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Abstract
Cross-frequency coupling is hypothesized to play a functional role in neural computation. We
apply phase resetting theory to two types of cross-frequency coupling that can occur when a
slower oscillator periodically forces one or more oscillators: phase-phase coupling, in which the
two oscillations are phase-locked, and phase-amplitude coupling, in which the amplitude of the
driven oscillation is modulated. Our first result is that the shape of the phase resetting curve
predicts the tightness of locking to a pulsatile forcing periodic input at any ratio of forced to
intrinsic period; the tightness of the locking decreases as the ratio increases. Theoretical
expressions were obtained for the probability density of the phases for a population of
heterogeneous oscillators or a noisy single oscillator. Results were confirmed using two types of
simulated networks and experiments on hippocampal CA1 neurons. Theoretical expressions were
also obtained and confirmed for the probability density of N spike times within a single cycle of
low frequency forcing. The second result is a suggested mechanism for phase-amplitude coupling
in which progressive desynchronization leads to decreasing amplitude during a low frequency
forcing cycle. Network simulations confirmed the theoretical viability of this mechanism, and that
it generalizes to more diffuse input.

Introduction
Cross frequency coupling of a faster rhythm by a slower rhythm is hypothesized to organize
the activity of the brain in several different contexts (Canolty and Knight 2010; Jensen and
Colgin 2007; Sauseng and Klimesch 2008). In this scheme, slow rhythms are entrained
across large brain regions at behaviorally relevant time scales by both external sensory input
and internal cognitive processes, and provide a frame of reference for the faster rhythms that
are local and reflect faster time scales for internal computations (Canolty and Knight 2010).
An additional implication is that the internal cognitive processes are discretized because
they can only update once per slow rhythm cycle. For example, visual attentional capture is
hypothesized to be regulated by a theta band (5–10Hz) periodicity in occipital cortex
(Chakravarthi and VanRullen 2012), whereas conscious updating is thought to be gated by
the state of high-alpha/low-beta (12–20 Hz) oscillations in fronto-central areas. In the
hippocampus, nested gamma (30–150 Hz) cycles within theta cycles are hypothesized to
encode current and predicted locations that are updated on each theta cycle (Jensen and
Colgin 2007). In addition, lower frequency brain rhythms like delta (1–4 Hz) can become
phase-locked to rhythmic external sensory input (Schroeder and Lakatos 2009), creating
windows of maximum sensitivity aligned with the expected arrival of the relevant stimulus.
Another postulated function for cross frequency coupling is the chunking of information; for
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example, theta oscillations, likely entrained by auditory input, are hypothesized to chunk
speech signals into syllables with phonemes encoded on nested gamma cycles (Giraud and
Poeppel 2012).

We are primarily interested in two types of cross frequency coupling, phase-to-phase
coupling and phase-to-amplitude coupling. We consider only 1:N coupling, in which there is
a single cycle of the slow oscillation for every N cycles of the fast oscillation. In phase-to-
phase coupling, there is a relatively constant phasic relationship between the low and high
frequency oscillations. This type of coupling is referred to as phase-locking. In phase-to-
amplitude coupling, the amplitude of the faster oscillation varies with the phase of the
slower oscillation. This latter type of coupling is sometimes referred to as nesting. Phase
locking and nesting are not mutually exclusive but rather can coexist. We use theta/gamma
nesting in the hippocampus as one illustrative example (Bragin et al 1995; Colgin 2013). For
a first order, simplifying approximation we will neglect feedback coupling from the high
frequency oscillator to the low frequency oscillator as well as connections between fast
oscillators, and focus on feedforward entrainment of a population of unconnected high
frequency oscillators by a low frequency oscillator in order to establish some general
principles.

Under the approximation of unidirectional drive, the low frequency oscillator can cause
phase locking by altering a single cycle of the driven high frequency oscillator so that one
cycle of the slow oscillation becomes equal to N cycles of the fast oscillation: N−1
unperturbed cycles and one cycle whose duration is adjusted so that exactly N cycles in the
fast oscillator fit within one cycle of the slow oscillator. We focus on another simplifying
case, in which the effect of the slow oscillation on the fast oscillation is pulsatile to some
degree, meaning that the spikes or bursts of input in the low frequency oscillator are not
spread out equally over the N cycles, but the effect is concentrated in one cycle. We derive
some theoretical results for the tightness of phase-phase coupling in this case, validate these
results in a biological neural oscillator, show that, in a heterogeneous population of high
frequency oscillators, phase-locking can lead to phase-amplitude coupling, or nesting, and
finally use simulations to generalize this finding to coupling that is not sharply pulsatile.

Phase resetting theory is often applied to single neuron oscillators, but it is important to note
that the theory is equally valid for modular network oscillators, as long as the relevant
network oscillator can be characterized by a PRC (as in Akam et al. 2012 or Malerba and
Kopell 2013). It is controversial (Bartos et al 2007) the degree to which brain rhythms are
mediated by oscillatory neurons or by ensembles of interacting neurons that are not
oscillatory in the absence of the network rhythm.

Methods
Phase resetting theory applied to unidirectional cross frequency coupling

The simplest phase-locked solutions occur for periodic forcing of an oscillator (Glass and
Mackey 1988; Rinzel and Ermentrout 1998), called a 1:N periodic solution, in which there
are N cycles of the forced oscillator for every periodic stimulus. The source of the periodic
forcing here is considered as the lower frequency oscillator, so the forcing frequency is PF
and the intrinsic, free-running period of the forced oscillator is Pi. Since the oscillations are
periodic, we analyzed them in terms of their phase φ, which we define as varying evenly
from 0 to 1 during a single oscillation. For periodically spiking neurons, the timing of the
spike determines the beginning (phase zero) as well as the end (phase one) of the cycle.
Every cycle is considered to be identical and the phase is modulo one because it is reset to
zero each time a phase of one is reached. The response of the free-running oscillator to a
single stimulus can be measured as the normalized shortening or lengthening of the cycle
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containing the perturbation. The normalized change in cycle period is called the phase
resetting

