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Abstract
A popular, if not centric, approach to the study of an event is to first consider that of the simplest
cause. When dissecting the underlying mechanisms governing idiopathic diseases, this generally
takes the form of an ab initio genetic approach. To date, this genetic ‘smoking gun’ has remained
elusive in diabetes mellitus and for many affected by neurodegenerative diseases. With no single
gene, or even subset of genes, conclusively causative in all cases, other approaches to the etiology
and treatment of these diseases seem reasonable, including the correlation of a systems’
predisposed sensitivity to particular influence. In the cases of diabetes mellitus and
neurodegenerative diseases, overlapping themes of mitochondrial influence or dysfunction and
iron dyshomeostasis are apparent and relatively consistent. This mini-review discusses the
influence of mitochondrial function and iron homeostasis on diabetes mellitus and
neurodegenerative disease, namely Alzheimer’s disease. Also discussed is the incidence of
diabetes accompanied by neuropathy and neurodegeneration along with neurodegenerative
disorders prone to development of diabetes. Mouse models containing multiple facets of this
overlap are also described alongside current molecular trends attributed to both diseases. As a way
of approaching the idiopathic and complex nature of these diseases we are proposing the
consideration of a MIND (mitochondria, iron, neurodegeneration, and diabetes) paradigm in
which systemic metabolic influence, iron homeostasis, and respective genetic backgrounds play a
central role in the development of disease.
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BORROWED EVOLUTION: BETA-CELLS AND NEURONS
Elements influencing the development of diabetes mellitus and a number of
neurodegenerative disorders have been well established (see reviews [1–16]), however,
given their complexity, a succinct analysis of major underlying themes spanning them has
yet to be presented. Approximately 60–70% of the 25.8 million Americans with diabetes
develop neurological symptoms and damage [17]. Moreover, more than 20
neurodegenerative syndromes among the 100 characterized so far are associated with
diabetes mellitus [18]. In Alzheimer‘s disease (AD) there is an approximately 35% diabetes
incidence [19]. Likewise, the presence of diabetes mellitus implies a 65% increased risk of
AD [20]. In order to explore these trends and the polygenic influences governing these
diseases we are considering two common areas linking them: mitochondria and iron. We
will start by making note of the inherent similarities between the neurological and endocrine
systems.

In 1869 Paul Langerhans identified and described the endocrine, or hormone secreting, cells
of the pancreas [21]. These clusters of cells have since been named the Islets of Langerhans
and been described in detail. Islets are composed of 5 known cell types, each playing an
independent role in endocrine regulation. In diabetes mellitus the insulin producing and
secreting beta-cells are of particular interest since these cells are generally dysfunctional or
altogether destroyed in events preceding the onset of diabetes. Interestingly, beta-cell
dysfunction in diabetes might provide a unique opportunity when considering different
etiological approaches to Alzheimer’s disease. This is due, in part, to an evolving realization
that beta-cells and neurons possess striking similarities, both functionally and in genetic
profile. In 2011 Arntfield and van der Kooy summarized the similarities between neurons
and beta-cells and suggested that in an instance of convergent evolution, beta-cells are
“borrowed from the brain” (Table 1, [22–44]). Basically, neurons and beta-cells are derived
from different tissue layers, ectoderm and endoderm respectively, but are very similar in the
way that they store, respond to, and transmit signaling molecules. Knowledge of the
similarities between beta-cells and neurons has existed for some time [35]. As early as the
1970’s it was discovered that the pancreas actually synthesizes, stores, and secretes gamma-
aminobutyric acid (GABA), a major inhibitory neurotransmitter [45]. Further investigation
revealed that beta-cells store and release GABA through synaptic-like microvesicles [26]. In
fact, glucose mediated secretion of GABA by beta-cells inhibits glucagon release from
alpha-cells [46]. Conversely, acetylcholine, another major neurotransmitter, is released from
alpha-cells resulting in beta-cells that are primed for adequate insulin response [47]. Similar
to neurotransmitter release in neurons, insulin secretion in beta-cells is accomplished via
membrane depolarization upon external cues. In diabetes, primary metabolic processes
governing glucose mediated insulin secretion are impaired. Comparatively, metabolic
processes governing synaptic plasticity and transmission are dysfunctional or impaired in
AD. It seems evident that diabetes mellitus and Alzheimer’s disease likely possess similarly
perturbed mechanisms that govern their pathology. Thus closer analysis of shared changes
and defects between these two diseases will prove beneficial.

