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Abstract

Rare single-gene disorders cause chronic disease. However, half of the 6,000 recessive single gene 

causes of disease are still unknown. Because recessive disease genes can illuminate, at least in 

part, disease pathomechanism, their identification offers direct opportunities for improved clinical 

management and potentially treatment. Rare diseases comprise the majority of chronic kidney 

disease (CKD) in children but are notoriously difficult to diagnose. Whole exome resequencing 

facilitates identification of recessive disease genes. However, its utility is impeded by the large 

number of genetic variants detected. We here overcome this limitation by combining 

homozygosity mapping with whole exome resequencing in 10 sib pairs with a nephronophthisis-

related ciliopathy, which represents the most frequent genetic cause of CKD in the first three 

decades of life. In 7 of 10 sib-ships with a histologic or ultrasonographic diagnosis of 

nephronophthisis-related ciliopathy we detect the causative gene. In six sib-ships we identify 

mutations of known nephronophthisis-related ciliopathy genes, while in two additional sib-ships 

we found mutations in the known CKD-causing genes SLC4A1 and AGXT as phenocopies of 

nephronophthisis-related ciliopathy. Thus whole exome resequencing establishes an efficient, non-

invasive approach towards early detection and causation-based diagnosis of rare kidney diseases. 

This approach can be extended to other rare recessive disorders, thereby providing accurate 

diagnosis and facilitating the study of disease mechanisms.

INTRODUCTION

Rare recessive diseases cause chronic diseases that often require hospitalization.1 For 

example, rare chronic kidney diseases (CKD) comprise the majority of cases treated within 

chronic dialysis and renal transplantation programs in the first 3 decades of life, but are 

notoriously difficult to diagnose.2 However, the genetic basis of approximately half of 

recessive diseases including CKD is still unknown (http://omim.org/statistics/entries). As 

recessive mutations represent directly the primary disease cause, gene identification offers a 

powerful approach to revealing disease mechanisms in such disorders. Furthermore, because 

recessive mutations predominantly convey loss of function, recessive single-gene defects 

can be transferred directly into animal models, to study the related disease mechanisms and 

to screen for small molecules as possible treatment modalities.

Nephronophthisis (NPHP) is a recessive cystic kidney disease that represents the most 

frequent genetic cause of CKD in the first three decades of life. NPHP-related ciliopathies 

(NPHP-RC) are typically recessive single-gene disorders that affect kidney, retina, brain and 

liver by prenatal-onset dysplasia or by organ degeneration and fibrosis in early adulthood.3 
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Ultrasonographically, NPHP are characterized by increased echogenicity and cyst formation 

at the corticomedullary junction in small or normal-sized kidneys (Figure 1).4 And renal 

histology exhibits a characteristic triad of renal corticomedullary cysts, tubular basement 

membrane disruption, and tubulointerstitial inflitrations.5 Regarding renal, retinal and 

hepatic involvement there is phenotypic overlap of NPHP-RC with Bardet-Biedl syndrome 

(BBS).6 Identification of recessive mutations in 15 different genes (NPHP1-NPHP15)7–20 

revealed that the encoded proteins share localization at the primary cilia-centrosomes 

complex, characterizing them as retinal-renal “ciliopathies”.3, 21 However, the 15 known 

NPHP-RC genes explain less than 50% of all cases with NPHP-RC, indicating that many of 

the genetic causes of NPHP-RC are still elusive.22, 23

Some of the more recently identified genetic causes of NPHP-RC are exceedingly rare.15 

This observation necessitates a strategy to identify additional genetic causes of NPHP-RC in 

single affected families. In this context whole exome capture with consecutive massively 

parallel sequencing, (here referred to as whole exome resequencing, WER), theoretically 

offers a powerful approach towards gene identification in rare recessive diseases.24 

However, the utility of WER is hampered by the large number of genetic variants that result 

from whole exome sequencing in any given individual.18, 25

To overcome the difficulty of variant prioritization in WER, we developed a strategy that 

combines WER18 with homozygosity mapping.26 We here apply this approach to 10 

families with siblings with the diagnosis of “NPHP-RC”, based on clinical, renal 

sonographic, and/or histologic findings. Using this strategy we identified the primary 

causative mutations in 7 of the 10 sib pairs (70%). In six families we detect mutations of 

known NPHP-RC genes. In two additional families we revise the erroneous clinical 

diagnosis of NPHP-RC through identification of mutations in SLC4A1 and AGXT. This 

established the correct diagnoses of distal renal tubular acidosis and hyperoxaluria, 

respectively, which had appeared as clinical phenocopies of NPHP-RC.

