| model { |
| for(i in 1:sN) { |
| p[i]<-phi(mu[t[i]]+ vi[s[i], t[i]]) # model |
| r[i]∼dbin(p[i], totaln[i]) # binomial likelihood |
| } |
| for(j in 1:tS){ |
| vi[j, 1:tN]∼dmnorm(mn[1:tN], T[1:tN,1:tN]) # multivariate normal distribution |
| } |
| invT[1:tN, 1:tN]<-inverse(T[ , ]) |
| for (j in 1:tN){ |
| mu[j]∼dnorm(0, 0.001) |
| sigma[j]<-sqrt(invT[j, j]) |
| probt[j]<-phi(mu[j]/sqrt(1+invT[j, j])) |
| # population-averaged treatment specific event rate |
| } |
| T[1:tN,1:tN] ∼ dwish(R[1:tN, 1:tN], tN) # Wishart prior |
| for (k in 1:tN) { |
| rk[k]<- tN + 1 - rank(probt[],k) # ranking |
| best[k]<-equals(rk[k],1) # prob {treatment k is best} |
| } |
| for (j in 1:tN){ # calculation of RR, RD and OR |
| for (k in (j+1):tN){ |
| RR[j, k] <- probt[j]/probt[k] |
| RD[j, k] <- probt[j]-probt[k] |
| OR[j, k] <- probt[j]/(1-probt[j])/probt[k]*(1-probt[k]) |
| } |
| } |
| } |