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ABSTRACT Earlier Monte Carlo studies on a single-helix
model of the GTP cap at the end of a microtubule are extended
here to a more realistic five-start helix model of the microtu-
bule end. As in the earlier work, phase changes occur at the
microtubule end: the end is either capped with GTP and grow-
ing slowly or uncapped and shortening rapidly, and these two
regimes alternate (at a given tubulin concentration) at steady
state. Macroscopic rate constants for the two-phase model are
deduced from the Monte Carlo results. The macroscopic rate
constants lead to properties that are in semiquantitative agree-
ment with related experiments of Mitchison and Kirschner.

In an earlier paper (1), we studied phase changes at the end
of a microtubule (MT) with a GTP cap by using a single-helix
model and the Monte Carlo method. The two phases corre-
spond to the presence (phase 1) of a GTP cap at the MT end
or to the absence (phase 2) of such a cap. A MT in phase 1
lengthens slowly; in phase 2 it shortens rapidly. These phase
changes are consistent with the experimental work of Carlier
et al. (2) and of Mitchison and Kirschner (3, 4). The rate
constants used in the above-mentioned Monte Carlo kinetic
model (1) arose from the fitting of the dilution experiments
described in ref. 2.

Although the Monte Carlo treatment of the single-helix ki-
netic model correctly produced the phase changes that were
anticipated from the experiments (3, 4), the question natural-
ly arises as to whether this theoretical result might be a prop-
erty of the single-helix model itself rather than of a MT. This
model is, in fact, appropriate for actin but it represents a
considerable approximation when used for a MT: it assumes
that the multihelices in a MT (e.g., five, if we assume growth
via a five-start helix) are kinetically independent of each oth-
er.

In the present paper, we extend the Monte Carlo work to a
five-start helix model for the growth of a MT. There are sev-
eral plausible sets of rules governing MT growth that might
be adopted. Because of the complexity of the computer pro-
gramming, we select what seems to us to be the simplest
explicit model. This model produced the desired phase
changes without difficulty. Details are given below. These
results serve essentially as an “existence theorem”: more
complicated models of MT growth and somewhat different
microscopic kinetics than that used below might prove, in
the future, to be more realistic but the present model shows
at least that multihelix kinetic models, as well as single-helix
models, can generate phase changes (cap, no cap) at the end
of a MT. The experimental work of Carlier et al. (2) and of
Mitchison and Kirschner (3, 4) seems to impose the require-
ment of phase changes on any detailed model of a MT end.

In choosing parameters in the present work, we have been
guided by the experiments of Mitchison and Kirschner (3, 4)
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rather than by those of Carlier et al. (2). We have not at-
tempted optimal fitting of these experiments because of the
considerable expense of the calculations. But we found it
easy to achieve semiquantitative agreement with some of the
main results of Mitchison and Kirschner.

The model

The (flattened) five-start helical structure we assume (5) is
shown in Fig. 1a. That is, growth (or shortening) of the verti-
cal 13-strand helix occurs only by gain (or loss) of individual
subunits at the exposed tips (n = 1) of the five helices I, ...,
V. Further, we assume that no subunit vacancies or “over-
hangs” occur. For example, for the particular structure in
Fig. 1a, a subunit cannot be added to helix III nor can a
subunit be lost from helix IV, for both of these events would
create an overhang. With these assumptions, each added
subunit at any allowed position creates two new nearest-
neighbor interactions and each departing subunit gives up
two nearest-neighbor interactions. The physical structure of
the MT end in Fig. 1a is designated 3,6,0,3,1 (the exposed
top surface of helix II contains three subunits, the top sur-
face of III contains six subunits, etc.). These five integers
must add to 13.

Following earlier work (6), Fig. 2a summarizes the micro-
scopic transitions that are possible for each of the five heli-
ces (unless an overhang is created; in this case the transition
is not allowed). The symbol T refers to a subunit (tubulin
dimer) with GTP bound; D refers to a subunit with GDP
bound. The T — D reactions (x’ and «) represent the hydrol-
ysis of GTP; the n = 1 D — T reaction («") is the exchange of
GTP for GDP on the helix tip; and the a, reaction is the loss
of a subunit with GDP bound followed by rapid exchange of
GTP for GDP on the subunit in solution. The concentration
of T in solution is c¢. The attachment transition (a;c¢) in Fig.
2a is actually subdivided, as in Fig. 2b, depending on wheth-
er the T from solution attachestoa TortoaDatn = 1. Itis
known that a;1 >> a;p (7). The computer program also in-
cludes an analogous subdivision of a, and a_; (6) but this
feature is not used in the present paper.

