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Abstract

Sleep spindles are discrete, intermittent patterns of brain activity that arise as a result of 

interactions of several circuits in the brain. Increasingly, these oscillations are of biological and 

clinical interest because of their role in development, learning, and neurological disorders. We 

used an internet interface to ‘crowdsource’ spindle identification from human experts and non-

experts, and compared performance with 6 automated detection algorithms in middle-to-older 

aged subjects from the general population. We also developed a method for forming group 

consensus, and refined methods of evaluating the performance of event detectors in physiological 

data such as polysomnography. Compared to the gold standard, the highest performance was by 

individual experts and the non-expert group consensus, followed by automated spindle detectors. 

Crowdsourcing the scoring of sleep data is an efficient method to collect large datasets, even for 

difficult tasks such as spindle identification. Further refinements to automated sleep spindle 

algorithms are needed for middle-to-older aged subjects.
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INTRODUCTION

Sleep spindles are measured by electroencephalography (EEG) as brief distinct bursts of 

activity in the sigma frequency range (11–16 Hz). They have a characteristic waxing and 

waning shape, and are a key EEG feature used during sleep scoring to define non-REM 

stage 2 (N2) sleep1. Sleep spindle characteristics such as density (events/min), amplitude or 

duration are very stable from night-to-night for an individual2, 3, but vary substantially 

between individuals4, 5. Spindle oscillation frequency tends to be slower anteriorly and 

faster centrally/parietally, suggesting there may be two types of spindles6. The formation 

and frequency of spindles have been used as markers of the developing brain in infants7 and 

change over the lifespan8–10. They are highly heritable11, 12, and are believed to play an 

important functional role in synaptic plasticity and memory consolidation during sleep13–16.

Sleep spindles are also clinically important because alterations in spindle density are 

observed in several disorders such as schizophrenia17, 18, autism19, epilepsy20, mental 

retardation7, sleep disorders21–23 and neurodegenerative diseases24. These are significant 

changes, as spindles result from interactions of several regions of the brain, including the 

thalamic reticular nucleus, thalamocortical relay neurons, the hippocampus, and the 

cortex25, 26. During wake, these same circuits are linked to learning, behavioral arousal, and 

sensory gating27. For this reason, identifying and studying characteristics of spindles may 

reflect the integrity of these circuits in selected pathologies, and could have diagnostic value 

as biomarkers.

Sleep spindles have traditionally been identified by visual inspection of the EEG by expert 

technologists in sleep clinics, who are trained in the interpretation of physiological signals 

from polysomnography. Visual identification by experts is the gold standard for spindle 

detection. However, visual identification of spindles is a slow and subjective process, and 

because of the rapidly growing biological and clinical interest in sleep spindles, several 

automated methods of spindle detection have been developed to speed up and standardize 

this process. There are several basic methodological strategies for automated spindle 

detection, and each has given rise to many closely related spindle detectors.

Schimicek et al. published one of the first automated spindle detectors based on a band-pass 

filtering and amplitude threshold approach28. Today, this method is still the foundation for 

numerous spindle algorithms used and optimized by different research groups8, 10, 29–40. 

Some algorithms replace the standardized band-pass filter with custom frequency range 

filters for each subject41–43. Another modification is to replace the initial band-pass filtering 

step by an appropriate wavelet transformation18, 44. Other modifications include using the 

shape of the spindle to determine the beginning and end of the spindle rather than having a 

signal exceeding a constant threshold for the entire spindle duration17, 45, 46.

However, the performance of many spindle detection algorithms has not been evaluated 

rigorously. Due to the difficulty in obtaining a gold standard dataset, algorithm development 
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and testing is frequently performed on the same data. Datasets are typically small (less than 

15 subjects) and very few of these detection algorithms have been cross-validated or 

evaluated in more than one dataset. Furthermore, many of these detectors are designed for 

use with EEG data from young adults. Spindle identification becomes a more difficult task 

in older subjects because spindle density, amplitude and duration decrease with age8, 10. 

Although there has been some testing of automated detectors in young adults, the 

performance of these detectors in older subjects is unclear.

The purpose of this study was to evaluate the performance of spindle identification by 

trained experts, non-experts, and automated spindle-detection algorithms. To evaluate 

performance, we compared the spindle detection of each scorer or group consensus to a gold 

standard dataset. We generated the gold standard data from the group consensus of 24 

experts, who visually scored sleep spindles in the stage N2 sleep EEG from 110 subjects 

from the general population. In order to collect this large dataset we crowdsourced the 

spindle scoring using an internet interface. This allowed trained experts at multiple sleep 

clinics to participate. In addition, we used the same interface to collect data from of 114 

non-experts, to determine how well they could perform on this skilled task. We developed a 

simple method for establishing group consensus, and made refinements to the performance 

evaluation of event-detectors for polysomnography data. Finally, one important goal of this 

study was to determine in an unbiased manner which of 6 previously published automated 

spindle detection algorithms had the best performance in our EEG data from older subjects. 

Overall, spindle detection performance was highest in individual experts and the non-expert 

group consensus, followed by all automated detection methods we tested.

RESULTS

The EEG data47 from C3-M2 of 110 healthy subjects was divided into 25 second epochs and 

in total, 24 experts viewed 10,613 epochs, and 114 non-experts viewed 21,499 epochs for a 

combined total of 32,112 epoch views. Collection of the expert data took more than 10 

months. Collection of the non-expert data took less than 4 days.

Generation of the Gold Standard

The gold standard was established from the expert scorers using the group consensus rule 

(Supplementary Fig. 1). Each expert viewed a mean of 442 epochs (Fig. 1a). Each of the 

2,000 epochs in the dataset was viewed by a mean of 5.3 experts. More than 87 % of the 

data was viewed by at least 4 experts (Fig. 1b).