A plot of the normalized change in cycle length versus the phase at which the stimulus is
delivered is called the phase response (or phase resetting) curve (PRC). Starting from any
initial phase φ[n] at which a stimulus is received, the following equation determines the
evolution of the phase on successive stimuli indexed by n:

(1)

There are two steps to updating the phase. First, the resetting f(φ[n]) due to the forcing
stimulus received at phase φ[n] is subtracted from φ[n] to reflect the phase immediately after
the input is received, then the phase must updated during the interval until the next periodic
input is received. After an elapsed time equal to an integral number of intrinsic periods NPi,
φ[n] would be unchanged. However, in general the forcing period is not an integral multiple

of the intrinsic period, so the second step is to add a detuning term  that reflects the
normalized difference between the forcing period and an integral number of intrinsic
periods. A phase locked mode can only occur if the phasic relationships are constant,
requiring that in the limit φ[n + 1] = φ[n]. From Eq. (1), it follows that the forcing period is
exactly equal to the N cycles of the forced oscillator plus the phase resetting due to the
single input per N cycles: PF = PiN + Pif(φ*), where φ* is the phase of the forced oscillator
at the time it receives each input in a phase-locked mode. A phase locked mode exists if the
following is satisfied.

(2)

If we define fmin and fmax as the respective minimum and maximum of the phase resetting
curve, the required phase resetting falls within the range of phase resetting measured for that
input if

(3)

The derivative of the right hand side of Eq. 1 must have an absolute value less than one for
stability (Rinzel and Ermentrout 1998), so the criterion for a stable locking is −1 < 1 − f(φ*)
< 1. We will refer to regions of the PRC that satisfy the stability criterion as stable branches.

Network Structure
A simple two layer feedforward architecture was used, with the homogeneous low frequency
population of neuronal models or phase oscillators unidirectionally projecting to each
neuronal model or phase oscillator in the higher frequency populations, and with no
coupling within a population.
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Simulations using Morris Lecar model
The Morris Lecar (1981) model was used with parameters as in Rinzel and Ermentrout
(1998) in the parameter regimes given for type 1 PRCs (single stable branch) and type 2
PRCs (two stable branches). The synaptic currents were modeled as Isyn =gsyns(V−Esyn),
where gsyn is the maximum synaptic conductance and Esyn is equal to −75 mV for inhibitory
synaptic connections and equal to 0 mV for excitatory synaptic connections. The rate of
change of the gating variable s is given by:

where Vpre is the voltage of the presynaptic cell, α=6.25ms−1 is the rate constant of the
synaptic activation, and τsyn is the synaptic decay time constant and was set to 1.0 ms for
excitation and 7.5 ms for inhibition (Compte et al. 2003).

Simulations of pulse-couple phase oscillators
The pulse-coupled simulator (http://nisms.krinc.ru/rth/uniPRCsim) developed in our lab for
this study and based on our previous work (Achuthan and Canavier 2009, Canavier and
Achuthan 2010) reduces each component oscillator to a phase oscillator that is completely
described by its phase response curve and its instantaneous period. As described above, the
phase is defined as 1 at the time of a spike, and reset to 0 immediately after. The phase of
each oscillator is randomly initialized. When an input from neuron j is received, the phase of
neuron i is first updated to reflect the change in phase due to its instantaneous frequency (1/
Pi) during the interval since the last update, and then it is updated by the phase resetting
fij(φi) produced by input j in neuron i.

(4)

The delta function indicates that updates were performed at the time of each spike in neuron
j. If spikes were received simultaneously, the resetting due to multiple inputs was summed
under the constraint that a cycle cannot be shortened by more than the time remaining until
the oscillator would have spiked in the absence of an input (causality). The phase resetting
curves for the pulse-coupled simulator were measured using the Morris Lecar model
described above for simulations corresponding to ML networks. For simulations exploring
phase amplitude coupling for a single pulsatile input, we used a linear PRC with a slope of
one (Maex and DeSchutter 2003, Malerba and Kopell 2013), because this PRC shape is
maximally synchronizing across a population of identical oscillators. This type of PRC
arises when there is a constant delay from the onset of the synaptic input until the next spike.
When the input was more distributed we approximated the response to weaker inputs as also
linear, but with a small slope, such that the response to a large number of such inputs would
approach a linear PRC with a slope of one.

The variability in oscillatory microstructure (Siapas et al 2005), when included in the phase
oscillator network simulations, was simulated by modeling the instantaneous cycle period as
an Ornstein Uhlenbeck (O-U) process. The O-U process for the instantaneous period Pi in
differential form is:

(5)
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The term containing the mean period μ is the mean reverting term, and the term containing σ
is the diffusion term, where Wt is a Wiener process. We discretize (5) as follows (Gillespie
1996) using an exponential integrator that assumes the derivative is constant over the time
step and uses an explicit exponential solution during the time step Δt

(6)

where (0,1) is Gaussian random process with zero mean and unit standard deviation; σ is a
parameter that scales the noise term in the O-U process, and τ is the time constant for mean
reversion. Unfortunately, precise solution of this equation requires knowledge of the
quantity we are trying to calculate, because the elapsed time Δt = Pi[n + 1], so use the
instantaneous intrinsic period on the previous cycle as an approximation of the time step in
order to obtain an estimate of the intrinsic period after the mean reversion 

(7)

Then we use the quantity  to estimate the time step for the diffusion term:

(8)

This formulation is not precise because the one dimensional Brownian motion ignores the
effect of the lengthening or shortening of the cycle due to the phase resetting applied during
that cycle. We confirmed using additional simulations that this lack of precision in the
effective value of σ across cycles negligibly impacts the results.

LFP approximation and estimation of gamma power
Since the network had no spatial structure, the local field potential was approximated by
assuming each spike in the network generated a synaptic current modeled as biexponential
with a rise time of 2 ms and a fall time of 5 ms, then summing all currents.

To show how gamma power changes within the theta cycle, we first sampled the
approximated LFP signal at 250 Hz, then filtered this signal using a ninth-order Butterworth
filter in the 25 – 50Hz range. The signal was filtered in backward and then forward time to
minimize phase distortion. We then obtained an analytical signal the using the Hilbert
transform and its Gabor representation, and estimated the power of gamma band as sum of
the squared real and imaginary parts of the analytical signal. Finally, the gamma power in
each theta cycle was averaged across all theta oscillation periods.