Nearest neighbors in the two-dimensional lattice of Fig. 1a
are also assumed to influence the interior (n = 2) hydrolysis
rate constant k. Along a helix (Fig. 1b), a T at any position »
= 2 has four possible sets of neighbors at n — 1, n + 1: DD,
DT, TD, and TT. A multiplicative dimensionless factor ;; (i,
j =D, T) is introduced to allow for different effects of these
neighbors on «, essentially as in refs. 1 and 2. In the other
lattice direction (vertically in Fig. 1a), nearest neighbors in
other helices may also influence the « for any T, as indicated
schematically in Fig. 1c. In the downward direction (Fig. la
and c), the two neighbors might be 0D, 0T, DD, DT, TD, and
TT. The zero indicates a missing neighbor, as, for example,
would be the case for a T at position n = 4 of helix III in Fig.

Abbreviation: MT, microtubule.
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Fi1G. 1. (a) Schematic picture of the arrangement of subunits at
the end of a 13-strand MT, growing via a five-start helix model. The
helices are labeled I, ..., V. The tip subunit in each helix is designat-
ed n = 1, the next is n = 2, etc. The subunits marked A and B are
shown twice. No vacancies or overhangs are allowed, by assump-
tion. The particular surface structure shown here is labeled
3,6,0,3,1. (b) Four possible nearest-neighbor pairs of a given T at n,
along a given helix, at positions n — 1, n + 1. (c) Six possible near-
est-neighbor pairs of a given T, from neighboring helices, counting
downward in g. A zero represents a vacancy (above the MT struc-
ture).

1a. The six dimensionless multiplicative factors here are des-
ignated v, Thus, an arbitrary T at n = 2 in any helix has a
hydrolysis rate ccastant xh;vy, depending on the nearest
neighbors of T. Clearly, the computer program must keep
track of the structure of the MT end (Fig. 1a), of the location
of each T at n = 2 in each helix, and of the states of the four
neighbors (including missing neighbors) of each such T.

A set of six parameters each, analogous to v;; above, was
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F1G. 2. (a) Reactions allowed and first-order rate constants for
each helix, unless forbidden by the no-overhang rule. (b) Subdivi-
sion of &, into a;1 and a;p, depending on the state at n = 1.
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also included in the program for possible vertical neighbor
influences on ' and on «” (both at n = 1). However, these
parameters were all set equal to unity (in effect, not used) in
the numerical example presented below.

The rate constants in Fig. 2 are all first-order, with units
s™%; ¢ has units uM. The rate constants apply to each of the
five helices, but possible on and off transitions are reduced
somewhat by the no-overhang rule. That is, on the average,
somewhat fewer than five helices are available for on-off
transitions. The effective number of available helices was
reported earlier (5) to be 3.79. A Monte Carlo check in sever-
al very simple special cases, using the present program, led
to a value of 3.82. The discrepancy was found to be due to a
single tallying error (in a structure with degeneracy) in our
earlier work (5). The corrected count is as follows: of a total
of 476 MT surface or end configurations, 1 has one site (for
on or off transitions), 24 have two sites, 132 have three sites,
220 have four sites, and 99 have five sites. The mean number
of sites is then 3.8235. A Monte Carlo simulation (at ¢ = 0,
with a single kind of off transition), using a total of 10° transi-
tions, led to 3.8236.

Monte Carlo calculations
These calculations refer to one end of a very long MT at
steady state. After a number of trial runs, the set of parame-

ters selected was

k = 1.0,

at = 20,

k' = 1.0, «" = 0.10,
ajp = 0.01875,

a; = 140,
a_; = 0.20. 1]

All of these have units s™! except a1 and a;p, which have
units s™uM™!. In addition,

hpp = 1.0, hpr = 0.002, hrp = 1.0,
hrp = 0.002 2]
vop = 1.0, vor = 0.5, vpp = 10.0, vpr = 10.0
vip = 1.0, vrr = 0.5. [3]

The values in Eq. 2 are the same as in ref. 1. These are de-
signed to keep the Ts in each helix rather compact. Similar-
ly, the choices in Eq. 3 tend to establish similar cap sizes in
the different helices. Note that a;p is not zero, as in our
previous work. A very small value of a;p (such as this) is not
excluded (7). ’

The procedure followed here is similar to that in refs. 1
and 8. These references should be consulted for general
background. We used two simulations of 300,000 transitions
eachatc =0, 1.5,3,45,6,7,8,9, 10, 11, 13, and 15 uM.
Each simulation run was preceded by a discard of 10,000
transitions, to ensure a steady state. Time averages of sever-
al quantities (e.g., p; to ps, J, J,) were printed every 200
transitions. Here, p, is the probability that position n has a
T, averaged over the 200 transitions and over all five helices
(and normalized to 5.00); J is the mean subunit flux during
the 200 transitions, calculated by a generalization (for the
overhang rule) of equation 1 of ref. 9; and J,, is the mean GTP
hydrolysis rate, calculated by generalizing (overhang rule,
hy, vi) equations 2 and 3 of ref. 9. The two quite different
calculations of J, provide a self-consistency check.