We hereby establish a non-invasive molecular genetic approach towards early detection and 

causation-based diagnosis of rare kidney diseases by applying WER and homozygosity 

mapping to sibling cases. The approach is efficient and can be extended to all rare recessive 

diseases, thereby facilitating the study of disease mechanisms.

RESULTS

Clinical features of sibs with an NPHP-RC phenotype

From over 500 families with a diagnosis on NPHP-RC that were referred to us from 

worldwide sources for molecular genetic diagnosis we selected sibling cases with no known 

primary mutations from 10 different families (Table 1). Inclusion criteria were a diagnosis 

of NPHP-RC in both siblings based on renal ultrasonographic4 (Figure 1) and/or histologic5 

findings characteristic for NPHP or a related ciliopathy. Many cases had extrarenal 

symptoms typical for NPHP-RC, including retinitis pigmentosa and neurologic involvement 

(Table 1).
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Homozygosity mapping in 10 sibs with a diagnosis of NPHP-RC

The finding that most of the known NPHP-RC genes (NPHP2-NPHP13) contribute 

causative mutations in only a small number of cases each (<1–3%)15 necessitates the ability 

to map and identify disease-causing genes in single families. We therefore employed a 

previously developed strategy,18, 26 that combines homozygosity mapping in single families 

with WER. We performed genome wide homozygosity mapping in the 10 sibships with 

NPHP-RC as described (see Figure S1).26 Eight families were known to be consanguineous 

and two had no evidence for consanguinity (Table 1). Homozygosity mapping yielded 

segments of likely homozygosity by descent (“homozygosity peaks”)26 in all eight families 

with consanguinity, but in none of the two families (A2841 and F838) without 

consanguinity (see Figure S1). This is consistent with our previous finding that individuals 

with known consanguinity exhibit segments of homozygosity upon mapping, whereas 

segments of homozygosity are rare in outbred families.26 In the eight consanguineous 

families the number of homozygosity peaks ranged from one to fifteen (Table 1 and Figure 

S1).

Mutations in six known NPHP-RC genes

Following homozygosity mapping and WER (Figure S1 and Table S1–S2), we identified 

recessive mutations in the known ciliopathy genes INVS/NPHP2, NPHP4, BBS1, BBS9, and 

ALMS1 in five families with multiple affected sibs with NHPH-RC (families A2204, A2557, 

A2882, A2888, and A2841) respectively (Table 1, Figure 2 and Table S1). Individual 

A2557-21 with a homozygous truncating mutation in NPHP4 had characteristic clinical 

signs (Table 1) and renal ultrasound features (Figure 1a) of NPHP. Interestingly, individual 

A2557-31, who is a cousin of A2557-21 and has the same mutation, developed end-stage 

kidney disease (ESKD) at 32 years. This late manifestation with ESKD beyond age 25 years 

is unusual in NPHP. Individuals A2882-21 and -22, who both carry a mutation in BBS1, 

presented with postaxial polydactyly and obesity. Mutations in ALMS1 cause Alström 

syndrome of which clinical features include blindness, obesity, type 2 diabetes, renal 

dysfunction, and hypertension. Individuals A2841-21 and -22, who have two truncating 

compound heterozygous mutations in ALMS1, presented with obesity, insulin resistance, 

retinitis pigmentosa and kidney enlargement which are consistent with the genetic findings.

Mutations in two known CKD genes phenocopy NPHP-RC

Surprisingly, in families F650 and A3254 we identified mutations in the known CKD-

causing genes SLC4A1 and AGXT1, respectively, that apparently represent phenocopies of 

NPHP-RC (Table 1).First, renal biopsy performed in both male siblings of family F650 at 19 

and 18 years of age, respectively, revealed the suspected diagnosis of NPHP-RC with cystic 

tubular ectasia (Table 1). This diagnosis was supported by the findings of polyuria, 

polydipsia, failure to thrive, coloboma of the eye, and metabolic acidosis, which was thought 

to be secondary to renal failure from NPHP. Subsequent renal ultrasound performed at 35 

and 34 years of age, respectively, also showed features characteristic of NPHP, including 

increased echogenicity and corticomedullary cysts in kidneys of normal size (Figure 1c). 