Experimental Methods
Acute hippocampal slices (400 μm-thick) were prepared using a vibratome from 7 to 10-
week old male Sprague Dawley rats, according to methods approved by the Louisiana State
University Health Sciences Center Institutional Animal Care and Use Committees as
previously described (Ascoli et al. 2010). Animals were anaesthetized with an intra-
peritoneal injection of ketamine and xylazine, perfused through the ascending aorta with an
oxygenated solution and decapitated. For the recordings, the slices were placed in a
submerged chamber and perfused with an external solution containing (in mM): NaCl 125,
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KCl 2.5, NaHCO3 25, NaH2PO4 1.25, CaCl2 2, MgCl2 1 and dextrose 25, which was
saturated with 95% O2 and 5% CO2 at 34–36°C (pH 7.4). CA1 pyramidal neurons were
visualized using a Zeiss Axioskop microscope equipped with differential interference
contrast (DIC) optics. Somatic whole-cell patch-clamp recordings were obtained using a
Dagan BVC-700 amplifier in the active ‘bridge’ mode. The intracellular solution contained
(in mM): K-methylsulphonate 130, HEPES 10, NaCl 4, Mg2ATP 4, Tris2GTP 0.3,
phosphocreatine (di-Tris salt) 14 (pH 7.3); the resistance of the electrodes in the bath was
generally 2–3 MΩ and the series resistance was below 20 MΩ. In order to isolate the
recorded neuron from the presynaptic afferents, 6-cyano-7-nitroquinoxaline-2,3-dione
(CNQX, 20 μM), DL-2-amino-5-phosphonopentanoic acid (DL-APV, 50 μM) and gabazine
(12.5 μM) were added to the recording solutions to block AMPA and NMDA glutamatergic
receptors and GABAA receptors, respectively.

Tonic depolarizing current (90–350 pA) was injected in the recorded neurons to evoke
repetitive firing at 7–12 Hz. After letting the firing frequency stabilize (> 20 seconds), brief
(3 ms) hyperpolarizing or depolarizing current steps (150–250 pA) were injected at various
frequencies to mimic a synaptic input (Wang et al 2013).

Data Analysis
We used circular statistics to find the R2 vector strength for each experiment to quantify the
degree of phase locking observed. The average vector has the mean angle φave of all the data
and a length that corresponds to the tightness of the locking (Batschelet E 1981)

R2=X2+Y2 where X and Y are calculated according to

where PF is the forcing period, M is the number of forcing cycles, and trk is the k-th interval
between the stimulus and the next spike in the biological neuron.

Results
Probability density function for population of heterogeneous oscillators

The phase resetting theory described in the Methods and summarized in Eq. 1–3 considers a
low frequency drive to a single high frequency oscillator. Here we extend this theory to
consider a low frequency periodic drive to a population of heterogeneous oscillators with
frequencies spread over a range within the higher frequency band. Rather than map the
distribution of phases on one cycle to the next (Ermentrout and Saunders 2006, Marella and
Ermentrout 2008), we solve instead directly for the asymptotic solution. If we assume that
the population of high frequency oscillators has a distribution of intrinsic periods rather than
a single common period, then we can derive an expression for the probability distribution of
the phases at which the individual oscillators receive an input from the common pulsatile
low frequency drive. The derivation can be generalized to the case in which the PRC is a
function of the intrinsic period: f(φ*, PH). However, we will restrict ourselves to the case in
which the PRC remains approximately constant as the intrinsic frequency is varied over
some range. The dependence of steady state phase-locking at phase φ* on the intrinsic
period of a driven oscillator can be readily found from Eq. 3
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where the superscript −1 denotes the inverse function. Thus the period of a driven oscillator
corresponding to a specific φ* is:

(9)

Eq. (9) is obtained under the assumption that all periods in the high frequency population
satisfy Eq. 3 on a stable branch. The probability density function ρφ* of the phases at the
time a low frequency input is received can be calculated in terms of the probability density
function of the frequencies ρPH using the following formula for a function of a random
variable to ensure that the cumulative probability over an interval of phases is the same as
the cumulative probability over the corresponding interval of frequencies (Larson and
Shubert 1979):

We apply the Heaviside function h(1 − |1 − f′(φ*)|) to indicate that only phases that satisfy
the stability criterion are mapped onto a period within the distribution of the high frequency
population. Substituting in the above equation for (g−1)′ and g−1, gives the steady-state
phase distribution as follows:

(10)

Equation (10) can be applied for any PRC (however weak or strong), as long as the variation
the period remains within the region where stable solution exists. We confirm the validity of
this expression by using simulations of Morris Lecar model neurons and simulations of
phase oscillators with a Gaussian distribution of intrinsic periods, so that the following
expression for the probability density of the phases applies:

(11)

where μi and σi are the mean and standard deviation of the Gaussian distribution of intrinsic
periods. The distribution of periods were not truncated to eliminate points that do not satisfy
Eq. 3, but σH was small relative to the difference between the mean period and the limits
Pmin and Pmax that support phase locking. Figure 1A1 shows the PRC in response to
inhibition for a Morris Lecar model neuron with type 1 parameters as described in Rinzel
and Ermentrout 1998, and Figure 1B1 shows the PRC for type 2 in response to excitation.
The gray shaded regions show the phases on stable branches that correspond to the mean
period plus or minus one standard deviation. The theoretical probability distribution is given
by the black curve, the result of the pulse-coupled phase oscillator simulations is given by
the dotted curve, and the results of the Morris Lecar model simulations is given by the
dashed curve. Note that the probability density is constrained to the stable branches of the
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PRC, and the number of peaks in the probability density functions corresponds to the
number of stable branches in the PRC. The type 2 PRC in Figure 1B1 has two peaks, and a
small region of bistability in which both stable branches have overlapping values of the
phase resetting and fall within the gray shaded region. However, bistability is not strictly
necessary for two peaks since it is the existence of the two stable branches within the range
of periods observed that is necessary rather than their overlap.