In essence, diabetes and Alzheimer’s disease are simply complex and elicit significant
uncertainty in etiological studies. For this reason we are proposing that idiopathic cases arise
through each system’s predisposed sensitivity to metabolic influence determined not by a
single gene but rather by a genetic background whose composite function determines
susceptibility. More accurately, we posit that changes in bioenergetic homeostasis,
influenced largely by mitochondrial and iron related pathways, lie at the nexus of
neurodegeneration and diabetes (Figure 1).
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FORMING THE MIND PARADIGM: FRATAXIN, NCB5OR, AND THE
MONOGENIC CONTRIBUTORS

Friedreich’s ataxia (FA), a largely monogenic disease, provides a critical demonstration of
the link between mitochondria and iron in the processes and pathways governing
neurodegeneration and diabetes. FA patients experience peripheral nerve and dorsal root
ganglia atrophy, ataxia in all four limbs, dysarthria, cardiac abnormalities including
arrhythmia, and diabetes mellitus. The primary cause of FA is a significant reduction in the
availability of the mitochondria-localized protein frataxin as a result of a large GAA
trinucleotide repeat expansion in the first intron of FXN [48–50]. As is the case in other
trinucleotide repeat disorders, it is postulated that this expansion results in either delayed
transcription or altered transcript processing [51], or altered protein folding and translational
efficiency like that observed in Huntington’s disease [52–54]. Various studies suggest that
frataxin is a key component in iron-sulfur processing in the mitochondrial matrix [55, 56]. A
number of models for Friedreich’s ataxia have been developed, ranging from transgenic
mice to immortalized and induced pluripotent stem cell (iPSC) cell lines [57–59].

Other monogenic instances in diabetes and Alzheimer’s disease have been documented in
the forms of subtypes and models, representing a small percentage of the population for
which a single contributing factor can be identified [60–65]. Upon further examination, it
becomes evident that many of these monogenic causes lie in major pathways contributing to
metabolic flux, mitochondrial function, and regulation of iron metabolism and homeostasis
[64,66–70].

Monogenic Events in Diabetes
Maturity-onset diabetes of the young (MODY) and Maternally Inherited Diabetes and
Deafness (MIDD) can be considered two major, albeit rare, monogenic forms of diabetes
mellitus [60]. In MIDD, a single A→G mutation in the mitochondrial encoded gene for
tRNA leucine results in diabetes and deafness [71]. In parallel, more than half of the 6 genes
attributed to the development of MODY [60] impact features and pathways critical to proper
metabolic function [72, 73]. Other monogenic diabetes models include animals lacking
TFAM and Ncb5or [74]. In the latter case, no significant contribution has been assigned to
mutations or variations within the diabetic population [65], yet Ncb5or null mice develop
lean diabetes at age 7 weeks as a result of beta-cell demise and display gross mitochondrial
morphological changes accompanied by altered lipid metabolism [64, 70, 75]. Interestingly,
naturally occurring missense mutations in human Ncb5or lead to improper folding and
significantly reduced levels of intracellular Ncb5or [76]. Our recent data also suggest that
ablation of Ncb5or leads to iron dyshomeostasis [77]. Preliminary findings indicate
neuromuscular junction defects and behavioral changes associated with altered neurological
function in Ncb5or null mice (Stroh et. al, unpublished data). Since Ncb5or is ubiquitously
expressed, such cell specific phenotypes from an otherwise non cell specific gene provide a
useful framework to study correlation and causality in disease.

Monogenic Events in Alzheimer’s Disease
Alzheimer’s disease is the most prevalent neurodegenerative disorder, affecting 13% of the
population over the age of 65 [78]. Mutations in the amyloid precursor protein (APP), the
precursor to amyloid plaques at times considered to be a possible cause of Alzheimer’s
disease, have been associated with early onset, familial Alzheimer’s disease (FAD). The
Swedish mutation in APP leads to premature and accelerated cleavage of APP by β-
secretase resulting in accumulation of amyloid oligomers [62]. The toxicity and function of
β-amyloids has long been debated but recent evidence suggests that APP possesses
ferroxidase and iron export activity [67], which may indicate APP normally participates in
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iron homeostasis. Regulatory elements in the APP mRNA directly link its function to the
cellular iron status [66].