However, over the years both brothers developed requirement of oral bicarbonate 

supplementation of 3 g/day. They did not develop terminal renal failure by the ages of 35 
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and 34 years, respectively, and this late age of onset is not typical of NPHP. In addition, 

renal ultrasound showed increased echogenicity that was pronounced in the rims 

surrounding the corticomedullary renal cysts and in the pyramids (Figure 1d), a feature 

unusual for NPHP. Identification of a homozygous mutation that deletes a highly conserved 

amino acid residue in SLC4A1, which encodes the anion exchange protein 1 (AE1), enabled 

us to make the unexpected diagnosis of distal renal tubular acidosis (dRTA) (Table 1, Figure 

2 and Table S1). Recessive mutations of SLC4A1 have been reported previously to cause 

dRTA with and without red blood cell dysmorphology.27

In another family with two affected cousins, A3254 and A3255, we suspected infantile-onset 

NPHP-RC (Table 1). Individual A3254 had end-stage kidney disease (ESKD) at three 

months with small echogenic kidneys on renal ultrasound (Figure 1d). Individual A3255 

developed ESKD at 3 months of age, had brain atrophy and developmental delay, and died 

age 19 months. Both cousins displayed retinal pigmentation (Table 1). WER revealed a 

homozygous mutation in AGXT which encodes alanine-glyoxylate transferase 1, thereby 

establishing the diagnosis of hyperoxaluria type 1 (Table 1, Figure 1 and Table S1).28 Thus, 

in both families, we established an accurate molecular diagnosis by WER, which was 

previously incorrectly ascribed to NPHP-RC early in the disease course, even following 

detailed evaluation by renal biopsy or ultrasound.

In family F93 with four children with NPHP-RC and typical renal ultrasonographic features 

(Figure 1b), genetic mapping excluded the entire genome from linkage with a disease locus 

with the exception of the PKHD1 locus (Figure S1h). Although no mutations were detected 

in PKHD1 by WER, the mapping result implicates PKHD1 as the most likely causative 

gene, which is known to cause autosomal recessive polycystic kidney disease (ARPKD). 

The four affected children of family F93 had a phenotype unusual for ARPKD, because the 

kidneys were not enlarged, and there was extrarenal involvement with retinal coloboma.

Finally, two additional families, F838 and A2059 were non-consanguineous (Table 1) and 

did not yield homozygosity peaks upon genetic mapping (Figure S1i–j). In family F838 for 

which both affected individuals had a renal ultrasound consistent with NPHP (Figure 1e) we 

detected a heterozygous nonsense mutation in the ciliopathy gene INPP5E (Table 1 and 

Figure 2), but we were unable to detect any additional mutations in trans at the same locus. 

Finally, we were unable to detect a likely primary causal locus in family A2059 (Table 1 and 

Table S1). In addition, we examined variants in known ciliopathy genes in WER data of all 

10 families. The included genes were NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, 

GLIS2, RPGRIP1L, NEK8, SDCCAG8, TMEM67, TTC21B, WDR19, ZNF423, CEP164, 

BBS1, BBS2, ARL6, BBS4, BBS5, MKSS, TTC8, BBS9, BBS10, TRIM32, BBS12, MKS1, 

WDPCP, TMEM216, AHI1, and CCDC28B. However, we could not detect any additional 

pathogenic variants in these genes in the seven solved and three unsolved cases. 

Furthermore, we checked genomic structural variants including large deletions and insertion, 

inversions, replacements, and translocations for the three unsolved cases based on WER, but 

there was no significant structural abnormality observed.

Taken together, we identified the disease-causing gene in 7 of 10 (70%) sibships, suggesting 

that homozygosity mapping with WER provides an efficient approach for molecular genetic 
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diagnostics in diseases such as NPHP-RC and other ciliopathies where there is broad genetic 

locus heterogeneity.