The output of both simulations closely follows the theoretical prediction. Errors in the
predictions of the pulse coupled simulator arise from the sampling of the Gaussian deviates
whose distribution only approaches Gaussian for very large numbers, and are more
prominent in the smaller peak in Figure 1B2 because it is visited less often. Errors in the
Morris Lecar network simulations are slightly larger (especially for the smaller peak)
because the shape of the phase resetting curve is not strictly invariant to frequency (Fink et
al 2011), in contrast to the assumptions made in Eq. 11 and for the pulse-coupled simulator.
Overall, however, the agreement is very good. The functional implication of this result is
that a PRC with a single stable branch is optimal for synchronization of a population of
heterogeneous oscillators.

Figure 1A3 and B3 show that increasing N (and therefore PF) in a 1:N locking broadens the
distribution of the phases described by Eq. 11. This theoretical prediction conforms to our
intuition that if you increase the time between forcing pulses, more detuning between
oscillators will be observed, resulting in decreased tightness of the locking.

Probability density function for population of oscillators with variable oscillatory
microstructure

The Ornstein-Uhlenbeck random process (Uhlenbeck and Ornstein 1930) in intrinsic period
is intended to simulate the biological variability in oscillatory period over time (Thounaojam
et al, under review). The steady state distribution of the period is Gaussian with effective

standard deviation,  where σ and τ are the O-U parameters described in the
Methods. This allows a straightforward extension of the results of the previous section
simply by substituting σeff for σi in Eq. 11 from the previous section. The caveat is that
certain conditions must be met for convergence to this distribution, namely that the
autocorrelation time τ, must be long compared to the mean period μ, (τ/μ ≫ 1), in other
words, the period is slowly varying.

Figure 2 shows pulse coupled phase oscillator simulations for the same PRC as in Figure.
1B and probability density function shown in Figure 1B2. The static distribution refers to the
case in which the distribution of the periods across the population is static in time, because
different oscillators have different constant periods selected from a Gaussian distribution.
The theoretical results are derived for this case, but applied to a distribution of periods that is
dynamic. For a population of oscillators with O-U dynamics in the period, the distribution of
periods is approximately constant across cycles, but the individual oscillators change their
periods slowly and therefore occupy different positions within the distribution on different
cycles. Even at low values of the ratio τ/μ, there is a qualitative agreement of the simulations
with the theoretical prediction using σeff in Eq. 11, and for higher values the agreement is
very good. The agreement with the large peak is excellent, and most of the error is in the fit
to the smaller peak that is visited less often.

The intrinsic phase of a neural oscillator at the time that a low frequency stimulus is
received is not an observable. Therefore, it is desirable to convert the expression for
distribution of phases into a distribution of the intervals from the stimulus onset until the
next spike for each oscillator. The time to the next spike tr (see Fig 3A2) is given by
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(12)

Then the distribution of the next spike time is given by:

(13)

If the analytical form of the phase resetting curve is known, an analytical form may be
obtained. In the following section we obtained the inverse and the probability density for the
next spike time numerically.

These results will be applied in two ways in the next two sections: first to the distribution of
periods in a single neuron over time, then to a population in which each neuron is pulled
toward the same mean but exhibits variability due to different instantaneous values of the
period.

Experimental validation of theoretical results in a single neuron with variable oscillatory
microstructure

In order to determine the utility of the probability density function predictions in Eq. 11 over
and above that of the analysis of Eq. 1–3 that assumes a constant period, we examined phase
locking of a biological neuron to a periodic stimulus, shown in Figure 3A. We used both
depolarizing pulses (Figure 3A1) and hyperpolarizing pulses (Figure 3A2) as described in
the Experimental Methods. CA1 pyramidal neurons have a “N” shaped I–V curve (Yamada-
Hanff and Bean 2013) that allows them to fire tonically in response to the application of
depolarizing current (Wang et al 2013) or a net increase in depolarizing current produced by
the neuromodulatory effects of ACh (Yamada-Hanff and Bean 2013). Here we show the
existence of 1:1 and 1:2 locking windows in response to periodic trains of depolarizing or
inhibitory pulses. Furthermore, we show that the sharpness of the distribution of the timing
of the input relative to the most recent spike in the pyramidal neuron is determined by the
shape of the phase response curve.

Figure 3A shows the experimental protocol in a 1:1 locking regime. Figure 3B1 shows that
for a train of depolarizing pulses, the vector strength of the locking approached the
maximum value of 1 for two frequency regimes, one in which the criterion in Eq. 2 was
satisfied for an N =1 (a 1:1 locking) and another in which the criterion was satisfied for N=2
(a 1:2) locking. These regions are manifested as plateaus in the plot of the ratios of forced
versus free running frequency of the driven neuron to the forcing frequency. On the other
hand, the vector strength (Figure 3B) was weaker in response to trains of hyperpolarizing
pulses, and in that case (Figure 3C) the ratio of the forced versus intrinsic frequencies was
approximately linear with no obvious plateaus. This indicates that no strong phase to phase
coupling was observed in the latter case.

In order to explain these results, we used our previously characterized phase response curves
of these neurons to both depolarizing and inhibitory current pulses (Wang et al 2013). The
original data from that study was averaged, and then smoothed in Fig 4A to show the
difference in the typical shapes of the PRC in response to a single depolarizing or
hyperpolarizing input. The theoretical explanations below are intended to be qualitative in
nature, and to illustrate how the shape of the PRC influences the probability distribution in
the presence of heterogeneity and noise.
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The PRC for a depolarizing input has two branches (Figure 4A1). The leftmost branch has a
negative slope, because the later an input is applied the more it advances the next spike. On
the second, rightmost branch there is a positive slope because an input applied late in the
cycle evokes a spike with a short, nearly constant, latency, resulting in a positive slope
approaching one. Recall that the stability criterion requires the absolute value of the slope at
a stable locking point to be between 0 and 2. Therefore the initial branch of the PRC in
Figure 4A1 has a negative slope that does not support stable phase-locking, but the second,
steep stable branch does. Only a single, less steeply sloping stable branch was observed in
the PRC in Fig 4A2 for hyperpolarizing pulses. Firing times for one representative
experiment each for a 1:1 locking case (Figure 4B) show that locking occurs on the stable
branches as predicted. The phase was estimated simply by dividing the elapsed time
between the spike before the stimulus (ts in Fig 3A) and stimulus onset by the free-running
intrinsic period measured just prior to the experiment. These examples were chosen to show
that for about the same amount of variability in the period, the locking to a depolarizing
input is far more precise than to a hyperpolarizing input. The pre-existing theory does not
explain the much sharper locking for the case with depolarizing pulses.

