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The activity of the enzyme thiopurine methyltransferase (TPMT) is regulated by a common genetic polymorphism. One in 300
individuals lack enzyme activity and 11% are heterozygous for a variant low activity allele and have an intermediate activity. The
thiopurine drugs azathioprine, mercaptopurine and thioguanine are substrates for TPMT; these drugs exhibit well documented
myelosuppressive effects on haematopoietic cells and have a track record of idiosyncratic drug reactions. The development of severe
bone marrow toxicity, in patients taking standard doses of thiopurine drugs, is associated with TPMT deficiency whilst the TPMT
heterozygote is at an increased risk of developing myelosuppression. Factors influencing TPMT enzyme activity, as measured in the
surrogate red blood cell, are discussed in this review to enable an appreciation of why concordance between TPMT genotype and
phenotype is not 100%. This is particularly important for lower/intermediate TPMT activities to avoid misclassification of TPMT status.
TPMT testing is now widely available in routine service laboratories. The British National Formulary suggests TPMT testing before
starting thiopurine drugs. Dermatologists were quick to adopt routine TPMT testing whilst gastroenterologists do not specifically
recommend TPMT screening. TPMT testing is mandatory prior to the use of mercaptopurine in childhood leukaemia. Thiopurine drug
dose and other treatment related influences on cell counts explain some of the differing recommendations between clinical
specialities. TPMT testing is cost-effective and the major role is in the identification of the TPMT deficient individual prior to the start of
thiopurine drugs.

Introduction

Individual variations in human red blood cell (RBC)
thiopurine methyltransferase (TPMT, E.C.2.1.1.67) activity
were first described by Weinshilboum et al. [1] in the late
1970s. Subsequent Caucasian population studies demon-
strated that the level of TPMT activity was inherited in an
autosomal codominant fashion. The frequency distribu-
tion of TPMT activities conformed to Hardy–Weinberg pre-
dictions for the inheritance of two alleles one for high
(TPMTH) and one for low (TPMTL) enzyme activity. Approxi-
mately 89% of a randomly selected population were
homozygous for an allele for high RBC TPMT activity, about
11% heterozygous with an intermediate activity and one
in every 300 subjects homozygous for an allele for low RBC
TPMT activity, the latter lacking detectable TPMT activity
[2]. It was soon established that the genetic polymorphism

controlling RBC TPMT activity also controlled the level of
enzyme activity in all other cells and tissues [3–5] but it was
over a decade later before the TPMT gene was isolated,
sequenced and the variant alleles described at a genetic
level [6–8]. Controversy remains over various aspects of
TPMT genotype/phenotype concordance and whether
genotype or phenotype is the most accurate predictor of
TPMT status.

The TPMT genetic polymorphism represents a well
validated example of the clinical importance of
pharmacogenetics [9]. Very low, or deficient, TPMT activity
is associated with grossly abnormal thiopurine drug
metabolism, excess production of cytotoxic metabolites
and profound life-threatening myelotoxicity, in patients
taking thiopurine drugs. Although this association was
reported in the late 1980s [10], there was, initially, a
minimal use of TPMT testing prior to the start of thiopurine
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drug therapy. TPMT analysis was confined to university
research centres and not generally available to the clini-
cian. Over the decades TPMT testing has slowly been
accepted as a routine test by some specialities and is now
widely available [11–13]. Testing is recommended on start-
ing thiopurine drugs [9, 14, 15], but testing is not univer-
sally accepted and, when available, how to interpret and
apply the TPMT result within a clinical setting is not always
clear. Why is this?

Clinical impact of TPMT

The thiopurine drugs, thioguanine, mercaptopurine and aza-
thioprine (a ‘slow-release’ formulation of mercaptopurine),
exhibit well-documented myelosuppressive toxic effects on
haematopoietic cells. They have a track record of idiosyncratic
drug reactions. Severe, life-threatening bone marrow toxicity
is due to the excess production of drug derived thioguanine
nucleotide (TGN) metabolites [16, 17] precipitated by TPMT
deficiency [10, 18–21]. The direct incorporation of TGN
derived thioguanine into DNA initiates delayed cytotoxicity
[22, 23]. In addition, the TGNs inhibit intracellular signalling
pathways and can induce apoptotic cell death [24–26].