On the basis of the 200-transition averages, the total time
at each ¢ was divided into time spent in phase 1 (growing) or
in phase 2 (shortening), and the mean subunit flux was calcu-
lated for each category, thus giving J, and J, (subunit flux in
each phase). If f; is the fraction of time in phase 1, then

f/f2=k/k,  fi+fr=1 (4]
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J = fiJ1 + fala, [5]

where k is the rate constant for phase 1 — phase 2, k' is the
constant for 2 — 1, and J is the overall mean flux.

The printout for each c gives f, from which k'/k follows
(Eq. 4). To find k and k' separately, the total number of
phase changes in a simulation must be counted. There is a
small but not important amount of arbitrariness in deciding
what is a phase change and what is pot. The mean time per
pair of phase changes is (k + k’)/kk’. From this quantity and
k'/k, k and k' may be deduced.

Thus, at each ¢, we have values of J,, J5, k, and k’. These
are the four rate constants of the relatively simple two-phase
macroscopic kinetic model (1, 8) that can be used (as a pre-
sumably excellent approximation) in place of the original de-
tailed microscopic kinetic model (Figs. 1 and 2). In this con-
nection, the lifetimes of caps (phase 1) for the cases ¢ = 7
through ¢ = 13 (156 phase changes, 1 — 2) were examined
and were found to be exponentially distributed.

Results for microtubules in solution

Table 1 is a sample from one of the two printouts at ¢ = 10.
The line labeled 57,200 contains the total time and time aver-
ages over transitions 57,001 to 57,200. As can be seen from
the p, and J values, there are two phase changes in the
course of this sample (1 — 2 and then 2 — 1). Table 2 pre-
sents different information taken from the same simulation
(and including the time period of Table 1). This table gives
the surface structure (see Fig. 1a), the number of Ts in each
helix, and the n value of the deepest T in each helix, after
49,000 transitions, after 50,000, etc. These are “snapshots”
taken every 1000 transitions. There are three phase changes
in the period covered by Table 2, including the two in Table
1. Incidentally, the phase 2 session at 49,000 and 50,000 goes
back to 37,000. Table 2 shows typical large fluctuations in
the size of the GTP cap and also the wide variety that is
observed in the compactness of the cap (compare the last
two columns, helix by helix).
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each c. The N values refer to the total time (including phase
2 time, during which N is very small). At ¢ = 10, N during
phase 1 can be estimated as 232 (about 46 per helix). This is
not much larger than the value N = 198 in the table because
the MT end spends most of its time in phase 1.

The values of J;, J5, k, and k’, at each ¢, mentioned at the
end of the section above, were plotted and smooth curves
were drawn through the points. These smooth curves are
shown in Figs. 3 (k and £’) and 4 (J; and J;). Also included in
Fig. 4 are f; = k'/(k + k') and J (Eq. 5), calculated from the
four smooth curves.

The k and k' curves (Fig. 3) are similar to each other, ex-
cept that they are reversed in direction. As a consequence,
f1/f2 (Fig. 4) at the critical concentration (c, = 9.97) is a
much reduced 6.40 compared with 103.4 for the same quanti-
ty in ref. 1. An estimate of the experimental value (4) for the
plus end of the MT is 6.3. Note that f; = 1/2 where the k and
k' curves cross (¢ = 7.0).

The critical concentration, ¢, = 9.97, agrees with the ex-
perimental value (3) (corrected for inactive tubulin). The J(0)
value in Fig. 4 is —374 s™1, compared with the experimental
value (for the plus end) of —340 s™! (4). The Mgnte Carlo J;
is slightly curved whereas the experimental J; is a straight
line (4). Also, the Monte Carlo value of J; at ¢ = ¢, is 13.9
s~} compared with 53 s™! for the plus end (4) (and 16 s~ for
the minus end). The Monte Carlo J; value can presumably be
raised, while keeping ¢, constant, by increasing a;t and de-
creasing a;p (¢, is very sensitive to a;p). But this possibility
has not been explored.