Slow variability in the period of these neurons has been observed experimentally (Netoff et
al 2005), so assumed that an Ornstein Uhlenbeck process characterizes the variability in the
period, and applied the results from the previous section to obtain the expected distribution
of the phases at the time a stimulus is received. Eq. 11 for the steady distribution of the
phases depends upon both the value of the resetting at each phase and on its slope (see Eq.
10) as well as on σeff for the O-U process and the forcing and intrinsic periods. These
neurons do not in general remain viable in slice long enough to characterize the PRC in the
same neurons used for the periodic forcing experiments, so we cannot obtain an exact
parameter match for the representative experiments. However, for the same amount of
variability (σeff = 1.5 ms), the probability density function calculated using for the shape of a
depolarizing PRC was much sharper than that for the hyperpolarizing PRC (Figure 4C), in
qualitative agreement with the experimental data in Figure 4B.

The estimate of the phase in Figure 4B is based on a constant estimate of the period, but we
hypothesize that the unobservable intrinsic period actually varies as an O-U process,.
Therefore we also compared the distributions of the time until the next spike after the
stimulus (tr in Figure 3A2) to account for this source of variability. The distribution of tr for
the same representative experiments in Figure 4B is given in Figure 5A. The theoretical
distribution of tr (Figure 5B) was calculated as described in Eqs 12 and 13 in the previous
section, using the same PRCs and parameters as in Figure 4C and again is in very good
qualitative agreement with the observations. Figures 4C and 5B clearly show that for the
exact same amount of variability, the theory predicts much more precise locking for PRCs
that are shaped like the ones in response to a depolarizing input in contrast to those in
response to a hyperpolarizing input.

To summarize, we compared two different types of periodic input, namely trains of
depolarizing current pulses versus hyperpolarizing current pulses, because the PRC shapes
for the two types of pulses were known to be markedly different (Wang et al. 2013). The
PRCs in response to a depolarizing pulse have a relatively small stable branch that was also
relatively steep, which, when inserted in Eq. 11, correctly predicted a sharp, narrow
probability density of stroboscopically sampled phases. The tight locking allowed
discernible plateaus corresponding to 1:1 locking and also cross-frequency 1:2 locking. On
the other hand, the PRCs in response to hyperpolarizing pulses have a broad single branch
with a large relatively flat region, which when inserted in Eq. 11, correctly predicted a
broadly distributed low-amplitude probability density of stroboscopically sampled phases
that prevented the observation of clear cross-frequency locking.
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Desynchronization of spikes during a cycle of low frequency forcing
Figure 3B and 5 only analyze the timing of the first spike after the stimulus. In a 1:N
locking, there are N spikes between any two low frequency forcing stimuli; Figure 6A
shows an example experiment for 1:2 forcing. For the tightly locked 1:2 cases in response to
depolarizing pulses, we noted that the distribution of the second spike within a forcing
stimulus spike was much broader (Fig 6B). We explain this phenomenon by analogy to a
population of oscillators with the period modeled as an intrinsic random process. We
consider a special, idealized case in which a strong depolarizing or excitatory input evokes a
spike reliably and immediately in every neuron in the population. Of course, this produces
exact synchronization and a delta function distribution in spike times ρt,0(t) for the first spike
across the population. However, subsequent spike times would spread out due to the random
fluctuations in the periods of the individual neurons (see Equations below and Figure 6C).

(14)

(15)

(16)

We can make a connection between the highly idealized case illustrated in Figure 6C with
the experimental data in Figure 6A and B by examining the PRC in Figure 4A that is typical
of excitatory perturbations to CA1 pyramidal neurons illustrated in Figure 6A and B. The
key is that in a steady phase locking, these neurons are receiving an input on the second,
stable branch of the PRC in Figure 4A that is approximately linear with a slope of one. The
constant latency to the next spike is approximately zero over the region of the PRC which
supports phase locking. The constant latency produces a linear PRC with a slope of one that
can be represented as f(φ) = φ + b, where the constant latency is Pi(1 − φ + f(φ)) = Pi(1 + b),
with b≥−1 so that the latency is nonnegative (Maex and De Schutter 2003). On the second,
stable branch of the PRC, b≈−1, so the latency approximately equals zero. This feature
allows depolarizing trains to tightly synchronize the first spike after the stimulus.

Network simulations of phase amplitude coupling
In the this section, we suggest that the spike spreading mechanism demonstrated above may
provide insight into a specific example of demonstrated cross-frequency phase-amplitude
coupling: theta-gamma nesting in the CA1 region of the hippocampus (Bragin et al 1995;
Belluscio et al 2012). Inhibitory trains can also synchronize a population with a linear PRC
with a slope of one, but the mechanism is slightly different. A conductance-based inhibitory
synapse can saturate with strong input, meaning that it hyperpolarizes the target neuron to a
nearly constant membrane potential, from which the latency to the next spike is
approximately constant regardless of the phase at which an input is received. For this case
b≈0 and the latency equals the intrinsic period.