Bone marrow toxicity can also develop in TPMT
heterozygotes (‘intermediate’ activity, 11% of subjects [2])
when taking standard doses of mercaptopurine [27, 28].

However, the drug has a narrow therapeutic index. In chil-
dren with acute lymphoblastic leukaemia (ALL) receiving
mercaptopurine chemotherapy, those with lower TPMT
activities form higher concentrations of TGN metabolites
and have better outcomes [27, 29–32]. The use of the
TPMT genetic polymorphism in the individualization of
mercaptopurine therapy in childhood ALL was pioneered
by Relling et al. [28, 33]. Lowering mercaptopurine doses,
to predefined TGN concentrations, in TPMT heterozygous
and homozygous deficient children, avoided gaps in treat-
ment caused by mercaptopurine-induced neutropenias
and enabled the delivery of all other chemotherapeutic
agents at maximum tolerated doses [28, 33].

Mercaptopurine metabolism is complex (Figure 1).
The TGNs are the end-products of a chain of nucleotide
metabolites. The initial mercaptopurine nucleotide
metabolite can also be methylated by TPMT and the
methylmercaptopurine nucleotides (MeMPNs) formed are
powerful inhibitors of de novo purine synthesis and
promote TGN cytotoxicity [34, 35]. Thus, in vivo, when the
mercaptopurine dose is titrated to target cell counts
within ALL chemotherapeutic protocols, intracellular TGN
formation differs markedly with TPMT status. For the same
target cell count range the TPMT deficient child (on much
reduced mercaptopurine dosages) accumulates far higher
TGNs than the TPMT heterozygote, and the latter far
higher than the TPMT wild-type patient [27, 28, 36].
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Figure 1
Thiopurine metabolism. Azathioprine is a mercaptopurine pro-drug. Initial nucleotide formation is catalyzed by hypoxanthine phosphoribosyltransferase
(HPRT). Mercaptopurine, mercaptopurine nucleotide (thioinosine monophosphate), thioguanine and thioguanine nucleotide (TGN; thioguanosine
monophosphate) are methylated by thiopurine methyltransferase (TPMT). The thioguanine nucleotides (TGNs) are the mono-, di- and tri-phosphates of
thioguanosine. TGN incorporation into DNA initiates delayed cytotoxicity. TGN cytotoxicity can be promoted by the inhibition of de novo purine synthesis
by the methylmercaptopurine nucleotides (MeMPNs). The TGNs also inhibit intracellular signalling pathways. This contributes to thiopurine immunosup-
pression and can induce apoptotic cell death. Oxidation is catalyzed by xanthine oxidase (XO). Thioguanine requires deamination by guanase (*) before
oxidation. The 8-hydroxymercaptopurine metabolite is a good TPMT substrate whilst the 2-hydroxy metabolites (2-hydroxymercaptopurine and 2,8-
hydroxymercaptopurine) are potent TPMT inhibitors
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Mercaptopurine pharmacogenetics were exposed to a
wider clinical audience when the clinical importance of the
individualization of thiopurine therapy, underpinned by
the TPMT genetic polymorphism, emerged as relevant to
thiopurine immunosuppression in, primarily, inflamma-
tory bowel disease (IBD) [37, 38]. Red cell TGNs were asso-
ciated with clinical response to mercaptopurine in
paediatric and adult IBD [39–41]; TPMT heterozygotes
accumulated higher TGN concentrations [39]. IBD patients
with lower TPMT activities had a statistically significant
relapse free advantage [42]. However, all adverse events
(e.g. myelotoxic, gastrointestinal, allergic), were signifi-
cantly more frequent in IBD patients with lower TPMT
activities than those with ‘normal’ activity [43, 44]. The
narrow therapeutic window for mercaptopurine was con-
firmed and both disease control and adverse events were
associated with higher TGN concentrations [39–41, 43, 44].
Thiopurine testing improved the clinical outcome [45].
However, it was clear that adverse events were not purely
regulated by TPMT. Other factors potentiate these events,
but those with lower TPMT activities are at a significantly
increased risk of suffering these events.