One of the best known genetic contributors to late onset Alzheimer’s disease (LOAD) is that
of the ApoEε4 allele. Patients who possess ApoEε4 have a significantly elevated risk, and
account for approximately 40% of the LOAD population [79]. ApoEε4 carriers also
demonstrate a reduced ability to clear Aβ42 amyloid deposits compared to those possessing
the ε2 and ε3 alleles [80]. Interestingly, evidence outlining metabolic brain abnormalities in
young and old ApoEε4 carriers alike suggests that metabolic decline, mitochondrial
dysfunction, and eventual hypometabolism are critical risk factors in the development of
ApoEε4 associated LOAD [81–88]. Less robust cognitive test performance in individuals
harboring the allele can be observed in middle adulthood [89]. These observations lend to
the notion that changes in the metabolic environment occur much earlier than the
development of the histologic hallmarks of Alzheimer’s disease, pointing to possible
upstream pathologies.

MITOCHONDRIA AND IRON IN SPORADIC ALZHEIMER’S DISEASE
Neurodegeneration is a generalized term used to describe loss of neuronal mass, locally or
globally, as well as systemic malfunction and eventual loss of efficient neural transduction
and communication. In either case these events can result from changes in extra-neuronal
networks by which the ideal neural environment is maintained, as is the case in multiple
sclerosis [90], to changes in individual neuronal environments directly impacting their
function. While it is obvious that genetic background plays a significant role in both
mechanisms, contemplating the impact of compounded genetic variability on disease
susceptibility is not so trivial. Changes in metabolic function and iron regulation are
observed in a number of neurological diseases yet the diseases remain pathologically distinct
[91]. For this reason, variables governing mitochondrial function and iron regulation warrant
further investigation. While many neurodegenerative diseases display abnormalities in
mitochondria and iron homeostasis, our focus will largely remain on changes in Alzheimer’s
disease.

In AD, the complexity of the disease is unmistakable with progressive cognitive decline
consistently out of sync with historical pathological mechanisms like altered APP processing
and amyloid fibril formation. In fact, significant amyloid plaque burden can be detected in
elderly but cognitively normal individuals [92]. Even so, the most current and popular
approaches to investigation and treatment are to simply analyze, understand, and eventually
remove amyloid plaque deposits. So far this strategy has yielded negative or inconclusive
results in clinical trials. Aβ oligomer deposition is a unique characteristic ascribed to
Alzheimer’s disease, however, inconsistencies in the effects of senile plaques call for
reassessing the role of toxic amyloid species in AD etiology [93] Not discounting the
downstream role of APP processing in the pathogenesis of Alzheimer’s disease, we would
like to focus on pathways that are potential targets for therapeutic intervention prior to
amyloid deposition and which aim to clarify susceptibility to the more common form of
Alzheimer’s disease, LOAD. With the aforementioned correlation between Alzheimer’s
disease and diabetes mellitus we will explore pathways that influence both diseases.

Mitochondrial and Metabolic Influence
Mitochondrial-derived metabolic dysfunction has been documented in multiple
neurodegenerative disorders [2, 94, 95]. One of the most recognized of these disorders is
Alzheimer’s disease, for which a mitochondrial cascade hypothesis has been proposed [96–
99]. Altered function in critical citric acid cycle components and electron transport chain
(ETC) complexes as well as altered glucose metabolism and insulin resistance have all been
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observed in AD [100–103]. It has even been suggested that Alzheimer’s disease is in fact a
form of type III diabetes. This assertion is based on evidence for impaired insulin response
pathways and insulin resistance in the Alzheimer’s brain [103, 104]. The most reported
functional deficiencies in ETC complexes arise in complex IV (cytochrome c oxidase;
COX) Vmax activities, with complex I and III activities closely following suit. Reduced
complex IV activity was first reported in mitochondria isolated from AD subject platelets
[105]. Further investigations probing COX activity in the AD brain also showed decreased
activity similar to that observed in platelet-derived mitochondria [106, 107]. This raised
questions as to whether mitochondrial dysfunction could influence neurofibrillary tangles
and amyloid plaque deposition. Early studies provided evidence that altered metabolism
impacted APP processing [108, 109]. Cytoplasmic hybrid (cybrid) studies, in which platelet
mitochondria isolated from AD patients are transferred to mitochondria-deficient (ρ0)
neuronal (neuroblastoma or teratocarcinoma) cells, have also reported changes in APP
processing and amyloid species production [110, 111].

In addition, cybrid studies show a profound shift in overall cellular bioenergetic equilibrium
with reductions in membrane potential and altered calcium homeostasis [111]. Changes in
calcium homeostasis are consistent with changes in mitochondrial regulatory pathways and
support observations that mice harboring presenilin 1 mutations, an established cause of
familial AD (FAD), display mitochondrial dysfunction and altered cytosolic calcium
homeostasis [112]. Such observations also provide evidence for mitochondria as an
upstream affecter in the production of β-amyloid since altered amyloid processing has been
correlated with altered calcium homeostasis [113]. Although there are conflicting accounts
as to whether β-amyloid itself induces or alters the calcium changes observed in AD [114],
cybrid studies provide insight into mechanisms that may nurture β-amyloid production prior
to its potential effects on intracellular calcium.