The prediction of spread of the distribution on subsequent low frequency cycles can be
applied not only to all the spikes recorded during repeated trials in a single neuron, but also
to a snapshot of the distribution of the spike times within a heterogeneous population on
different fast cycles within a slow cycle. Since inhibitory drive from the septum and local
oriens lacunosum-moleculare interneurons likely plays an important role in theta modulation
of gamma oscillations (Colgin 2013), we constructed a network of uncoupled phase
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oscillators driven by periodic inhibitory input. Our phase oscillators represent modular
gamma oscillators that are comprised of reciprocally coupled pyramidal neuron and
interneurons, called PING modules (Kopell et al 2010) for pyramidal-interneuronal network
gamma. In order to focus on the ability of feedforward input to synchronize a population, we
have made the simplifying assumptions to neglect feedback from the gamma oscillator to the
theta drive as well as interconnectivity between gamma modules. We start with an example
of periodic pulsatile low frequency inputs to a population of oscillators with constant period
that is heterogeneous across the population, then look at an example population of
oscillators in which the heterogeneity is introduced by O-U variability in the period, and
finish with an example in which the assumption of pulsatile forcing is dropped.

Figure 7A1 shows the response of a population of oscillators with a Gaussian distribution of
constant periods to periodic low frequency stimuli (arrows). The PRC is identical for each
driven oscillator and is given in the inset at right. The PRC is linear with b=0 and a slope of
one, similar to the PRCs measured for computational models of PING modules (Malerba
and Kopell 2013). The raster plot at the top of in Figure 7A1 shows the firing time of the
gamma modules, which should be interpreted as the synchronized firing time of the
interneuron(s) within each module. The raster plot is indexed with the fastest oscillators at
the bottom. The population is unsynchronized prior to the first input. The first spike after
each input is synchronized and the oscillators become desynchronized in a predictable
manner as the faster oscillators fire earlier and earlier on subsequent cycles, in a manner
similar to that predicted by Eq. 14–16. However, in contrast to Figures 3A1, the left half of
figure 4 and 5, and Fig 6, the synchronization does not occur with short latency, but rather
with a latency on the order of an intrinsic period. Since the intrinsic period is different for
different neurons, the latency is also different for each neuron, thus the synchronization
across the population is only approximate. The simulated local field potential below the
raster plot shows phase-phase coupling with the theta oscillation because there are three
gamma peaks for each theta cycle between inputs at constant phases (see figure 7 caption).
In addition, modulation of gamma power within a theta cycle, shown in Figure 7A2,
indicates phase-amplitude coupling. The gamma peaks decay in amplitude, reflecting the
progressive loss of synchronization during a stimulus cycle.

Figure 7A is a noiseless, deterministic simulation. In order to simulate the effect of noise
and heterogeneity, in Figure 7B the period of each oscillator was modeled as a random O-U
process rather than a constant. Although all oscillators were pulled to the same mean value,
their random initialization and random time course provides both noise and heterogeneity.
The same PRC was utilized as shown in the inset, and the resultant phase-phase (Figure 7B1
bottom) and phase-amplitude coupling (Figure 7B2) is quite similar, although the raster plot
(Figure 7B1 top) looks more random.

Obviously, a perfectly pulsatile input is an idealization that allows an analytical description
of the probability density functions to be formulated. However, the concept that the low
frequency drive is more effective in synchronizing the high frequency population at some
times than others is likely to generalize, and we explored this possibility using simulations.
We assumed that 200 inputs were required to produce the saturated, constant PRC shown in
the insets in Figure 7AB, and made the assumption that the PRC for a single neuron was
scaled by 1/200 (note the vastly different vertical scale in inset in Figure 7C1). Simultaneous
inputs sum linearly in the pulse coupled simulator, so the slope of the PRC is no longer one
in response to fewer than 200 inputs. Then we imposed loose synchronization on the theta
inputs by randomizing their initial phases so that the spikes were spread out over about a
third of the cycle period, as shown in Figure 7C1 above the top raster plot. A small τ/μ ratio
was chosen for simulations in Fig 7 and B and C to allow the LFP solution to quickly
converge to a pattern of decreasing amplitude; a larger ratio requires multiple theta cycles
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for convergence to this pattern. The phase-phase and phase-amplitude coupling are still
clearly visible from the raster plot and in the modulation of gamma power by theta phase
(Figure 7C1 and C2 respectively), so the hypothesis that phase-amplitude nesting can arise
from differential synchronization due to low frequency drive that is not pulsatile is
validated. The degree to which this mechanism might contribute to phase-amplitude
coupling in theta-gamma nesting in the hippocampus is not known.

Discussion
Summary

The theory for periodic pulsatile forcing of a single limit cycle oscillator is well-developed
(Glass and Mackey 1988; Rinzel and Ermentrout 1998). We generalized the theory for
phase-locking to a periodic pulsatile drive in a straightforward way to give the steady state
probability density of the phases of a population of heterogeneous oscillators
stroboscopically sampled at the time a single periodic forcing input is received (Eq. 10 for
the general form, Eq. 11 for a Gaussian distribution in period). For the latter case (a
Gaussian distribution), we also showed that increasing the ratio N of forced to intrinsic
period clearly decrease the tightness of the locking. The same expressions apply to the
steady distribution of stroboscopically sampled phases in a single neuron for multiple
stimuli, provided the noise in the period takes the form of an Ornstein-Uhlenbeck process.
Therefore we were able to successfully test the predictions of Eq. 11 on the tightness of the
phase locking observed in a single neuron. We then assumed perfect synchronization evoked
by a stimulus and showed in Eq. 14–16 how the probability density broadens for subsequent
spikes within a forcing cycle, and generalized this result to predict that synchronization
decays similarly for subsequent spike volleys in a heterogeneous population in the absence
of stimuli. Finally, we used network simulations to show that this desynchronization causes
the amplitude of the driven oscillation to decay during a forcing cycle. A key simulation
result is that the mechanism for phase-amplitude coupling persists even when the underlying
theoretical assumption is violated by spreading the input out over a forcing cycle so that it is
no longer pulsatile.

PRC shapes matter
CA1 pyramidal neurons participate in both theta and gamma LFP oscillations in vivo
(Buszaki 1983, 2006). If these neurons function as pacemakers (Yamada-Hanff and Bean
2013) under any in vivo conditions, our results based on PRC shape imply that the most
effective input for tight phase-locking of these neurons under those circumstances is a
periodic depolarization. However, as stated in the Introduction, PRC analysis should be
applied to the minimal oscillatory unit, which may or may not be a single neuron. Typically,
in cross frequency modulation, the high frequency oscillations are in the gamma band. For
gamma band oscillations, the minimal unit oscillator has been variously hypothesized to be a
single interneuron (Wang and Buszaki 1996), an oscillatory module of reciprocally
connected interneurons and pyramidal cells (Kopell et al 2010; Malerba and Kopell 2013),
or a network oscillator comprised of populations of stochastically firing neurons in which
inhibition waxes and wanes, providing tight windows of excitability that occur at gamma
frequency (Economo and White 2012).