The amount of consensus of the expert group is determined by the ‘threshold for expert 

group consensus’ (Tegc; see methods). To establish the gold standard dataset, we used a Tegc 

of 0.25. This value was used because it is the Tegc at which the mean individual expert 

performance is maximized, and the standard deviation of the mean individual expert 

performance is minimized (Fig. 1c). We also visually inspected the resulting dataset at 

various threshold values and found that Tegc = 0.25 captured the diversity of spindle 

morphologies with acceptable quality. Below Tegc = 0.25, there was a large increase in the 

number of spindles (Fig. 1d), mostly of questionable quality. At Tegc = 0.25, there were 
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1987 spindles in the expert group consensus (Fig. 1e). From this point, we refer to the expert 

group consensus data at Tegc= 0.25 as the ‘gold standard’.

Performance of Individual Experts

In a by-event analysis against the gold standard, the mean F1-score performance of 

individual experts was 0.75±0.06. In the by-sample analysis, the mean F1-score (0.69±0.06) 

and Cohen’s Kappa score (0.68±0.06, Supplementary Table 1) also indicate good agreement 

between individual experts and the gold standard, and low variability between experts. From 

the precision-recall plot, the performance of the individual experts is consistently high, 

although as expected, some experts emphasize high precision (i.e. greater positive predictive 

value in identifying spindles) at the expense of recall (i.e. spindle-detection sensitivity), and 

vice-versa (Fig. 1f).

However, the individual experts are being compared to a gold standard to which their 

scorings belong, giving them an advantage in the performance evaluation. To control for 

this, we also compared the individual experts against an expert group consensus in which 

they did not contribute spindle scoring (Fig. 1f; Supplementary Table 2). The mean F1-score 

in the by-event analysis of individual experts after this correction was 0.67±0.07.

Gold Standard - Sleep Spindle Characteristics

More than 70% of all spindles in the gold standard dataset were between 0.5 and 1 second in 

duration (Fig. 2a, Supplementary Table 3). However, in contrast to the American Academy 

of Sleep Medicine (AASM) criteria for a lower threshold of 0.5 seconds,1 we allowed a 

lower duration threshold of 0.3 seconds, and found 14% of spindles identified by experts fell 

in the 0.3–0.5 second duration range. We did not find any differences in spindle 

characteristics of spindles <0.5 seconds versus spindles >0.5 seconds; oscillation frequency 

was not significantly different, and a weak positive linear correlation between duration and 

maximum peak-to-peak amplitude was consistent for spindles of all durations. We speculate 

that spindles ≥0.5 seconds may be a good criteria for defining N2 sleep, but spindles <0.5 

seconds may have the same neurophysiological basis, and are therefore of interest. As well, 

only 15% of identified spindles had a duration > 1 second. The oscillation frequency of 

spindles varied from 10.5–16.1 Hz, with a mean of 13.3±1.0 Hz although slightly skewed 

towards higher frequencies around 14 Hz (Fig. 2b). The mean maximum peak-to-peak 

amplitude of spindles was 27±11 μV (Fig. 2c), indicating that the majority of spindles in this 

older cohort of subjects were of moderate-to-low amplitude. The mean percent-to-peak 

amplitude was 49±21% (i.e. very near the center of the spindle), indicating that on average, 

spindles tend to have a symmetrical waxing and waning profile (Fig. 2d).

In the gold standard dataset, spindle density was variable between the 110 subjects but had a 

mean density of 2.3±2.0 spindles/min (Fig. 2e). Consistent with previous reports, subject 

age was negatively correlated with spindle density (Fig. 2f)8, 9, 48. The mean maximum 

amplitude of spindles was significantly greater in females than males (Fig. 2g), and was 

negatively correlated with subject age (Fig. 2h). Spindle oscillation frequency tended to be 

negatively correlated with age although it was not statistically significant (R2 = 0.037, p-

value = 0.051). We also found the mean oscillation frequency and duration were 
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significantly different between subjects (Fig. 2i). Subjects did not have a clear bimodal 

distribution of spindle oscillation frequencies (Supplementary Fig. 2). This suggests that 

there are not discrete categories of ‘fast’ and ‘slow’ spindles at this central scalp location in 

older individuals, rather subject differences of ‘faster’ and ‘slower’ spindles, which may be 

the result of trait-like individual variation. We did not find a significant relationship between 

spindle density or spindle oscillation frequency with gender, body mass index, apnea/

hypopnea index, leg-movement index or total sleep time (linear regression p-values >0.05).

Performance of the Non-Expert Group

The 114 non-experts viewed a mean of 189 epochs each (Fig. 3a). The 2,000 epochs in the 

dataset were viewed by a mean of 10.7 non-experts (Fig. 3b). More than 99% of the data 

was viewed by 10 or more non-experts.

As a measure of performance, we calculated the precision and recall of individual non-

experts and the non-expert group consensus (Fig. 3c). The maximum by-event F1-score 

performance of the non-expert group was 0.67 at a threshold (Tngc) of 0.4 (Fig. 3d), although 

the group performed reasonably well across a range of consensus thresholds (F1-score > 0.5 

for 0.2 ≤ Tngc ≤ 0.5). There was a near exponential relationship between the amount of non-

expert consensus and the number of spindles identified (Fig. 3e). At Tngc = 0.4, the non-

expert group identified 1669 spindles (Fig. 3f), but only 1226 of these were correct 

(precision = 73%). In other words, of the 1987 spindles in the gold standard, the non-expert 

group correctly identified 1226 (recall = 62%). Further, the by-subject spindle density 

correlation was very high (R2 = 0.815; Fig. 3g).

For the non-expert group consensus, we did not perform any data cleaning and used data 

from all non-experts regardless of how many epochs they actually scored for spindles. 