It is widely accepted that ETC activity naturally produces reactive oxygen species (ROS)
[115, 116]. ROS production and oxidative stress rapidly increases during times of cellular
stress and mitochondrial dysfunction, leading to significant damage to cellular organelles
and DNA. The frontal cortex of AD patients display oxidative stress [117] along with
increased levels of 8-hydroxydeoxyguanosine and 8-hydroxyguanosine in DNA and RNA,
respectively [118], which are also indicative of oxidative stress. Recently, investigators
demonstrated that, while multiple components of the ETC are sites of ROS production, the
contribution to total ROS production from each site depends largely on the substrates being
oxidized and not solely upon the protein function per se [118]. This provides further insight
into possible dietary and environmental factors that were not considered in previous studies.

Modes of inheritance for Alzheimer’s disease and Parkinson’s disease are sparsely
Mendelian, lending to investigations of inheritance patterns in non-monogenic populations.
These investigations have yielded ample data suggesting a maternal pattern of inheritance in
Alzheimer’s disease [119–121], consistent with maternal inheritance of mitochondrial DNA
(mt-DNA) [122]. The synthesis of this data in whole supports a mitochondrial cascade
hypothesis in which mitochondria and cell bioenergetics lie at the forefront of AD
pathology.

Iron Homeostasis in Neurodegeneration
Iron metabolism and dyshomeostasis is implicated in a number of neurodegenerative
disorders including Parkinson’s disease, Alzheimer’s disease, neuroferritinopathy,
aceruloplasminaemia, and neurodegeneration with brain iron accumulation (NBIA) [91].
Among them, AD and PD are the most prevalent forms without a single known cause. The
role for iron in the pathogenesis of PD is being investigated but remains elusive with
changes in iron and iron regulatory pathways consistently observed but spatially and
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temporally diffuse [123]. However, ample evidence supports consistent changes in redox-
active metals in the brains of AD patients [124, 125].

Early reports of iron accumulation in the AD brain [126] have led to interest in the
interaction and association of iron with the histologic hallmarks of the disease:
neurofibrillary tangles (NFT’s) containing hyperphosphorylated tau and Aβ containing
senile plaques. Iron accumulation in NFT’s and amyloid plaques, as well as in the broader
cortex, have been observed in AD patients and AD transgenic mouse models [127, 128].
Indeed, hyperphosphorylated tau-associated NFT formation has been shown to be induced
and reversed by Fe3+ and Fe2+, respectively [129]. In 2010, Duce et al. addressed questions
surrounding the function of APP by demonstrating ferroxidase activity in “a conserved H-
ferritin-like active site” within APP [67]. It was concluded that APP loads oxidized iron into
transferrin and demonstrates a significant interaction with ferroportin. These authors also
reported the inhibition of APP mediated iron export by Zn2+. Most relevant to observations
in AD patients, APP knockout mice demonstrated insufficient iron export capacity and
significant retention of iron in cortical neurons [130–132]. The intracellular retention of iron
likely potentiates a toxic cascade as Aβ mediated reduction of iron has been shown to
generate ROS, which in turn leads to increases in both APP and Aβ production [130–132].
Recently it was discovered that increased iron content from brain microbleeds enhanced the
neurotoxic effects of Aβ [133]. Also, changes in serum iron and copper homeostasis were
found to correlate and accurately predict cognitive decline [134]. It seems evident that iron’s
role in the pathogenesis of AD lies either upstream or in tandem with Aβ. In comparison, the
latter seems less likely as over expression of APP in trisomy 21 does not result in early life
fibrillar amyloid accumulation [135]. Instead, it is more likely that the effect of iron
accumulation on Aβ induced toxicity is the result of progressive insult to cellular iron
processing.