PRCs are often divided into two types (Hansel et al 1995; Ermentrout 1996). In Type 1,
there are mostly changes in cycle length in one direction, either advances or delays. Figure
1A1 shows an example of a Type 1 PRC with mostly delays. For Type 2, there are
substantial regions corresponding to both advances and delays. This leads to two prominent
stable PRC branches in the Type 2 example in Figure 1B1. We have shown that these two
branches lead to two peaks in the probability density function for periodic drive to a
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population of oscillators with some degree of heterogeneity in period distributed about a
center period, which makes Type 1 preferable for tight locking. Since the PRCs in Figure 3A
are both type 1, but the PRC in Figure 3A1 leads to tighter locking, we add the caveat that a
Type 1 PRC with a steep slope (optimally one) in the stable locking region is optimal for
tight locking in situations in which there are multiple simultaneously active high frequency
modules with a spread in their intrinsic periods. In contrast, a type 2 PRC has been found to
be optimal under the assumption of a population of uncoupled oscillators with a common
period receiving a common noisy input (Abouzeid and Ermentrout 2009). Therefore
different PRC shapes are optimal for synchronization under different assumptions.

Akam et al 2012 experimentally measured the phase response curve for the entire network
generating pharmacologically induced gamma oscillations in the hippocampal CA3 area in a
slice preparation. Several different types of inputs, including electrical stimulation of
afferent fiber bundles as well as optogenetic stimulation, were utilized in that study. The
resultant PRC was always Type 2 with two stable branches regardless of the specifics of
how it was measured. A strong pulsatile input appeared to consistently increase the
maximum amplitude of the next gamma oscillation in the LFP. This increase in amplitude is
consistent with a possible contribution from synchronization of the ongoing activity of
distinct gamma modules (see next section), although other interpretations are certainly
possible. The observed PRCs are not optimal for feed-forward synchronization by our
criteria; however, since the exact nature of the gamma oscillatory module and the theta
frequency driving inputs to these modules are not known, the appropriate PRC in response
to theta drive has not been characterized.

Phase resetting versus evoked power
There are two fundamental ways in which inputs can affect brain rhythms: 1) by resetting
ongoing oscillations versus 2) recruiting additional oscillatory neural ensembles. In this
study we have focused on the modulation of synchrony induced by the former as a
mechanism for phase-amplitude coupling; however, the contribution of this mechanism is
speculative at this time. A more widely held hypothesis is that high-frequency power reflects
either a general increase in population synaptic activity or selective activation of a connected
neuronal sub-network (Canolty and Knight 2010). Analogously, competing theories were
also proposed for the generation of sensory event-related potentials (Shah et al 2004): partial
phase resetting of ongoing electroencephalographic oscillations versus stimulus-evoked
neural responses, meaning increases in neural activity. In a different context, Schroeder and
Lakatos (2008) postulate a role for modulatory inputs in resetting the phase of ongoing
activity whereas driving inputs increase activity by recruiting additional neural activity.
However, they refer to resetting applied to the entire ongoing rhythm, not to individual
oscillators in an ensemble, thus modulatory resetting under their paradigm produces no
increase in power, in contrast to Figure 7. Our postulated mechanism for modulation of
gamma amplitude is also not consistent with their hypothesis that epochs of nested high
gamma amplitude periods are an efficient way of rationing the high metabolic demand of
gamma oscillations (Schroeder and Lakatos 2009). Nonetheless, increased gamma
synchrony at certain phases of the theta oscillation might partially explain why gamma
oscillations in the hippocampus are observed to have their largest amplitude when they co-
occur with the theta rhythm (Colgin and Moser 2010).