The TPMT enzyme

TPMT is a cytoplasmic enzyme which catalyzes the
S-methylation of aromatic and heterocyclic sulphydryl
compounds, but the endogenous function of TPMT is
unknown. The catalytic specificity of TPMT was investi-
gated by Weinshilboum’s group in the 1990s. Substrates
include thiopurine drugs, selenium compounds and the
disulfiram metabolite, diethyldithiocarbamate [46, 47].
Both mercaptopurine and thioguanine (INN, tioguanine)
are good substrates for the enzyme and, of their nucleotide
metabolites, mercaptopurine nucleotide (thioinosine
monophosphate) is a far better substrate than the TGNs. The
latter are very poor substrates [48] but are methylated
in vivo at concentrations over 500 pmol/8 × 108 red cells [49].
Oxidation of the thiopurine ring (via xanthine oxidase,
EC 1.11.3.22) produces 8-hydroxymercaptopurine, a good
TPMT substrate and the 2-hydroxy products, thioxanthine
(2-hydroxymercaptopurine) and thiouric acid (2,8-
hydroxymercaptopurine). Both are potent TPMT inhibitors
(Figure 1). At very high concentrations (Ki 0.56 mM) the TPMT
product methylmercaptopurine also inhibits human kidney
TPMT [48]. This raises the possibility that, in vivo, thiopurine
metabolism may modulate TPMT activity.

TPMT is inhibited by many benzoic acid derivatives.
Perhaps the most important are the aspirin metabolite sali-
cylic acid and 5-aminosalicylate medications such as
sulphasalazine and mesalazine [50]. The latter is widely
used in the treatment of IBD, and other immunosuppres-
sive disorders, for which mercaptopurine or azathioprine
may be co-administered and drug–drug interactions have
been reported. Inhibited TPMT results in the production of

elevated TGN concentrations and an increased risk of
myelotoxicity [51–53]. However, such TPMT inhibition
would not be reflected in in vitro measurements of enzyme
activity [54].

Measurement of TPMT status

Analytical methods for the measurement of TPMT geno-
type and phenotypic activity, initially developed in aca-
demic medical centres, have been adapted for the routine
service sector and a growing number of thiopurine moni-
toring and TPMT screening services are now available [55–
60].

TPMT phenotypic activity
TPMT phenotype is measured in the RBC by radiochemical
[1] or chromatographic techniques [57, 61–64]. These
activities are influenced by red cell transfusions. Addition-
ally, in children with ALL, there are disease [65] and
treatment-related [27] influences on TPMT activity. For the
interpretation of TPMT phenotype, enzyme activities must
be measured under constant conditions at a standardized
dosage during a specific phase of treatment. These
leukaemia- and treatment-related changes do not occur
in IBD. TPMT activities measured prior to, and during,
thiopurine treatment are the same [66, 67]. Reporting phe-
notype in terms of haemoglobin concentration, packed
red cells, erythrocyte counts or protein content give similar
accuracy and power to predict heterozygous and wild-
type individuals [68].

Shifts in the TPMT activity frequency distribution have
been widely reported by groups investigating phenotypic
activities. These ‘shifts’ are at the most pronounced in chil-
dren with ALL when the frequency distribution is shifted
downwards, well below the range recorded for healthy
children, at disease diagnosis, [27, 69] whist during chemo-
therapy the distribution shifts upwards, well above the
range recorded for healthy children [27, 69, 70]. Other
disease-dependent fluctuations in TPMT activity distribu-
tions are reported to be clinically insignificant [71]. In
healthy populations, children are reported to have higher
TPMT activities than adults [72], younger children higher
activities than older children [72] with healthy neonates
having the highest activities [73]. These shifts are probably
influenced by the age profiles of the red cell population,
younger red cells having higher TPMT activities than older
cells [65]. Pancytopenia markedly elevates measured red
cell TPMT activities [74].