Iron-sulfur clusters (ISCs) and heme are iron-containing prosthetic groups at the catalytic
centers of many critical metabolic enzymes, including all four of the mitochondrial ETC
complexes, and are essential to enzymes responsible for H2O2 removal and maintaining
general cellular homeostasis. Mitochondria serve as the center stage for synthesis of ISCs
and heme [136]. As discussed earlier, mitochondrial and metabolic dysfunction are observed
early in AD [137]. Normally, aging is accompanied by increased mt-DNA copy number
which is likely a compensatory mechanism for an aged and dysfunctional mitochondrial
population [138, 139]. However, in the late stages of AD amplifiable levels of intact mt-
DNA are reduced, possibly through down regulation of PGC1α and mitophagy-induced
degradation of mitochondria [140]. Given the relationship between iron, APP, and senile
plaques, it seems likely that the intracellular recycling of large amounts of iron containing
mitochondrial protein coupled with reduced APP and thus reduced or impaired iron export
capability may compound bioenergetic decline in Alzheimer’s disease.

MITOCHONDRIA AND IRON IN IDIOPATHIC DIABETES
Diabetes mellitus can be characterized as a metabolic disorder for which three major types
are known: Type 1 (T1D), Type 2 (T2D), and gestational diabetes mellitus. T1D (or insulin
dependent diabetes mellitus) manifests as the result of autoimmune targeted destruction of
insulin-producing beta-cells in the pancreatic islets, leading to progressive loss of insulin
secretion resulting in absolute insulin deficiency. T2D, most often associated with obesity, is
characterized as hyperglycemia in the context of insulin resistance and relative insulin
deficiency. Gestational diabetes results in hyperglycemia and insulin resistance during the
term of pregnancy in formerly non-diabetic women. T2D accounts for 90% of diabetes
mellitus, whereas T1D and gestational diabetes, along with known and unknown monogenic
diabetes, comprise the remaining 10%.
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Insulin is a 5.8 kDa hormone produced by pancreatic beta-cells and in the brain in response
to elevated blood glucose levels. Insulin stimulation results in multiple complex, dynamic
changes and cascades within a cell ranging from changes in metabolic pathways and
bioenergetic flux to targeted transcriptional changes in the nucleus (for review see ref.
[141]). One of the primary changes that occur in diabetes mellitus is that of glucose
intolerance due to changes in insulin response. Many different, and often opposing, theories
have arisen in an attempt to target the mechanisms responsible, however due to the
complexity and variation within the disease little progress has been made. Diabetes mellitus
results in dramatic changes to global metabolic regulation and substrate utilization for
reasons that are undetermined, however significant evidence suggests that disturbed
mitochondrial function and iron homeostasis play a significant role.

Mitochondrial and Metabolic Influence
T2D is characterized by relative insulin resistance and impaired insulin secretion in the
presence of glucose. Changes in insulin secretion and response suggest attempts to
compensate for or regulate potentially harmful changes in metabolism. Mitochondria play a
significant role in regulating insulin secretion in beta-cells through regulating ATP levels
responsible for facilitating membrane depolarization and insulin granule, as well as
anaplerosis coupled, exocytosis (for reviews see ref. [142, 143]). Rapid, dramatic changes in
mitochondrial morphology upon glucose stimulated insulin secretion have been observed as
well as GTP modulated insulin secretion via changes in mitochondrial metabolism and
calcium homeostasis [144, 145]. Changes in mitochondrial and metabolic status in events
preceding the onset of diabetes have been recognized for some time and have led to multiple
theories proposing different roles for the observed mitochondrial dysfunction, as a
consequence or otherwise. Interestingly, changes in lipid oxidation and fatty acid storage
occur just prior to the disease with increased lipolysis accompanied by changes in
circulating free fatty acids [146]. It is debated whether this change constitutes a state of
compensation or mitochondrial dysfunction. This mainly stems from inconsistent
observations of the effects of fatty acid metabolism and altered mitochondrial function in
different diabetic populations (i.e. obese vs. lean) [147]. Normally, glucose stimulated
insulin secretion from beta-cells increases in the presence of fatty acids; however this has
been shown to decrease during prolonged fatty acid incubation [148]. In contrast, some
studies have found that increased fatty acid availability stimulates mitochondria-mediated
fatty acid oxidation in muscle [146]. This suggests that insulin resistance in the periphery is
not necessarily a product of mitochondrial dysfunction but rather a non-canonical shift in
primary bioenergetic pathways based on substrate availability. Still, mitochondria play a
critical role in regulating pathways mediating insulin secretion and response, making them
central to investigations of perturbed bioenergetic flux in diabetes.