Implications for neural computation
Significant theta/gamma phase to phase coupling has been observed in hippocampal region
CA1 at 1:5 ratios for slow gamma and 1:9 for fast gamma (Belluscio et al 2012). This clear
evidence of phase-phase coupling implies either that the gamma oscillations are ongoing in
the background at varying levels of synchrony over multiple oscillatory cycles, or that the
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1:N locking is re-established very quickly on each theta cycle. Phase to amplitude coupling
was also observed with a peak at a theta phase of 200° for fast gamma and 250° for slow
gamma. Both phase-phase and phase-amplitude theta-gamma coupling (Bieri et al 2013) are
enhanced for fast gamma during coding of future locations and for slow gamma during
coding of previous locations. Slow gamma amplitude is more effectively modulated by theta
in hippocampal region CA3, whereas fast gamma is more effectively modulated in CA1
(Tort et al 2010). We suggest that some of the theta modulation of gamma power results
from resetting heterogeneous gamma modules that optimally synchronize them during
certain theta phases. The degree of synchrony within the active gamma ensembles may
allow the identification of the proximity of the represented location to the animal’s current
location. Regardless of whether the mechanisms proposed in this study are relevant to theta
gamma locking or nesting in the hippocampus, there are many other instances of cross
frequency coupling in the brain that might involve the alignment of existing oscillations, so
this hypothesis should be considered in the design of experiments to probe the nature of
cross-frequency phase-phase and phase-amplitude coupling.
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Figure 1.
Comparison of theoretical and simulated probability density functions for populations of
oscillators with a Gaussian distribution in the intrinsic period. A. Type 1 Morris-Lecar
model, A1) PRC for single neuron, A2) Phase probability density functions for
heterogeneous population. Theoretical prediction (solid curve), and simulations of phase
oscillators (dotted curve) were obtained for μi= 76.5 ms, σi=1.0, PF=235.62 ms and N=3.
The inverse F-I curve was used to select the values of applied currents for conductance-
based simulations (dashed line) in order to satisfy a normal distribution with the nominal
mean and standard deviation in period. A3) The theoretical prediction of the phase
probability density obtained from Eq. 11 for different values of N. B. Type 2 Morris-Lecar
model, B1) PRC for single neuron, B2) Phase probability density functions for
heterogeneous population with μi =82.21ms σi=0.4, PF=242.82 ms and N=3. The thick
dashed horizontal line in A1 and B1 corresponds to deterministic value of f(φ*) with mean
period μ computed using Eq. 9. Shaded regions indicate the deterministic solutions on a
stable branch as the period varies plus or minus a standard deviation μi ± σi. C. Dependence
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of the tightness of phase locking on N, the number of intrinsic cycles that elapse between
forcing inputs. B3) Same as A3, but for Type 2 model.
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Figure 2.
The probability distribution of the phases for slowly varying random oscillator periods
converges to the steady state for τ/μ ratio of two orders of magnitude. Theoretical
predictions (black solid line) and simulations for a static distribution of periods across the
population (black dashed line) for μi =30ms, σi =0.10, PF =119.4ms, N=4. The colored lines
are probability densities for O-U processes with same μ, σeff=σi and different sets of τ and σ.
For ratio τ/μ=1.67 τ=50, σ=0.02; for τ/μ=3.33, τ=100, σ=0.0141421; for τ/μ=8.33 τ=200,
σ=0.00894427; for τ/μ=16.67 τ=500, σ=0.00632456; for τ/μ=33.33 τ=1000, σ=0.00447214;
τ/μ=166.67 τ=5000, σ=0.002; τ/μ=333.33 τ=10000, σ=0.00141421; τ/μ=666.67 τ=20000,
σ=0.001.
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Figure 3.
Periodic forcing of a CA1 pyramidal neuron. A. Experimental procedure for a train of
depolarizing (A1) or hyperpolarizing (A2) pulses. B. Vector strength of phase locking for
experiments at different ratios of forcing frequency to intrinsic frequency of the neuron at a
given level of steady applied current. For depolarizing stimulus trains in B1, there were clear
plateaus in vector strength corresponding to 1:1 and 1:2 locking. The vector strength for
hyperpolarizing trains in B2 rarely exceeded 0.8 and no plateaus were evident. C. Plots of
the ratio of the forcing frequency to the forced frequency for the biological neuron versus
the ratio of the forcing frequency versus the free-running frequency immediately before the
experiment show plateaus corresponding to 1:1 and 1:2 locking for depolarizing trains (C1)
but not hyperpolarizing trains (C2).
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Figure 4.
Comparison of experimental and theoretical distribution of the phase at which the forcing
stimulus arrives within the cycle of the forced neuron. A. Averaged PRC (solid line) for
CA1 pyramidal neurons (n=14). Data from Wang et al 2013. Data was smoothed by fitting
to a Bezier polynomial function (thick dashed curve). A1) PRC for depolarizing pulse, A2)
PRC for hyperpolarizing pulse. The thin dashed horizontal line in A1 and A2 corresponds to
deterministic value of f(φ*) for the mean period computed using Eq. 9. B. Phase distribution
for one representative example. B1) Depolarizing pulse train: PF=100ms, Pi=134.12 ±
8.79424 ms, B2) Hyperpolarizing pulse train: PF=102.6, Pi=99.4±7.6 ms. C. Probability
density calculated using Eq. 11. C1) Using the PRC from A1 with parameters : PF=100 ms
and Pi=106±1.5ms and C2) Using the PRC in A2 and parameters PF=102ms and
Pi=95±1.5ms. Since the PRCs in A and the distributions in B are from different studies, the
correspondence between theory and experiment is only qualitative.
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Figure 5.
Distribution of observable time after the stimulus is also in qualitative agreement with
theoretical predictions. A) Normalized experimental distribution for the same examples as in
Fig 4 with A1) depolarizing and A2) hyperpolarizing pulses. B. Theoretical predictions for
B1) depolarizing and B2) hyperpolarizing pulses with the same model parameters as in
Figure 4.
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Figure 6.
Spike time spreading in a single neuron over time and in a population. A. Experimental trace
for 1:2 locking. B. Single neuron over time. For a single neuron being periodically forced at
1:2 over many cycles, the second spike after the stimulus is much less tightly locked to the
stimulus than the first. C. Snapshot of spike times within a population during one cycle of
low frequency forcing. In an idealized scenario, the first spike times are perfectly
synchronized and the distribution of spike times ρt,0 is a delta function. Since the period of
each neuron is a random process, on any given cycle, there is a Gaussian distribution of the
interval until the next spike. Subsequent spike times become more spread out, as shown by
the distribution ρt,1 for the first set of spikes times and ρt,2 for the second, until the next
forcing input is received to reestablish synchrony. The mean period for the population is
denoted by μ.
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Figure 7.
Pulse coupled phase oscillator simulations of theta gamma nesting. A1. Raster diagram (top
panel) and LFP (bottom panel) for population of 700 gamma modules. Periods were
normally distributed with 33 ms mean and 2.7 ms standard deviation. For the raster diagram
modules were sorted from fastest (bottom) to slowest (top). Pulsatile periodic input (arrow
marks at top of raster diagram) was applied with a period of 120 ms. The linear PRC is
shown in the insets. A2. Dependence of gamma power on theta phase. B. The input was the
same as in A but 750 modules with instantaneous intrinsic periods determined by a
randomly initialized O-U process were used instead of Gaussian distributed constant
periods. The parameters for the O-U process were μ=33 σ=0.1 τ=165. C. Same as in B, but
the theta input was arbitrarily divided into 200 proportionally weaker periodic inputs with
initial phases distributed normally with mean of 0.5 and standard deviation of 0.0925. The
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PRC was scaled proportionally (note different scale for inset). Gamma peaks in the LFP
occur at the following theta phase within the theta cycle: A1: 0.27(98.8°), 0.45(162.4°),
0.81(291.7°), B1: 0.27(99.1°), 0.55(198.0°), 0.82(297.0°), C1: 0.17(64.1°), 0.45(163.4°),
0.81(293.0°).
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