A gender difference has been reported in the distribu-
tion of red cell TPMT activities in some [75, 76] but not all
studies [2, 36], with wild-type TPMT infants less than 2
years having a higher activity in boys than girls [72].
Hepatic activity (measured in patient surgical biopsy
tissue) was significantly higher in men than women; but
this difference was not reflected in measurements of red
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cell TPMT activity [5]. In addition, TPMT phenotypic meas-
urements show an interethnic variability. Early studies
reported that white Caucasian populations have higher
activities than North American Black populations whilst
indigenous Norwegian Saami populations have higher
activities than Caucasians [77–79]. However the TPMT
activities measured were similarly polymorphic with a
trimodal distribution reported in all three populations. This
is not so in Asian populations. Singapore Malay have
higher activities than either Singapore ethnic Chinese or
Indian populations. The distribution of TPMT activities is
binomial in all these populations [80, 81] whilst unimodal,
normal, distributions are reported in healthy Korean popu-
lations [82]. These latter reports, emanating from a number
of different laboratories but also from studies of diverse
populations within the same laboratory, could not be
attributed to differences in enzyme activity methodolo-
gies. A major factor in these ethnic differences was the
inheritance of specific TPMT low activity variant alleles
within these populations [83–85]. Thus, ethnicity, type of
disease, concurrent drug treatment and red cell kinetics
and transfusions must be considered when interpreting
TPMT activity measurements.

TPMT genotype
Single nucleotide polymorphisms (SNPs) account for the
major TPMT low activity variant forms [6, 8, 9, 57, 64].
Genotyping for the TPMT*3 family of variant alleles will
detect over 92% of low activity alleles, inclusion of TPMT*2
pushes this to over 95% [9, 57, 64]. Whilst TPMT*3A is the
most common variant allele in Caucasian populations [8,
36, 64] TPMT*3C is the common mutant allele in African
populations [84] with the African-American population
having an approximate 50:50 mix of TPMT*3A and
TPMT*3C [86]. In these populations the variant allele fre-
quency is about 5%. This is in contrast with a frequency of
1 to 3% reported in Asian populations when the dominant
allele is TPMT*3C [80, 83, 87]. Over 35 variant low activity
TPMT alleles have been reported and, to avoid a duplica-
tion of allele numbering, a specific logical nomenclature
system has been adopted, for the designation of novel
allele names in humans, which is maintained and
managed by the TPMT Nomenclature Committee [87, 88].
The incidence of rare or novel alleles in Caucasian popula-
tions has been estimated to be approximately 1 in 200 [64,
87, 88].

TPMT genotype–phenotype concordance
The overall concordance between genotype and pheno-
type in healthy volunteers is 98.4%, but in the ‘interme-
diate’ range of TPMT activities this falls to 86%. Approxi-
mately 1 in 20 could have novel mutations but 1.6% of
individuals with intermediate activities are wild-type in
open reading frame [64]. A recent systematic review of
TPMT testing in adults and children with chronic inflam-
matory diseases concluded that genotyping specificity

approached 100%, but the ability of genotype to identify
patients with an intermediate activity was imprecise,
ranging from a pooled estimate of 70% to 86% [89]. As
previously discussed, there are many possible treatment-
related, environmental and ethnic influences on pheno-
typic TPMT activity that could contribute to lack of
concordance in the intermediate activity range. In addi-
tion, modulation of TPMT activity by tandem repeats
within the TPMT promoter has been proposed [90], but
larger population studies have shown these effects to be
quantitatively small [91].

Neither TPMT genotype nor phenotype alone can be
100% guaranteed to identify the TPMT deficient individual.
Genotype tests for the TPMT*3 family and TPMT*2 cover
95% of inactivating alleles and phenotype tests can be
used to double-check the TPMT heterozygote for the esti-
mated 1 in 7416 chance of TPMT deficiency due to a rare/
novel variant allele [92, 93]. However, when using
phenotypic enzyme activity, as the initial TPMT test, the
risk of misclassifying a TPMT deficient patient as one with
intermediate activity is higher than the risk of missing the
deficient patient by TPMT genotype [93]. A comparison of
TPMT testing methods in a National Centre showed geno-
type to be superior to phenotype. Using the phenotype
assay 11% of TPMT deficient individuals would have been
misclassified as TPMT intermediate activity due to TPMT
enzyme activities above the TPMT deficient cut-off value
when the TPMT activity was measured in the laboratory
under ideal conditions. TPMT genotype was recom-
mended as the primary test [93]. Test centres employing
phenotypic methodologies frequently use TPMT genotype
as an assurance tool to check the intermediate activity
cohort for the true positives [92]. Although some labora-
tory forms for the TPMT test request information on prior
blood transfusions, it was not stated if this was so for the
test centre results previously discussed [92, 93] and this
could be a major contributory factor for the observed
TPMT discordance, particularly for the TPMT deficient phe-
notype. However, in a study using blood samples taken
prior to any transfusions, the accuracy of TPMT genotype
was far superior to phenotypic activity measurements in
leukaemia patients, a clinical situation in which the latter
test is unreliable [36, 94].