Results for microtubules on nucleated sites

Here we use the four macroscopic rate constant curves (J;,
J2, k, k') in Figs. 3 and 4 to calculate steady-state properties
of MTs attached to nucleated sites (3) (each MT has one free
end). The kinetic two-phase maodel is shown in Fig. 5 (this is
the same as figure 6 in ref. 8). Some of the steady-state prop-
erties of the model, derived and discussed in ref. 8, are

x = J(k' = J)/=Jaok + J)) = Ji/(k + Jy) (6]

Table 3 gives J, and N (number of Ts, in all helices, at n = P+ + -1 .
2), averaged over the two simulations at each ¢, and also the ot it fa= (71
total number of phase changes in the 600,000 transitions at Py = -J1 - x)/J, — J») [8]

Table 1. Monte Carlo results at ¢ = 10

Transition Time, s p1 D2 D3 Da Ps J,s7!
57,200 6.7992 2.8197 4.9895 4.9889 4.9898 5.0000 5.801
57,400 8.7035 2.2567 4.9924 4.9964 4.9927 4.9699 3.714
57,600 16.804 1.7864 2.2369 1.8337 1.5542 1.4213 -1.575
57,800 0.38280 0.0000 0.0000 0.0000 0.0000 0.0000 —520.6
58,000 0.36938 0.0000 0.0000 0.0000 0.0000 0.0000 -539.5
58,200 0.38872 0.0000 0.0000 0.0000 0.0000 0.0000 -512.6
58,400 0.35918 0.0000 0.0000 0.0000 0.0000 0.0000 —554.8
58,600 1.3256 0.7530 0.3211 0.0000 0.0000 0.0000 —148.3
58,800 0.37413 0.0000 0.0000 0.0000 0.0000 0.0000 —532.6
59,000 3.2877 1.6185 0.0000 0.0000 0.0000 0.0000 -57.90
59,200 0.38220 0.0000 0.0000 0.0000 0.0000 0.0000 —521.4
59,400 7.5177 2.1469 2.2735 2.2186 2.0271 1.8015 4.418
59,600 10.597 2.4359 4.9967 4.9968 4.9894 4.9910 4.506
59,800 10.978 2.3389 4.6705 4.3159 4.0591 3.7912 3.019
60,000 11.695 2.3073 3.7638 3.5925 3.4479 3.3429 6.812
60,200 14.391 2.2966 3.6267 3.3407 2.8837 2.5589 3.092
60,400 4.8353 3.6770 4.9780 4.9727 4.6107 4.5887 25.85
60,600 3.0871 4.3545 4.9777 4.9611 4.9518 4.9690 45.95
60,800 5.8251 2.8875 5.0000 5.0000 5.0000 5.0000 16.39
61,000 5.0592 2.9907 5.0000 5.0000 5.0000 5.0000 22.86
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Table 2. Monte Carlo snapshots at ¢ = 10

Surface
Transition structure Ts in helices Deepest Ts
49,000 0,1,3,09 0,0,0,0,0 0,0,0,0,0
50,000 6,1,1,0,5 0,0,0,0,0 0,0,0,0,0
51,000 0,1,0,11,1 19,16,14,9,15 19,16,14,9,18
52,000 0,2,5,0,6 27,29,54,52,32 37,51,54,59,49
53,000 6,1,1,3,2 106,112,104,109,98 106,112,109,109,110
54,000 7,2,1,2,1  69,77,67,72,69 89,96,97,96,90
55,000 7,6,0,0,0 63,67,68,64,59 70,86,93,91,70
56,000 1,1,8,0,3 118,112,96,111,110 128,128,123,126,125
57,000 0,0,0,13,0 47,33,27,28,50 104,84,27,29,102
58,000 6,3,2,1,1  0,0,0,0,0 0,0,0,0,0
59,000 2,3,0,3,5 0,0,0,0,0 0,0,0,0,0
60,000 2,0,0,0,11 13,7,7,7,3 13,7,7,7,4
61,000 0,0,0,3,10 83,87,75,67,76 87,87,87,81,77
f1=Pox/(1 = x) [91
m=1/1-1x [10]
Pocc = (J1 — Jp)x™/(Jy = Jp) = x™*1, [11]

