify changes in function in vivo. One approach
exploits the vasoactive coupling of rest perfusion phMRI to
assess drug activity indirectly, provided that the active
compound does not itself alter vascular tone [40]. An alter-
native, a few phMRI studies have been conducted to esti-
mate the pharmacokinetic curve of the drug in the brain
[14, 89–91]. Beyond MRI approaches, PET may be used to
assess receptor occupancy [92] or drug distribution at the
target tissue, provided that radiolabelling does not alter its
pharmacokinetic properties [93]. This listing shows that
there are several potential approaches that may be
exploited to target the possible effects of genetic
polymorphisms on the pharmacokinetics of drugs at their
target.

Another important issue for response concerns
the activity of DMEs in the brain, a consequence of
the common existence of endogenous substrates of
DMEs [94]. Psychotropic DMEs, especially those in the
cytochrome P450 group (CYP), are expressed not only
in the liver, but also in the brain [95, 96], where they
may contribute to the local drug metabolism and the
local biochemical homeostasis. Many endogenous neuro-
transmitters and neurohormones are metabolized by
CYPs [97], possibly explaining their reported roles in
neurodevelopment [98], neuroprotection [99] and behav-
ioural affective traits [100]. In man, variation in brain levels
of CYPs among individuals, either through genetics [101]
or regulation [97],may contribute not only to differences in
drug response [96, 101], but may also explain the reported
associations between genetic polymorphisms of CYPs and
cognitive function, personality and vulnerability to mental
disorders [96]. The importance of these associations lies
not only in their intrinsic value in explaining individual
variability in vulnerability to affective disorders and risk for
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drug-induced neurotoxicity, but also to the fact that many
drugs commonly used in the treatment of mental disor-
ders are either metabolized by these enzymes and/or
actively inhibit these enzymes in the brain. A comprehen-
sive account of the effects of DME polymorphism on drug
effects may therefore be more complex than the one pro-
vided by the observation window on plasma concentra-
tions, crossing the distinction between pharmacokinetics
and pharmacodynamics.

Two imaging studies have provided evidence on the
modulation of brain function by CYP2D6 polymorphism.
The first study provided evidence of differences in rest per-
fusion levels in the brain, primarily affecting the thalamus
and the posterior cortical regions [102]. The effect of
CYP2D6 polymorphism in the same region was found also
in a second study, which used task-related activation in a
cognitive and emotional processing task [103]. As would
be expected from the influence of baseline levels on task-
related activation, task-related activation was larger in the
individuals whose genetic make-up was associated in the
previous study with lower baseline perfusion.

Conclusion

The joint investigation of genetic and pharmacological
variates in a MRI design is still rare, requiring large samples
for genetic analysis and sophisticated experimental
manipulations for pharmacological treatment. As the
recent pharmacogenetic studies on the effects of neuro-
leptics demonstrate [84, 85, 104], extremely valuable infor-
mation may be obtained by combining analysis of samples
of patients obtained in a relatively naturalistic design with
larger samples of healthy participants, genetic databases
[85] and biobanks for the validation of genetic
polymorphisms and investigation of genetic expression
[84].

A conceptual attraction of pharmacogenetic MRI is
the triangulation of outcome measures, genetics and inter-
mediate phenotypes, which provides a link with the
neurobiological mechanism mediating the effects of
medication and genetic polymorphisms on response. Fur-
thermore, since the methods would be available in the
clinic, discoveries in research programmes of this kind may
be translated to the clinic without the need of additional
infrastructure.
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