It has been argued that TPMT genotype analysis will
not, as yet, provide that additional information yielded by
phenotype, i.e. the identification of those with very high
activities who may require escalated dosages to produce
an adequate clinical response and those with wild-type
genotype with functional ‘intermediate’ activity. However,
the latter group mainly consists of false positives produced
by variable red cell kinetics due to the underlying disease
state or other factors [36] whilst in the former, the prefer-
ential production of methylated mercaptopurine metabo-
lites (products of the TPMT reaction) and suboptimal
response to thiopurine therapy is not always attributed to
very high TPMT activities [95]. Frequently, the search for
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additional information to interpret the clinical picture
requires thiopurine metabolite analysis in addition to
TPMT status. TPMT testing is a predictor of what could
happen during thiopurine therapy, metabolite monitoring
is one step nearer the pharmacological action and the
latter is a useful adjunct to TPMT status information when
compliance with oral therapy is suspected as the cause of
drug tolerance [36] or when myelosuppression may be
attributed to multiple causes or other toxicity symptoms
require investigation.

Cost effectiveness of TPMT testing

Because of life threatening nature of thiopurine drug-
related toxicity, prospective identification of patients with
TPMT deficiency (homozygous for variant low activity
TPMT alleles), prior to the initiation of therapy has increas-
ingly been accepted clinically. The cost of in-patient care
for one TPMT deficient patient inadvertently treated with
azathioprine has been estimated to cover the cost of over
400 tests for TPMT activity [96]. The cost of TPMT testing is
offset by the improved patient care and the improved
quality of life for the TPMT deficient patient. The cost effec-
tiveness of TPMT screening prior to mercaptopurine or
thiopurine drug therapy has been repeatedly stated [45,
88, 97, 98].

Recommendations for, and use of,
TPMT testing

The US Federal Drug Administration directed label modi-
fications for 6-mercaptopurine (July 2004) and azathio-
prine (July 2005) to reflect the pharmacogenetics of
thiopurine metabolism and recommend TPMT testing
prior to the initiation of thiopurine therapy [9]. TPMT
testing prior to the prescription of thiopurine drugs is
becoming routine clinical practice in Europe [12–15]. In the
UK, a recent survey indicated that TPMT testing was used
by 67% of clinicians prior to azathioprine prescription [99]
whilst, worldwide, testing is used by 43% of gastroenter-
ologists in the management of IBD [100]. Overall, UK clini-
cal guidelines recommend that patients have their TPMT
status checked prior to starting thiopurine drugs. In the UK
TPMT testing is mandatory for children and young adults
prior to treatment on the ALL2011 trial protocol [101].

A systematic review of TPMT testing in adults and chil-
dren with chronic inflammatory diseases reported that,
compared with a wild-type TPMT genotype, those who
were TPMT heterozygotes or TPMT deficient were at an
increased risk of developing leucopenia (odds ratios 4.29,
95% CI 2.67, 6.89 and 20.84, 95% CI 3.42, 126.89, respec-
tively). However, there was insufficient evidence to
address the effectiveness of TPMT pre-testing with respect
to improved patient outcomes [89]. A similar meta-analysis

of 67 studies reported an odds ratio of 4.06 (95% CI 3.2,
5.48) for intermediate activity patients developing
leucopenia compared with patients with high (or ‘normal’)
TPMT activity when taking thiopurine medication;
86% of patients with two variant alleles developed
myelosuppression [102].

Guidelines to interpret TPMT genotype tests in order to
guide the dosing of thiopurines have been developed [14,
15]. Patients who inherit two variant low activity alleles
(TPMT deficiency) will, with 100% certainty, develop life-
threatening myelosuppression at conventional thiopurine
dosages; drastic dose reduction (e.g. 10% of conventional
dose) is required. About 30 to 60% of TPMT heterozygotes
will be unable to tolerate full thiopurine doses [14, 21, 36];
TPMT heterozygotes are at a significantly higher risk for
toxicity than TPMT wild-type patients [102]. Thus a
reduced thiopurine dose for the TPMT heterozygote has
been recommended at the start of treatment [103]. The
latter approach risks the under-dosing of those TPMT
heterozygous patients who can tolerate full doses, and so
a titration upwards approach is advised [14].