Approximately 40 % of the recruited non-experts scored very little data (less than 15 epochs 

per non-expert). In addition, 11 out of the 2,000 epochs in the gold standard were not viewed 

by any non-experts. These epochs were interpreted as no spindle calls in the analysis of non-

experts since we intended for them to be scored. The performance of the non-expert group 

consensus compared to the gold standard remains high despite these limitations.

Performance of the Automated Detectors

We implemented and tested 6 previously published spindle detection algorithms. The by-

event F1-score of the automated detectors ranged from 0.21 to 0.52. (Table 1; 

Supplementary Table 1). Each automated detector tended to find a different balance between 

recall and precision (Fig. 4a). Detector a4 and a5 had the most balanced approaches (similar 

recall and precision scores), while a5 had the highest overall by-event F1-score of the 

automated detectors.

To determine whether automated detection of spindles could be improved by combining 

different detectors, we applied the group consensus rule to the group of detectors (Fig. 4a). 

The maximum F1-score performance of the automated group was obtained at a group 

consensus of 0.5 (F1-score = 0.54, Fig. 4b), but was only slightly better than the single best 
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automated detector. We attempted to further improve the performance by combining the 

results of automated detectors without success (Supplementary Note).

To measure the inter-detector agreement, we calculated the F1-score for each detector pair 

(Table 1). In general, detectors tended to agree with at least one other detector to a greater 

degree than with the gold standard. However, even detector pairs that were 

methodologically similar did not have good agreement between them; the mean agreement 

between a2-a3-a4, which all use RMS and a constant threshold, was F1-score = 0.21±0.14. 

The total number of spindles detected by each detector (range 479 – 13,784), the inter-

detector true positive spindle count, and the number of spindles detected in common by two 

detectors varied greatly (Supplementary Table 4).

The by-subject correlation of spindle density between the gold standard and the automated 

detectors ranged from R2 = 0.01 to 0.38 (Supplementary Fig. 3). We also compared sigma 

power as an estimate for spindle density in each subject and found that it predicted spindle 

density slightly better than the best single automated detector, but not better than the group 

consensus of the automated detectors (Fig. 4c,d,e).

To determine whether we could optimize the automated detectors to improve their 

performance, we varied their detection parameters to try and maximize their F1-score against 

the gold standard (Supplementary Fig. 4). We found that varying the detection parameters 

could alter the balance between recall and precision, and in the case of some detectors, 

improve the F1-score moderately (Supplementary Table 5). However, even with this attempt 

to over-fit the detector performance to our data, the maximum performance of any one 

detector was essentially unchanged (a5, maximum F1-score = 0.53).

Performance Comparison Between Groups

The by-event precision and recall of individual experts, the non-expert group, and the 

automated detectors were calculated against the gold standard (Fig. 5a). The by-sample 

performance of all groups was decreased relative to the by-event performance 

(Supplementary Table 1) due to the relaxed overlap threshold (Toverlap) we used for the by-

event analysis. Toverlap is the amount of overlap between an event and a detection that is 

required for a detected spindle to match a gold standard spindle event and therefore be 

considered to be a true positive (see methods).

The by-subject estimate of spindle density varied between the detectors (Fig 5b). The 

majority of automated detectors and the non-expert group tended to overestimate spindle 

density for each subject relative to the gold standard, leading to higher recall of spindles in 

the dataset, but lower overall precision. Detector a3 had the highest recall but overestimated 

spindle density in the dataset by a factor greater than 7 (Supplementary Table 6).

The majority of detectors, as well as the non-expert group had a tendency to underestimate 

the mean duration of spindles for each subject (Fig. 5c). Overall however, the range of mean 

spindle durations between detectors was quite small (0.55 – 0.82 seconds), suggesting that 

the detectors did a reasonable job of estimating average spindle duration (Supplementary 

Table 7).
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For evaluation of performance in the by-event analysis, we have allowed a relaxed Toverlap 

of 0.2. At this level of overlap, all groups perform at or near to their maximum F1-score, so 

we did not constrain performance by the overlap threshold (Fig. 5D; Supplementary Note). 

Finally, we wanted to determine whether the performance of either the automated detectors 

or the non-expert group could be improved by selecting a different level of expert group 

consensus for the gold standard. We found that performance could not be improved; each 

group performed near-maximal against the chosen gold standard of Tegc > 0.25 

(Supplementary Fig. 5).

We also tested the effect of reducing the minimum spindle duration from 0.5 s to 0.3 s on 

performance of the automated spindle detectors. We found that reducing the duration from 

0.5 s to 0.3 s had little impact on performance in 5/6 of the detectors (mean change in F1-

score = −0.03±0.02, t-test p-value = 0.84) and in one detector (a5), resulted in a large 

increase in performance (F1-score +0.16). This increase in performance appears to be due to 

the tendency of this detector to find many spindles of short duration (Fig. 5c) that would be 

discarded when using a 0.5 s minimum duration criteria. Taken together, the change of 

minimum duration did not negatively impact the performance of the automated detectors.

DISCUSSION

Individual experts had consistently high by-event performance, and we were able to further 

eliminate individual errors using the group consensus rule. As a group, the experts produced 

a high quality gold standard spindle dataset. To our knowledge, this is the largest and most 

comprehensively scored sleep spindle dataset used for validation of spindle detectors in 

older adults.

To our surprise, even though the spindle-detection performance of individual non-experts 

was highly variable and generally poor, the non-expert group consensus performed as well 

as some individual experts. This was striking, as we made no attempt at cleaning the non-

expert dataset through the removal of low quality scores or missing data; rather we collected 

a large non-expert dataset and let the group consensus dictate performance. Notably, even 

though 3–4 non-experts scored a lot of data and performed almost randomly (Fig. 3c), the 

group consensus rule efficiently screened out this bad data. For non-experts, we found that a 

higher level of group consensus (Tngc = 0.4) compared to experts (Tegc = 0.25) produced the 

highest overall performance, which is consistent with the lower level of skill in individual 

non-experts. These results suggest that crowdsourcing scorings from a large group of non-

experts is a viable method to generate large datasets of scored EEG events.