DISCUSSION

Here, we demonstrate that WER, when combined with homozygosity mapping in sibling 

cases, represents a high-yield approach towards identification of primary causal mutations in 

rare recessive diseases. From our findings, we draw several conclusions: First, WER offers a 

viable, non-invasive approach for molecular diagnosis of rare recessive diseases. Second, 

however, to reduce the multitude of variants generated by WER, an a priori method to 

restrict this number is still required. Here, we show that the study of sib cases and the use of 

homozygosity mapping provides a robust solution to this problem. Third, using this 

approach, we achieved a high success rate for disease gene identification of 70%. In 

monogenic diseases about 85% of all recessive mutations are thought to reside within exons 

and adjacent intronic regions29 which are target regions of WER, so mutations in deep 

introns and promoter regions are not covered by WER. In addition, WER can miss a causal 

variant because of inadequate coverage (e.g. poor capture or poor sequencing) or inaccurate 

variant calling (e.g. a small but complex indel).30 Fourth, our study demonstrates that for 

individuals with childhood-onset renal failure, clinical diagnosis, renal ultrasound, and even 

renal histology represent relatively blunt diagnostic tools, which can be incapable of 

establishing the correct diagnosis. In this setting WER offers a powerful, non-invasive, cost-

efficient diagnostic tool for arriving at a correct, unequivocal, etiology-based diagnosis.31 

Fifth, rare, genetically heterogeneous chronic kidney diseases comprise the majority of cases 

of CKD in children but are notoriously difficult to diagnose. The use of WER will be 

beneficial for these individuals, because it will be possible to accurately assign them to 

therapeutic studies in larger cohorts. Sixth, our approach of combining homozygosity with 

WER can be applied to other rare recessive diseases. This may be of great clinical utility, as 

rare recessive disorders together cause a very high percentage of chronic diseases that 

require inpatient treatment in pediatrics. Finally, because WER reveals the major etiologic 

cause of a disease, gene identification will facilitate the elucidation of altered biological 

pathways, as well as the generation of animal models for testing of new treatment 

modalities.

WER now costs about $1,000 each per sample from several providers due to the substantial 

cost reductions associated with next-generation sequencing technologies. It usually takes 

four to eight weeks to get WER data after samples are submitted. Then, another four to eight 

weeks are required to analyze the WER data including alignments, variant filtering, 

confirmation and segregation analysis by Sanger sequencing. Therefore, the overall process 

usually takes at least two to three months. This is only valid when analysis of WER is 

combined with HM. When mapping data are not available, more time is necessary for 

evaluation and there is no standard protocol to filter variants from WER. Many laboratories 

are using their own way to filter variants and are evaluating WER differently. Therefore, to 

use WER widely as a diagnostic tool, a standard analytic pipeline should be established.
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MATERIALS AND METHODS

Study Participants

From worldwide sources we obtained blood samples, clinical and pedigree data following 

informed consent from individuals with NPHP-RC and/or their parents. Approval for human 

subjects’ research was obtained from the University of Michigan Institutional Review Board 

and relevant local Review Boards. The diagnosis of NPHP-RC was made by (pediatric) 

nephrologists based on standardized clinical32, 33 and renal ultrasound4 criteria. Renal 

biopsies were evaluated by renal pathologists.5 Clinical data were obtained using a 

standardized questionnaire (http://www.renalgenes.org). The presence of retinal 

degeneration or neurologic involvement was evaluated by ophthalmologists and (pediatric) 

neurologists, respectively. In about 500 different families with NPHP-RC we excluded 

homozygous deletions of the NPHP1 gene. In a subset of these families we excluded 

mutations in selected known NPHP-RC genes using an approach of high-throughput 

mutation analysis.34, 35 The remaining 10 families with multiple affected siblings without a 

molecular genetic diagnosis were entered into this study for homozygosity mapping and 

WER.

