Skip to main content
. Author manuscript; available in PMC: 2015 Apr 1.
Published in final edited form as: Clin Trials. 2013 Oct 3;11(2):246–262. doi: 10.1177/1740774513498322
model {
for(i in 1:sN) {
p[i]<-phi(mu[t[i]]+ vi[s[i], t[i]]) # model
r[i]∼dbin(p[i], totaln[i]) # binomial likelihood
}
for(j in 1:tS){
vi[j, 1:tN]∼dmnorm(mn[1:tN], T[1:tN,1:tN]) # multivariate normal distribution
}
invT[1:tN, 1:tN]<-inverse(T[ , ])
for (j in 1:tN){
mu[j]∼dnorm(0, 0.001)
sigma[j]<-sqrt(invT[j, j])
probt[j]<-phi(mu[j]/sqrt(1+invT[j, j]))
# population-averaged treatment specific event rate
}
T[1:tN,1:tN] ∼ dwish(R[1:tN, 1:tN], tN) # Wishart prior
for (k in 1:tN) {
rk[k]<- tN + 1 - rank(probt[],k) # ranking
best[k]<-equals(rk[k],1) # prob {treatment k is best}
}
for (j in 1:tN){ # calculation of RR, RD and OR
for (k in (j+1):tN){
RR[j, k] <- probt[j]/probt[k]
RD[j, k] <- probt[j]-probt[k]
OR[j, k] <- probt[j]/(1-probt[j])/probt[k]*(1-probt[k])
}
}
}