The approximation in Eq. 6 is accurate for the smaller c val-
ues. Note that x = 1/2 when J; = k, and x = 0 when J; = 0.
The f; for an attached polymer (Eq. 9) differs considerably
from the f, in Eq. 4 and Fig. 4 for one end of a very long MT
in solution. However, the two f;s have the same value (0.865
in this example) at ¢ = c,, where x = 1. The quantity 7 is the
mean size of MTs with m = 1 and P, is the probability that
m > my, (the size needed for detection). Calculated curves of
x, f1 (attached), P, (solid curve; using m, = 500), and m, as
functions of ¢, are shown in Fig. 6. We use a five times larger
m, here than in ref. 8 because there are five helices (this m,
corresponds to a length of 0.3 um). Compared with the cor-
responding curves in figure 2 of ref. 8, we observe here that x
is near 1 even for quite small ¢/c, (because J; is much larg-
er). Consequently, P, starts its upward trend at a much
smaller c/c,, despite the larger m,. The experimental curve
(figure 4 of ref. 3) starts up at about ¢/c, = 0.2. Correspond-
ingly, 77 also reaches large values at relatively small ¢/c,. It
should be noted that the x curve must drop quite sharply for
c<2because x =1/2atJ; = kand x = 0atJ, = 0.

Inspection of this Monte Carlo example shows that it is a
quite good approximation to use

p _ Jl mo+1
oc = \k + J, (12]

Table 3. Some properties at several values of ¢

_ No. of phase

c Jp, 871 N changes

0 0.384 0 0

1.5 0.556 0.125 0

3 0.978 1.07 2

4.5 1.98 6.89 8

6 6.70 69.2 23

7 9.75 111 50

8 10.8 129 54

9 13.2 172 54
10 14.7 198 59
11 15.9 214 62
13 18.6 258 48
15 20.0 286 25

Proc. Natl. Acad. Sci. USA 82 (1985)

0.051

0.041

0.03

k k' s7!

0.02f

0.01F

FiG.3. Phase-change constants k and k', as functions of ¢, found
in the Monte Carlo example used.

up to about ¢/c, = 0.7. We have already noted that the ex-
perimental J; line (for the plus end) is significantly above the
Monte Carlo J; curve. If we make a hybrid calculation using
the Monte Carlo k from Fig. 3 and the larger experimental J,
(this is 5.364c — 0.37, with the c¢ scale adjusted to our c,
value), Eq. 12 leads to the dashed curve in Fig. 6 for P..
This curve starts up at about ¢/c, = 0.2, in agreement with
experiment (3).

IOOF
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~
-200 WI.O
~300 J0.5 =
400 3 10 13 0
¢, uM

F1G. 4. Macroscopic rate constants J, and J, (mean growth rate
in the two phases) found in the Monte Carlo example. J is the com-
posite growth rate of the MT end at steady state, from Eq. 5. The
critical concentration is ¢, = 9.97 (the value of ¢ at which J = 0).
The f, curve represents the fraction of time the MT end is in state 1
(growing, with cap), at steady state. At ¢ = c,, f, = 0.865.
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Fi1G. 5. Kinetic scheme for a two-phase MT aggregating on a nu-
cleated site. The integers 0, 1, 2, ... are values of m, the number of
subunits in the aggregate. The probability of state 0 (empty site) is
P,.

Going one step further, one could use experimental curves
for P,..(c) and J,(c) in Eq. 12 to deduce k(c)—a quantity not
easy to measure directly. The Mitchison-Kirschner curve

19000
18000
m 47000
16000
1.0 X 5000
fi(att.) - =
0.8F s 14000
7/
0.6} P/ 13000
(J; from M-K)/ Poce
0.4} Vs 12000
/
/
0.2} 4 41000
//
. pad ! A L A A
2 4 6 8 10
¢, uM

F1G. 6. Plots of x, f,, 7, and Py (solid curves) from Egs. 6, 9,
10, and 11, using the Monte Carlo rate constant functions k, k', Jq,
and J, in Figs. 3 and 4 and m, = 500. The dashed curve for Py is
based on Eq. 12, using the Mitchison-Kirschner (M-K, ref. 4) J;
line.
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Table 4. Calculation of & from experimental data

¢, uM Poce Jy, s k, s
5 0.138 18.73 0.0742
7.5 0.315 28.28 0.0653

10 0.512 37.83 0.0506

For experimental data, see refs. 3 and 4.

for P, (figure 4 of ref. 3) cannot be a true steady-state curve
because P,.. does not reach saturation at ¢ = 14 (the opera-
tional ¢,). However, if we ignore this for purposes of illustra-
tion and use J; = 3.82¢ — 0.37 (table 1 of ref. 4, with the
Mitchison-Kirschner c scale), we can use Eq. 12 (with m, =
500) to find the k values in Table 4. These are somewhat
larger than k in Fig. 3.

In summary, the two-phase model, using macroscopic rate
constants derived from Monte Carlo analysis of a microscop-
ic five-start helix model for a MT, appears to be consistent,
semiquantitatively, with the steady-state experimental re-
sults of Mitchison and Kirschner (3, 4). A closer fit was not
attempted because of computer expense.
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