Also to our surprise, we found that the automated detectors performed substantially worse 

than anticipated in our dataset from older subjects. It was originally our goal to demonstrate 

how well the detectors perform, and identify which detector performed best relative to 

humans. However, automated detector performance varied substantially between detectors 

and was always inferior to human experts or the non-expert group. We were able to increase 

performance somewhat by using a group consensus rule, but improvement was marginal. In 

our dataset, the correlation between by-subject spindle density and the estimated spindle 

density from the best automated detector (a5; R2 = 0.38) was worse than relative sigma 
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power (R2 = 0.46) or the non-expert group (R2 = 0.81). This correlation with human scoring 

and relative sigma power suggests that for certain purposes, a large group of human non-

experts or relative sigma power may be more useful than existing automated spindle 

detectors at estimating spindle activity at the by-subject level.

We have implemented each detector as closely as possible to how it has been described 

previously in order to provide independent validation of their performance. We did not 

modify or optimize the algorithms because if we did not have a gold standard, there is no 

way to appropriately optimize the detector. This is the normal situation facing a researcher 

that wishes to implement a spindle detector in a research project. Without a reference gold 

standard, changes to the algorithm (such as tuning the detection to a specific spindle density) 

are arbitrary and can introduce a methodological bias.

However, because we have a gold standard, we could also make adjustments to each 

algorithm to estimate the maximum possible performance in our dataset from middle/older 

aged subjects. Although these results would be an over-estimate of future performance due 

to over-fitting, it does give an indication of maximum performance. By adjusting the 

detection parameters (primarily the amplitude threshold criteria), we could alter the balance 

of recall and precision for each detector, and in some cases improve F1-score moderately. 

However, we did not find significant increases in F1-score performance overall, and the 

maximum performance of the detectors remained essentially unchanged (a5, maximum F1-

score= 0.53).

There are several factors that could lead to the poor performance of the automated detectors. 

First, the mean age of subjects in this study was 57±8 years. Most of these detectors were 

designed to work in young, healthy subjects, and our performance measurements may not 

reflect performance in younger subjects. As expected, we find age-related decline in spindle 

amplitude, which likely impairs the performance of these amplitude-threshold based 

algorithms, and raises questions about whether this is a flawed methodological approach for 

detecting spindles in older subjects. As well, some automated methods use very 

individualized and specific band-pass approaches that require the detection of both ‘fast’ and 

‘slow’ spindles at a single location on the scalp. Spindles are believed to be local 

phenomena 49, and topographical differences in spindle frequency are well 

described 4, 16, 50. Our data only assessed spindles at C3, and spindles at other scalp 

locations may have different characteristics. However, we do not find good evidence to 

support two discrete populations of spindles at the C3 location in older subjects. The 

oscillation frequency distributions we observed between subjects (Fig. 2b) and within 

subjects (Fig. 2i; Supplementary Fig. 2) suggest that at C3, subjects have an individualized 

distribution, often around a single mean oscillation frequency.

In addition, numerous publications describing automated spindle detectors have evaluated 

performance using specificity (the fraction of true negatives that are truly negative). As 

spindles are rare events in a large EEG dataset, the uncalibrated specificity measurement 

will be consistently high (specificity of the automated detectors we tested ranged from 0.81 

to 0.99, Supplementary Table 1), and therefore provide an unrealistically positive and not 

particularly meaningful evaluation of performance. To avoid this pitfall, we have used 
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evaluation metrics inspired from information retrieval theory (precision, recall and F1-score) 

that are more appropriate to the analysis of discrete events in the EEG signal.

Although our results suggest that human spindle identification was superior to existing 

automated detection algorithms, there are inherent limitations to manually identified 

spindles. Automated detectors are more reliable, objective and efficient. It is also possible 

that automated detectors were able to find obscured spindles in the EEG signal that are 

difficult for the human eye to see. This may be particularly important in other stages of 

sleep, such as N3, where spindles are more likely to be obscured by slow waves. It is 

therefore a reasonable goal to try and find an automated detector to replace human scoring.

However, we find that the agreement between the different automated detectors is generally 

less than their agreement with the gold standard (Table 1, mean F1-score agreement between 

detectors = 0.32±0.16). In other words, this suggests that automated methods as a group 

were not consistent among themselves; they did not find the same ‘hidden’ spindles. In 

addition, each detector had a different bias towards precision or recall, resulting in the 

under- or over-calling spindle density. This is an important consideration when selecting a 

spindle detector. It will be important to reconcile the differences between human and 

automatically detected spindles, and the differences between automated detectors, before the 

automated detectors can be considered the gold standard.

Implementing the previously published spindle detectors was difficult as we found that 

almost all publications unintentionally misreported, omitted, or were unclear about critical 

technical details of the detector. (We emphasize that this is a common problem of 

computational sciences, rather than something unique to these publications51). As a result, it 

was difficult to reproduce the spindle detection algorithm using information from the 

publication alone. All of the authors of the detectors we tested were extremely cooperative 

and kindly shared the original algorithm code, or answered our questions on how to 

implement their detector correctly. However, considering these difficulties and inherent 

limitations to describing algorithms methods adequately, we strongly recommend that 

sharing the algorithm code directly should be seen as an essential part of any publication 

describing event detectors for physiological signals such as sleep polysomnography.