The British National Formulary suggests that the clini-
cian should consider measuring TPMT activity before start-
ing thiopurine drugs [104]. An initial assessment of TPMT
testing in the UK [12] reported that the test was requested
by 13 different medical specialities with dermatologists
and gastroenterologists the most frequent users. A more
recent survey reported that 94% of dermatologists and
60% of gastroenterologists requested TPMT testing [99].
The high uptake by dermatologists is reflective of the
fact that they were the first speciality in the UK to develop
national guidelines advocating the use of TPMT testing
[105]. Current guidelines for dermatologists review
the case for TPMT testing and firmly support routine
pre-treatment TPMT testing and emphasize the cost-
effectiveness against the intensive support care required
for patients with severe and prolonged myelosuppression
[106] The guidelines for rheumatologists recommend
TPMT testing prior to prescribing azathioprine with the
caveat that testing does not replace routine monitoring (of
blood cell counts) [107].

In the treatment of autoimmune hepatitis (AIH), where
long term azathioprine is the immunosuppressive of
choice for the maintenance of remission and is used with
prednisolone to induce remission, the UK guidelines state
that TPMT measurement ‘should be considered’ to exclude
those with TPMT deficiency and TPMT measurement ‘is
recommended’ in patients with pre-existing leucopenia
[108]. The USA AIH guidelines state that the frequency of
cytopenia is 46% in azathioprine treated AIH patients but
studies to date have shown that this is not predicted by
prior knowledge of TPMT status. The most common cause
of cytopenia in the AIH patient is hypersplenism associ-
ated with underlying cirrhosis. The USA guidelines
comment that TPMT deficiency is rare and the azathio-
prine dose used in conventional treatment is low. Thus
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they do not support routine TPMT screening but the USA
guidelines recommend that TPMT activity should be
assessed in patients with cytopenias before or during aza-
thioprine therapy [109].

UK gastroenterologists view TPMT testing with caution,
initially not recommending prior to therapy on the basis
that decades of experience had shown azathioprine to be
a safe drug in the treatment of inflammatory bowel
disease [110]. The current British Society of Gastroenterol-
ogy guidelines acknowledge the role of TPMT testing in
identifying the 1 in 300 TPMT deficient patient and
comment that most patients who develop leucopenia will
have a ‘normal’ (high activity, homozygous wild-type
genotype) TPMT. TPMT testing is not specifically recom-
mended, although a role is suggested of predicting early
events rather than long term control [111]. Nonetheless,
gastroenterologists are among the most frequent users of
TPMT testing in the UK [99].

Despite the widespread use of TPMT testing debate
continues with respect to the utility of TPMT testing [112].
With a lack of prospective randomized controlled trials the
evidence base for routine TPMT testing remains subopti-
mal [113]. The UK Department of Health funded TARGET
(TPMT: Azathioprine Response to Genotyping and Enzyme
Testing) controlled trial investigated the clinical value and
cost-effectiveness of TPMT genotyping in reducing the
number of adverse drug reactions associated with azathio-
prine immunosuppression [114]. The recruitment target (n
= 500) was not met due to the routine use of TPMT testing
in some treatment centres. The study (n = 333) concluded
that there was strong evidence for severe neutropenia in
the TPMT deficient patient, but TPMT heterozygotes were
not at an increased risk of adverse drug reactions at stand-
ard doses of azathioprine.

What is clear is that adverse reactions to thiopurine
drugs are dose dependent and, of the myriad of adverse
reactions attributed to the thiopurine drugs, myelo-
suppression is more common when thiopurine drugs are
used more aggressively, as in the 6-mercaptopurine treat-
ment protocols for childhood ALL, than when used in low
dose azathioprine immunosuppressive therapy. In addi-
tion, concomitant therapy and the underlying disease
process can also influence the susceptibility to
myelosuppressive events for all patients. However, unless
treated on very low thiopurine doses (in ALL protocols
10%, or less, of the standard protocol mercaptopurine
doses are used) the TPMT deficient patient will experience
profound myelosuppression when treated with thiopurine
drugs. It is cost-effective to routinely perform pre-
treatment TPMT testing to identify these individuals alone.
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