In 1901 Eugene Opie discovered protein deposition in the pancreas of patients with
hyperglycemia, describing “hyaline degeneration of the islands of Langerhans” [149]. It
wasn’t until 1986 that islet amyloid polypeptide (IAPP) was identified and found to be a
primary component of these deposits [150]. It has since been discovered that more than 90%
of patients with T2D display IAPP associated protein deposition in the pancreas [151, 152].
The human form of IAPP (hIAPP) is secreted with insulin, although its exact function
remains unknown. Interestingly, IAPP and brain-associated APP share 90% structural
similarity [18, 152], with hIAPP also possessing structural characteristics that allow it to
form amyloid fibrils. hIAPP has been shown to induce loss of beta-cell mass through
mitochondrial dysfunction-induced activation of apoptotic pathways [153]. Results
regarding the potential of an FDA approved treatment for T2D in a transgenic FAD mouse
model were released in September of 2013. Liraglutide, a glucagon mimetic and GLP-1
agonist used to stimulate insulin secretion in the presence of glucose, was shown to result in
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decreased tau phosphorylation, decreased neurofilament formation, and increased memory
performance and ability in mice [154]. This is consistent with previous findings that
demonstrated reduced plaque formation and oxidative stress in transgenic mice treated with
GLP-1 [155]. It is not surprising that exendin-4, a GLP-1 agonist, protects beta-cells from
hIAPP-associated cell death through improved mitochondrial function and biogenesis [156].
Exendin-4 also increases adult neurite outgrowth of sensory neurons [157], a result
important in addressing diabetic neuropathy (vide infra). To our knowledge, the effects of
GLP-1 agonists on mitochondrial function and oxidative stress in the AD brain have yet to
be studied, although these results provide significant reason to suspect altered and improved
metabolic status as a result of GLP-1 receptor modulation.

Iron Homeostasis in Diabetes
The effects of iron overload and dyshomeostasis in the pathophysiology of diabetes is
relatively understudied. However, an increased interest has been generated with multiple
groups finding an increased risk of T2D and insulin resistance associated with alterations in
tissue iron content, iron metabolism, and iron overload [158–160]. Increased serum ferritin
concentration, an indicator of tissue iron status, was positively correlated with the risk of
developing T2D [161]. More studies have confirmed the increased risk of diabetes with high
normal or above normal serum ferritin levels and suggested that iron deficiency may not
provide protection against this risk [162]. A recent study evaluated ferritin and transferrin
saturation in pre-diabetes concluded that high ferritin combined with low transferrin
saturation was associated with a higher risk of developing pre-diabetes [163].

Hereditary hemochromatosis, or iron overload, is commonly caused by mutations in the
HFE gene and provides the strongest evidence of systemic iron changes leading to T2D. An
allelic variant of HFE linked to hemochromatosis, termed the ‘D allele’, was shown to
increase the risk for diabetes [164]. HFE associated diabetes suggests that changes in
systemic iron homeostasis, particularly iron overload is associated with diabetes incidence.
This has been strengthened with observations that dietary intake of red meat, a significant
source of heme iron, is positively correlated with an increased risk of T2D [165]. Also,
frequent blood donations and iron chelation therapy are shown to improve diabetes in T2D
patients [166].

With little indication as to the exact role of iron overload in the risk for diabetes it is difficult
to say whether iron dyshomeostasis is a catalyst or artifact of the disease. Studies on frataxin
and Ncb5or pathways will help to provide novel insights into roles of iron metabolism in
diabetes.

ALZHEIMER’S DISEASE, PARKINSON’S DISEASE, AND DIABETIC
NEUROPATHY

Diabetic neuropathy is a generalized term describing changes and defects in the nervous
system of patients diagnosed with diabetes mellitus. Diabetic neuropathy does not
discriminate between T1D and T2D. Several forms exist and can be divided into two distinct
groups: generalized symmetric polyneuropathies (acute sensory, chronic sensorimotor,
autonomic), and focal and multifocal neuropathies (cranial, truncal, focal limb, proximal
motor, chronic inflammatory demyelinating polyneuropathy) [167]. Numerous studies have
observed changes in bioenergetic pathways and mitochondrial function in diabetic
neuropathy-associated neurodegeneration for both T1D and T2D (for reviews see [168,
169]). In fact, improving mitochondrial bioenergetics through NF-κB activation prevents
sensory neuropathy in mouse models of T1D [170]. The glycolytic byproduct
methylglyoxal, a reactive form of pyruvate that plays a role in the development of advanced
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glycation endproducts (AGE’s), is of particular interest to diabetes and diabetic neuropathy
[171]. AGE’s have been positively correlated with diabetic nephropathy along with a
number of different diabetes associated complications [171] [172]. A recent investigation
found that methylglyoxal mediated modification of the Nav1.8 sodium channel is associated
with hyperalgesia in diabetic neuropathy [173], implicating a direct role for methylglyoxal
in diabetes-induced nociceptive pain. In addition, a novel neurotoxin known as ADTIQ (1-
acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) discovered in the brains of PD patients
has been found to be the result of methylglyoxal reacting with dopamine [174]. It has been
suggested that this neurotoxin, the result of altered bioenergetic homeostasis and a specific
neurotransmitter, might be a common pathogen between Parkinson’s disease and diabetes.