Improvements in automated spindle detectors can be expected when they are designed 

against large datasets that capture the diversity of spindle characteristics between subjects 

(including older age and patient populations), follow proper cross-validation techniques, and 

use appropriate metrics for assessing performance. Further, a more detailed definition of a 

sleep spindle is needed, and this definition should be based on the biology and 

neurophysiology of spindle characteristics. For example, our data suggests that the 0.5 

second minimum duration for spindles is arbitrary, and shorter spindles with the same 

characteristics as longer spindles appear to exist. Sleep technicians also frequently rely on 

spindles being a ‘distinct train of waves’ that is clearly distinguishable from background; 

this is a characteristic that is not captured well by current automated detectors. We argue 

that the most interesting feature of spindles is how distinctly different their bursting activity 

is from immediate surrounding activity, because of the neurophysiological changes that are 

required to generate these rapid changes.
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In conclusion, our study demonstrates that crowdsourcing experts and non-experts is a 

viable method for generating a large dataset of EEG event detections. Currently, the spindle 

detection performance of several automated algorithms was less than expert or non-expert 

group performance in this challenging dataset from older subjects. We generated spindle 

identifications across a large number of subjects, and found a large amount of inter-subject 

variation in spindles. This dataset will serve as an indispensable reference to reflect inter-

individual diversity in these traits, and as a platform to develop, improve and evaluate the 

performance of automated spindle detectors.

ONLINE METHODS

EEG Dataset

The EEG dataset used for spindle identification was extracted from a randomly selected 

subset of 110 subjects from the Wisconsin Sleep Cohort47. From 100 subjects, we randomly 

selected 230 seconds (~4 minutes) of artifact-free N2 sleep (2 blocks of 115 s, each block 

divided in 5 consecutive 25 s epochs overlapping 2.5 s, for a total of 10 epochs per subject). 

In the remaining 10 subjects we randomly selected 2300s (~38 minutes) of N2 sleep (20 

blocks of 115 s, each block divided in 5 consecutive 25 s epochs overlapping 2.5 s, for a 

total of 100 epochs per subject). Epochs containing EEG signal artifacts were discarded after 

visual inspection. In total, the raw EEG dataset was composed of 2,000 epochs of N2 sleep. 

The mean age of the 110 subjects was 57±8 years; 53% of the cohort was female. 

Demographics of the subjects are representative of middle to older-age subjects as in the 

parent Wisconsin Sleep Cohort, which is a sample of the general population (Supplementary 

Table 8). All subjects provided written consent, and data collection and usage was approved 

by the University of Wisconsin-Madison and Stanford University Institutional Review 

Boards.

Spindle Identification - Data Collection Using an Internet Interface

To collect a large sleep spindle dataset, we developed an internet interface so that 

identification could be collected remotely from a large group of scorers (‘crowdsourced’). 

The internet interface presented EEG data one epoch at a time and allowed the visual 

identification of sleep spindles by human scorers. The EEG data was displayed using an 

epoch length of 25 s to ensure that the entire epoch would fit in a standard size internet 

browser window, and would not require the scorer to scroll back and forth to view the whole 

epoch.

The data presented was from a single EEG channel (C3-M2), originally sampled at 100 Hz 

and filtered using standard clinical procedures (<0.3Hz, >35Hz1). Spindle amplitude and 

frequency is maximal at C350. An example of EEG data presentation using the web interface 

is shown in Supplementary Figure 6. We were particularly careful to ensure that data was 

presented in a familiar way for sleep experts (i.e. aspect ratio of the images was maintained, 

negative voltages were always displayed upward and values ranged from −50 to 50 μV; 

values out of this range were truncated to either of these limits). A 25 s epoch of EEG was 

converted to an image of size 900x90 pixels. Vertical gridlines identified 0.5 s increments.
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The EEG data was organized in blocks of 5 epochs from one subject, and the blocks of 

epochs were presented to the human scorers in random order. To minimize edge effects of 

identifying spindles that fell within an epoch boundary, epoch images were overlapped by 

2.5s, so that EEG data that fell at the edge of an epoch in one image would be 2.5s away 

from the edge in a subsequent image. Any spindle identifications that were falsely split due 

to epoch boundaries were merged using a simple rule: If the duration of the spindle was less 

than 0.3s and the adjacent spindle was less than 0.1s away, the two identifications were 

merged. Following merging spindles that were split by the epoch boundary, any remaining 

spindle identifications less than 0.3s were discarded. Overall, the merging rule resulted in 

merging of 6 spindles. Twenty-seven spindles in the gold standard dataset were discarded 

for being less than 0.3 seconds.

Spindle identification was performed in the interface by drawing a bounding box around 

spindle events. To indicate scoring certainty in the presence of a spindle, each bounding box 

had to be labeled with a confidence score: ‘Definitely’, ‘Probably’, ‘Maybe’/‘Guessing’. In 

cases where no spindle events were detected, scorers were allowed to indicate that they did 

not detect any spindles in that epoch by checking the ‘There are no spindles in the image’ 

checkbox. Scorers were able to go back and review or change their previous spindle 

identifications within a block of epochs.

Human Non-Expert Scorers

The human non-expert spindle scorers were recruited from the Amazon Mechanical Turk 

website (https://www.mturk.com/mturk/). The non-experts were paid piece-wise for their 

work, and were not screened for any experience with sleep or EEG data. Non-experts were 

instructed to read lay-language instructions on spindle identification (Supplementary Fig. 7) 

and performed a brief training session (15 epochs) before the actual spindle identification 

task.

Human Expert Scorers

Registered Polysomnographic Technologists (RPSGTs) were recruited as our expert scorers. 

These experts were recruited by word-of-mouth and from an advertisement on an online 

forum. In total, we recruited 24 experts from sleep clinics in the United States and Canada. 

Experts were instructed to read the same instructions and perform the same training session 

as non-experts. Experts were either paid piece-wise for the data collection or volunteered 

their time. The most productive experts received small gifts for their work.