Homozygosity mapping

For genome-wide homozygosity mapping26 the ‘Human Mapping 250k StyI’ array or the 

‘Genome-wide Human SNP 6.0 Array’ from Affymetrix™ were utilized. Genomic DNA 

samples were hybridized, and scanned using the manufacturer’s standard protocol at the 

University of Michigan Core Facility (www.michiganmicroarray.com). Non-parametric 

LOD scores were calculated using a modified version of the program GENEHUNTER 

2.136, 37 through stepwise use of a sliding window with sets of 110 SNPs using the program 

ALLEGRO.38 Genetic regions of homozygosity by descent (‘homozygosity peaks’) were 

plotted across the genome as candidate regions for recessive genes (see Figure S1), as 

described.18, 39 Disease allele frequency was set at 0.0001, and Caucasian marker allele 

frequencies were used.

Whole exome resequencing (WER)

Exome enrichment was conducted following the manufacturer’s protocol for the 

‘NimbleGen™ SeqCap EZ Exome v2’ beads (Roche NimbleGen Inc.). The kit interrogates a 

total of approximately 30,000 genes (~330,000 CCDS exons). Massively parallel sequencing 

was performed largely as described in Bentley et al.40 For ten WER samples included in this 

study, the average of 118 million reads (100 bp) per each WER was obtained and the 

average coverage on target regions (exons) was 42.3 ± 13.4. For detail see Online Methods 

in Supplementary Material, available with the full text of this article at http://

www.nature.com/ki.

Mutation calling

Sequence reads were mapped to the human reference genome assembly (NCBI build 36/

hg18) using CLC Genomics Workbench™ (version 4.7.2) software (CLC bio, Aarhus, 

Denmark) as described in Online Methods in Supplementary Material. Mutation calling was 
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performed in parallel with a team of geneticists/cell biologists, who had knowledge of the 

clinical phenotypes and pedigree structure, as well as experience with homozygosity 

mapping and exome evaluation. Because exon capture with subsequent massively parallel 

sequencing yields too many variants from normal reference sequence (VRSs) to make a 

confident decision regarding the disease-causing mutation of a single recessive disease-

causing gene18, 25, we devised a strategy of a priori reduction of VRSs (see Online Methods 

(‘Filtering of variants from normal reference sequence’) and Table S1 in Supplementary 

Material).18

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Images of representative renal ultrasound (RUS) and renal biopsy findings in 
individuals with an initial diagnosis of “NPHP-RC”
(a) In A2557-21 with a mutation in NPHP4, RUS showed a normal-sized kidney with 

increased echogenicity when compared to liver (L), corticomedullary cysts (CMC) and loss 

of corticomedullary differentiation (CMD).

(b) In F93-29 with homozygosity mapping implicating the PKHD1 locus, RUS showed 

normal sized kidneys with small CMC and diminished CMD.
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(c) In both siblings, F650-21 (left panel) and F650-22 (right panel) with dRTA as indicated 

by a mutation in SLC4A1, RUS exhibits increased echogenicity and CMC in normal sized 

kidneys with loss of CMD, which prompted the diagnosis of NPHP-RC early in the course 

of disease.

(d) In A3254 (left panel) and A3255 (right panel) with the molecular diagnosis of 

hyperoxaluria type 1 as indicated by a mutation in AGXT, RUS of A3255 exhibited CMC. 

RUS of A3254 showed mild distention of the collecting ducts.

(e) Right kidneys of siblings F838-21 (left panel) and -22 (right panel) harboring a 

heterozygous mutation in INPP5E exhibited CMC and increased echogenicity comparable 

to liver (L) signal.
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Figure 2. Recessive mutations detected by WER in 10 sibling cases with an NPHP-RC phenotype
Families are listed in the same order as in Table 1. Family numbers (underlined), mutated 

gene, altered nucleotides and amino acid changes are given above sequence traces. Wild 

type control sequences are shown below mutated sequences. Codon triplets are underlined to 

indicate reading frame. Non-coding sequence is in lower case. Mutated nucleotides are 

denoted by an arrow head. All mutations were absent from >270 ethnically matched healthy 

controls. Five families have mutations in the known ciliopathy genes INVS/NPHP2, NPHP4, 

Gee et al. Page 13

Kidney Int. Author manuscript; available in PMC 2014 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BBS1, BBS9, and ALMS1. Two families have mutations in known NPHP-RC phenocopying 

genes (SLC4A1 and AGXT). In F838 a heterozygous mutation was detected in INPP5E.
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