Both T1D and T2D result in impaired memory and learning, however the distinctions
between T1D- and T2D have led to much debate as to the underlying cause. Traditionally,
impaired insulin signaling was primarily attributed to T2D and thought to be a larger risk
factor for developing AD compared to T1D. However, recent studies have demonstrated
worsened AD associated phenotypes in the context of T1D [175, 176], blurring the lines
between T1D and T2D in AD. Still, little is known of the effects of AD on peripheral
neuropathy. Interest has been generated due to reports of the underrepresented population of
dementia patients who experience pain [177], but it is not immediately clear whether pain
associated with dementia is the result of true neuropathy or that of altered pain perception.
In 2012, Jolivalt et al. provided physiological evidence that APP transgenic mice
demonstrated “similar patterns of peripheral neuropathy” when compared to insulin-
deficient mouse models [178]. This was attributed to impaired or altered insulin signaling
through lowered insulin receptor phosphorylation as well as altered GSK3β-mediated
metabolic regulation. Changes in insulin signaling and regulation are found in both diabetes
and AD (for review see [179]). Deficiencies in metabolic processes and pathways are clearly
identified in both diseases, thus the presence of peripheral neuropathy like phenotypes in
AD mouse models suggests shared pathogenic mechanisms.

GENETIC VARIATION, DISEASE SUSCEPTIBILITY, AND POTENTIAL
THERAPEUTICS

A variety of neurodegenerative diseases display characteristics of MIND paradigm-
associated defects. Still, with all of the data presented and available, the polygenic nature of
these diseases makes identifying viable therapeutic targets the rate limiting step in treatment.
Traditionally, successful treatment development relies on two inherent criteria: disease
incidence/impact and identifiable therapeutic targets. In complex, sporadic diseases like
Alzheimer’s disease or Parkinson’s disease, the incidence of the disease is profound and
indisputable. However, progress falls short when treatment is focused on therapeutic targets
which are not major contributors to the majority of the disease.

The popular belief that Aβ initiates AD pathogenesis set off a plethora of anti-amyloid based
treatments [180–182]. So far targeting senile plaques in clinical trials has failed to stop or
even conclusively slow disease progression [183–185]. This implies amyloid deposition may
represent a consequence, as opposed to cause, of the disease. A recent study of microbleed
events associated with β-amyloid immunization has concluded that immunization actually
facilitates cerebral microbleeds and worsens iron deposits in the choroid plexus [186].

In light of these failed treatments, new approaches are needed. This can likely be achieved
through targeted manipulation of multiple pathways based on currently unidentified
endophenotypes. In AD, mitochondria-associated endophenotypes have been considered due
to the maternal inheritance associated with sporadic AD and correlative maternal mt-DNA
inheritance [187]. With enough evidence supporting a mitochondrial and metabolic role in
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disease, a novel approach to treatment strategy has been proposed. Termed “bioenergetic
medicine”, the rationale behind the approach involves the manipulation or support of those
pathways that influence or are directly involved in bioenergetic flux [188]. This includes
previously described mitochondrial medicine approaches in which mitochondria and
mitochondrial regulated cellular processes are targeted. These approaches include
manipulating ETC components based on the functional state of mitochondria or cell energy
status, influencing mitophagy events, changing mitochondrial mass, and even directing
mitochondrial mediated apoptotic events [187]. Targeting bioenergetic flux for treatment
might be better understood in the context of AD pathology.

During the early stages of Alzheimer’s, prior to mild cognitive impairment syndrome, β-
amyloid deposition is abundant. It isn’t until after senile plaque formation drastically slows
that the disease manifests. It has been suggested that the early deposition of senile plaques is
coupled with a state of compensated metabolic function [99]. That is, compensation for
dysfunctional metabolic processes is responsible for β-amyloid production in the events
preceding cognitive impairment, representing a form of compensated brain aging. At the
point at which the framework supporting these compensatory actions is stressed to fracture,
metabolic processes are down regulated and hypometabolism sets in. At this stage, plaque
deposition halts and uncompensated brain aging occurs, resulting in the onset of the clinical
symptoms of Alzheimer’s disease (Figure 2). The notion of compensated vs. uncompensated
states of dysfunction can also be applied to patterns in diabetes, with changes in metabolic
flux, beta-cell mass, and global metabolic regulation differing from prediabetes to clinical
onset [189–193]. In addition, pre-diabetic Ncb5or knockout mice show a marked increase in
metabolic rate prior to the onset of diabetes [194]. It is possible, and even probable, that
mechanisms similar to those responsible for compensated brain aging play a role in the
events preceding the development of diabetes mellitus. Therefore, investigating pathways
contributing to metabolic flux and dysfunction in both AD and diabetes will provide novel
therapeutic insights.