Automated Spindle Detectors

We evaluated the performance of 6 previously published spindle detection algorithms that 

are commonly used in the research literature. These detectors are labeled as a141, a217, a331, 

a410, a518, and a645. These algorithms are similar in their basic methodology, and all but 

one18 rely on initial band-pass filtering in the spindle frequency range. We made one change 

to all of the automated detectors in that we allowed them to detect spindles with durations as 

short at 0.3 s, since spindles of this duration are included in our gold standard dataset.
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We implemented two methods10, 31 derived from Schimicek28 since many algorithms are 

branching off from it (see introduction). The method can briefly be described as band-pass 

filtering in the spindle frequency range, calculating the root-mean-square (RMS) of the 

signal in a moving window, and applying a constant threshold based on the amplitude of the 

RMS signal. Spindles are detected where the RMS exceeds the threshold for a specified 

minimum duration. The two implementations10, 31 differ in the frequency range of the band-

pass filter, in the time resolution and window size for calculating the RMS, and in the 

definition of the threshold.

Moreover, we implemented a wavelet based algorithm18. First the data is wavelet 

transformed using a complex morlet wavelet mimicking a spindle shape and frequency 

content. Afterwards the moving average of the coefficients is calculated and the mean is 

used to obtain the threshold for spindle detection.

We also implemented an automated detector that uses individual spindle characteristics of 

each subject prior to detection41. For this detector, precise frequency boundaries for slow 

and fast spindles are first derived from the all night average amplitude spectrum during N2 

sleep. We used data from C3 and O1 to determine individual spindle characteristics whereas 

the original method uses 29 channels. The spectrum is also used to derive the amplitude 

criteria for spindle detection. After determining these measures, data is band-pass filtered in 

either of the two bands and subjected to a constant threshold at the corresponding amplitude 

criteria.

Finally we implemented two methods that use the spindle envelope to find the beginning 

and the end of a spindle after a part of the signal within these boundaries has exceeded the 

threshold17, 45. One of the methods uses only local minima for boundaries17 whereas the 

other method uses local extrema of the signal and its first derivative45.

Pseudo-code of the different sleep spindle detector algorithms are presented in 

Supplementary Figure 8 to help the reader understand the details of how each detector 

works. Some detectors were originally implemented in other programs; for these, we have 

re-implemented the algorithms in MATLAB, and as such they may be slightly different 

from the original. In some cases, we confirmed the similarity of the output by running both 

the original and MATLAB implementation of the detector on the same dataset and 

comparing the results. Our MATLAB code for each detector is available as Supplementary 

Software.

Group Consensus Rule

In order to produce a high-quality gold standard dataset, we aggregated the identifications 

from multiple experts using a group consensus rule. The same group consensus rule is used 

to find the non-expert group consensus and the automated group consensus. Based on the 

confidence score provided by the human scorers, we assigned each annotation a weighted 

value: 1 (‘Definitely’), 0.75 (‘Probably’), 0.5 (‘Maybe’/’Guessing’) and 0 (Not Spindle). 

The automated spindle detections were always given a confidence value of 1. To find the 

group consensus at the ith sample we took the mean confidence values at the ith sample. To 

determine whether the group finds a spindle or not at each sample point, the group mean 
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confidence value must exceed the threshold (Tgc). The group consensus can vary from little 

consensus (gc >~0.0) to perfect agreement of all scorers (where gc = 1). An example of how 

the group consensus rule is applied for at Tgc of 0.25 is provided in Supplementary Figure 1. 

The group consensus threshold will be referred to as Tegc for expert group consensus, Tngc 

for non-expert group consensus and Tagc for automated group consensus. The gold standard 

is established from the expert group consensus at Tegc = 0.25. The strength of the group 

consensus method is that it requires agreement among the scorers and eliminates outlier 

data. In datasets such as EEG, where events such as spindles only make up a small 

proportion of the total data, poorly or randomly identifying events is unlikely to be included 

in the group consensus, as multiple scorers have to make the same identification. Real 

examples of the consensus in experts, non-experts, and automated detectors are provided in 

Supplementary Figure 9.

Performance Evaluation

Performance of human scorers or automated detectors was always compared to the gold 

standard. We define individual spindles in the gold standard dataset to be events (E), while 

individual spindles identified by humans or detected by automated algorithms to be event 

detections (D). For event detections in EEG data such as sleep spindles, performance can be 

assessed in three different data domains, each having a different unit of measurement: by-

sample, by-event and by-subject.

The by-sample performance analysis provides the most precise details about actual 

performance and is equivocally determined. However, since the unit of measurement is a 

sample point, it can be difficult to interpret the results because spindle events can be 

composed of variable numbers of samples. By-event performance evaluation is easier to 

interpret, but difficult to calculate because events and detections are of variable length and 

can have variable overlap. We will present a set of rules for matching spindle events and 

detections to accommodate less-than-perfect or multiple overlaps. The by-subject analysis, 

which summarizes information about each subject (e.g. spindle density) and is the easiest to 

calculate, does not provide any direct information about the detector’s ability to identify the 

location of spindles in the EEG data.

By-Sample Performance Analysis

In the by-sample analysis, the unit of measurement is digital sample points, which are 

uniform in length and non-overlapping (i.e. a signal sampled with 100 Hz contains 100 

samples per second). Building a classic 2x2 contingency table by calculating the number of 

true positive (TP), true negative (TN), false positive (FP) and false negative (FN) samples is 

straightforward (see Definitions, Supplementary Fig. 10). However, since spindle events in 

EEG are relatively rare, the vast majority of sample points in the data will be TN, regardless 

of how well a detector performs. For this reason, uncalibrated ‘specificity’ does not provide 

a meaningful assessment of performance. Instead, ‘recall’ and ‘precision’ provide a more 

useful assessment of performance and are calculated as:
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Recall is the same as ‘sensitivity’ or 1- ‘miss rate’. Precision is the same as positive 

predictive value (PPV), ‘selectivity’, or ‘hit rate’. Although the terms sensitivity and positive 

predictive value are more commonly used for diagnostic tests, the spindle detection task is 

more similar to the task of information retrieval, where precision and recall are more widely 

used. Precision and recall both can vary from 0 to a maximum of 1; a perfect scorer would 

fall in the top right corner of a precision-recall plot.

These two measures can be combined to obtain a single F1-score of agreement, which is the 

harmonic mean of precision and recall, ranging from 0 (no agreement with the standard) to 1 

(perfect agreement with the standard).

In the by-sample analysis it is also possible to calculate additional coefficients summarizing 

the performance using the contingency table, such as Cohen’s Kappa or Matthews 

Correlation Coefficient, which correct for the large bias toward TN in the sparse EEG 

dataset. We found that these coefficients gave similar performance results to the F1-score. 

The by-sample analysis penalizes detections that do not align perfectly with the matching 

event and therefore provides the most detailed and rigorous assessment of detector 

performance.

By-Event Performance Analysis

In the event-by-event analysis, the unit of measurement is the single sleep spindle, which 

can be variable in length. By-event scoring is classifying each spindle event and detection 

into a contingency table of TP, FP, and FN. Since non-spindle events (TN) are also variable 

in length and are not meaningful, they are not counted in the by-event analysis. As with the 

by-sample analysis, the by-event performance measures are recall, precision and F1-score.

To resolve the less-than-perfect overlap and multiple overlap problems between spindle 

events and detections, a matching procedure is used to establish event-detection (ED) pairs. 

Multiple overlaps are not allowed; only one D can be matched with one E. The best match is 

determined by the ED pair with the maximum intersection/union score (max OED) that 

exceeds the overlap threshold (Toverlap) which specifies how much overlap is required to 

match an E and D as an ED pair. In case of an exact tie in max OED scores, the temporally 

first ED pair is selected as the ED match. At the end of the matching procedure all matched 

ED pairs are TP, all unmatched E’s are FN, and all unmatched D’s are FP.
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Pseudo-code explaining the details of the event matching and scoring rule is presented in 

Supplementary Figure 11. Depending on the required Toverlap, the by-event analysis is less 

strict than the by-sample analysis, as it allows the spindle events to be detected with less-

than-perfect overlap. Throughout this study, we used a relaxed overlap threshold value of 

Toverlap = 0.2, unless stated otherwise. Since it provides the most intuitive results, the bulk 

of our performance evaluation for the detectors is presented using the by-event analysis.

By-Subject Performance Analysis

The unit of measurement in the by-subject analysis is the sleeping individual. Performance 

is based on how the aggregate measure of all spindle detected events for a sleeping 

individual (total spindle count, spindle density, mean spindle duration, etc.) correlates 

between the gold standard and scorer/detector estimate (linear model R2). The by-subject 

analysis is useful to investigate the superficial performance of the detection method. If a 

detection method performs poorly in the by-subject analysis it will also perform poorly in 

the by-sample and by-event analysis. However, the opposite is not necessarily true. The by-

subject analysis does not directly provide information on how spindle detections match with 

the actual spindle events in the EEG time series.

We also calculate mean relative sigma power of the EEG signal in the dataset to estimate 

spindle activity at the by-subject level. The relative sigma power is estimated in 2 second 

windows with 50 % overlap in all continuous segments of spindle scored data in each 

subject. The windows are Hanning corrected before being fast Fourier transformed. The 

relative sigma power is calculated as the absolute sigma power (sum between 11 and 16 Hz) 

divided by the difference in total power (sum between 0 and 30 Hz) and absolute sigma 

power. The relative sigma power for all windows is averaged to derive the mean relative 

sigma power per subject. Note that relative sigma power was only calculated on portions of 

EEG that are included in the dataset (not all N2 or all NREM).

Handling of Missing Data

When comparing an individual expert or non-expert to the gold standard, only the subset of 

the data viewed by the scorer is used for performance evaluation; an individual scorer is not 

evaluated on EEG data they did not view. Average group performance is simply the mean 

performance of all individuals in the group. Average group performance is therefore 

different than the performance of the group consensus, in which the single group consensus 

is formed using the group consensus rule, and then performance of this consensus is made 

against the gold standard. Note that any missing data at the group level (i.e. 11 epochs that 

were not viewed by any non-experts), were used in the group consensus performance 

evaluation and interpreted as no spindle identifications. This distinction was made to keep 

the gold standard dataset consistent in size, since we intended to have non-expert coverage 

of the entire dataset.
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Spindle Characterization

Identified spindles can be described by several characteristics including: oscillation 

frequency, maximum peak-to-peak amplitude, and spindle symmetry. After band-pass 

filtering the EEG containing the spindle between 11–16 Hz using a 253th order equiripple 

FIR filter with stop-band attenuations of 10−4 at 10 and 17 Hz, the oscillation frequency 

(Hz) is calculated by dividing the sampling frequency by the mean inter-peak interval within 

the spindle (maxima to maxima intervals and minima to minima intervals, ignoring minor 

fluctuations). The maximum peak-to-peak amplitude (μV) is the maximum difference 

between adjacent local maxima and minima (peaks) within the 11–16 Hz filtered spindle 

event. The spindle symmetry relates to the symmetry/skewedness of the spindle’s waxing 

and waning shape and is calculated by identifying the percentile within a spindle duration 

where the maximum peak-to-peak amplitude occurs; a spindle with the maximum amplitude 

exactly in the middle of the spindle duration would have a symmetry score of 0.5. Spindle 

characterization was performed on spindles in the gold standard (Fig. 2), as well as spindles 

identified by automated detectors (Supplementary Note; Supplementary Fig. 11 &12).

Statistical Analysis

Statistical analysis (two-tailed t-test, one-way ANOVA or linear regression as appropriate) 

was performed using R (http://www.r-project.org/). The significance threshold used was 

alpha = 0.05. Averages are shown as means ± standard deviations (SD). Histograms are 

plotted using the following conventions: If the data is non-continuous, the tick is centered in 

the bar. If the data is continuous, the bars are justified left (i.e. the value at the tick belongs 

in the bar to the right of the tick).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Generation of the gold standard and spindle detection performance of individual experts. (a) 

Histogram of the number of epochs viewed by 24 expert scorers. Each bin represents one 

expert, and they are arranged in descending order. (b) Histogram of the number of times 

epochs were viewed by a specific number of experts. (c) Mean by-event performance (F1-

score) of individual experts (shading is standard deviation) at varying thresholds of 

consensus. Average performance was maximized at Tegc = 0.25, and this level of group 

consensus was used to generate the gold standard expert dataset. (d) Number of spindles 

found at each Tegc threshold bin. Vertical line indicates optimal performance at Tegc = 0.25. 

(e) Cumulative number of spindles over the Tegc range. Horizontal line indicates the expert 

group identified 1987 spindles at Tegc = 0.25. (f) Precision-recall plot of individual expert 

performance. Each square is one expert; the intensity of the color is scaled according to how 

many epochs each expert viewed. The darkest squares are the experts that saw the most data. 

The line connected to each square indicates the decrease in performance in the leave-one-out 

analysis that excludes the individual from the expert group consensus to correct for reporting 

bias. The position of the square indicates the performance after correction.

Warby et al. Page 20

Nat Methods. Author manuscript; available in PMC 2014 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
By-event and by-subject characteristics of 1,988 spindles in the gold standard dataset. (a) 

Duration. (b) Frequency. (c) Maximum peak-to-peak amplitude in the 11–16 Hz band. (d) 

Symmetry, measured as location of the maximum peak-to-peak amplitude relative to the 

length of the spindle. Example spindles for each characteristic is provided above the 

histogram. Black bars indicate spindle identification. (e) Spindle density in the 110 subjects. 

(f) Correlation between spindle density and subject age (R2 = 0.055, p-value = 0.013). (g) 

Mean maximum peak-to-peak amplitude of spindles in females versus males (t-test p-value 

= 3.03e−6). (h) Correlation between maximum peak-to-peak amplitude and subject age (R2 = 

0.059. p-value = 0.016). (i) Spindle oscillation frequency between subjects (ANOVA p-

value = 9.93e−70), ordered by descending mean frequency.
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Figure 3. 
Consensus and performance of the non-expert group for spindle detection. (a) Histogram of 

the number of epochs viewed by each of 114 non-expert scorers. Each bin represents one 

non-expert, and they are arranged in descending order. (b) Histogram of the number of times 

epochs are viewed by a specific number of non-experts. (c) By-event precision-recall plot of 

non-expert performance. Each circle is one non-expert; non-experts that viewed the most 

data are the darkest circles. Non-expert group consensus is plotted as a green line; 

performance at each consensus threshold (0–0.9) is indicated with a green circle. 

Performance of the group consensus is remarkably good, despite individuals with very low 
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performance (bottom left). (d) F1-score performance of the non-expert group consensus at 

different consensus thresholds (Tngc) in the by-event analysis. Optimal performance was 

Tngc = 0.4. (e) Number of spindles found at each Tngc threshold bin. Vertical orange line 

indicates optimal performance of Tngc = 0.4. (f) Cumulative number of spindles over the 

Tngc range. Horizontal orange line indicates that the non-expert group identified 1669 

spindles at Tngc= 0.4. (g) By-subject correlation between spindle density in the gold standard 

and spindle density of the non-expert group consensus (Tngc= 0.4). Each datapoint is one 

sleeping subject; darker circles indicate multiple subjects at the same position in the plot.
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Figure 4. 
Automated spindle detector performance. (a) Precision-recall plot of 6 automated detectors 

(indicated by ‘a1’–‘a6’ text) and the automated group consensus curve (black line, labeled 

0.1–0.9) at different levels of consensus. (b) F1-score of the automated group consensus at 

different levels of consensus. Maximum performance was at Tagc = 0.5. Spindle density 

correlation between the gold standard density (Tegc = 0.25) and auto detector a5 density 

estimate (c), relative sigma power of the same segments of N2 sleep (d), or the auto group 

consensus density estimate (Tagc = 0.5, e). Each datapoint is one subject, darker points 

indicate multiple subjects at the same position in the plot.
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Figure 5. 
Performance of experts, non-experts and automated spindle detection algorithms. (a) 

Precision-recall plot of experts (red boxes, after correction with the leave-one-out analysis), 

non-expert group (Tngc = 0.0–0.9, green circles, also see Fig. 3) and automated methods (a1-

a6) in the by-event analysis. Highest performance is closest to the top-right corner of the 

plot. (b) By-subject density estimates for each of the automated methods (a1-a6) and the 

non-expert group (ng) against the gold standard (gs). Each dot is one subject. Dotted line is 

the mean density in the gold standard. The mean and standard deviation of each detector is 

indicated by orange horizontal and vertical lines respectively. (c) By-subject spindle 

duration estimates; dotted line is the mean spindle duration in the gold standard. (d) The 

effect of varying the required amount of overlap (Toverlap) between event and detection in 

order to be determined a true positive on the performance of the automated detector (a1-a6), 

non-expert group (ng, n=114, at ngc = 0.4) or the mean individual expert (e, n=24, red 

shading is standard deviation). Vertical orange line indicates the Toverlap threshold used by 

default in this study (0.2).
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