The mitochondrial cascade hypothesis has helped to provide a broad overarching perspective
to evidence of altered brain bioenergetics and mitochondrial function in AD. However,
identifying targets for therapeutic intervention is as complex as the disease itself. This is
due, in part, to the infancy of risk estimation incorporating both familial history and genetic
background in complex diseases [195]. The identification of endophenotypes and eventually
multiple and specific targets in complex diseases will require personalized approaches to
treatment, complicating the issue further. In short, complex diseases will require complex
treatment. So with the development of complex, personalized treatment on the seemingly
distant horizon, progress toward effective therapy can likely be made through evaluating the
MIND paradigm.

CONCLUDING REMARKS
Understanding the nature of sporadic, complex diseases has long been pursued through
approaches that are designed for simple explanation. Unfortunately, this has left
advancements in treatments for diseases like Alzheimer’s disease slow moving and at times
even retrograde. This is where analyzing the multifactorial nature spanning multiple
diseases, such as the MIND paradigm, can make a significant contribution to changes in
epidemiology and eventually therapy. Diverging from traditional modes of thought is
inherently difficult, especially in scientific investigation. To better pursue balance it is
essential to first define a fulcrum. In complex diseases this comes in the form of defining
cellular or systemic homeostasis by genetic composition. Adequate treatment can be
designed only when recognizing that balance is not universal in the biological processes of
non-uniform populations.
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Figure 1.
Exploring the MIND paradigm, bioenergetic homeostasis lies at the nexus between common
defects found in neurodegenerative disease and diabetes mellitus. Mitochondria and iron
play a critical role in bioenergetic homeostasis, suggesting that disturbances in proper
mitochondrial function and iron metabolism result in dysfunction common to both diabetes
and neurodegeneration.
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Figure 2.
A.) Visual representation of bioenergetic homeostasis, with the midline indicating an ideal
flux/balance in bioenergetic pathways. Distorted mitochondrial function and iron
metabolism result in bioenergetic dysfunction, shifting away from ideal bioenergetic
homeostasis. B.) Graphical representation of compensated vs. uncompensated states of
bioenergetics in AD. Ideally, bioenergetic homeostasis results in compensated aging and no
plaque deposition (top). However, in instances of bioenergetic dysfunction plaque
deposition occurs during compensated brain aging. At the point at which compensatory
mechanisms fail, plaque deposition slows or stops and disease manifests (middle). Severe
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bioenergetic dysfunction results in the same trend, however this occurs at a much earlier age
(bottom).
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Table 1

Similarities between neurons and beta-cells as described by Arntfield et. al [22]. Adapted with permission
from John Wiley and Sons, Inc.

Category Similarity Description

Physiology & function

APUD phenotype & paraneuron
concept

All endocrine cells have the ability to take up and decarboxylate amine
precursors, as well as produce polypeptide hormones [23], features that
they share with neurons [24].

Neurotransmitters β-Cells synthesise glutamate and use it for intracellular signalling in
glucose-responsive insulin secretion [25].

Neurotransmitter assembly proteins β-Cells express glutamic acid decarboxylase, an enzyme found in gamma
aminobutyric acid (GABA)-secreting neurons but not other cell types [26].

Neurotransmitter receptors β-Cells contain glutamate receptors, which are mainly found in the central
nervous system [27].

Secretory granules & microvesicles β-Cells store insulin in secretory granules that are secreted from synaptic-
like microvesicles [26].

Action potentials Pancreatic β-cells are capable of generating action potentials similar to
those used by neurons to transmit signals along their axons. These action
potentials may cause the release of insulin from b-cells in a manner akin to
the release of neurotransmitters from neurons [28].

Glucose response Neurons in the hypothalamus can sense blood glucose levels and are
stimulated by changes in the same way β-cells are [29].

Schwann cells Islets are surrounded and highly penetrated by Schwann cells, the major
glial cell of the peripheral nervous system [30]. These Schwann cells may
be functioning as support cells for both the islets and innervating neurons
[30].

Cell migration The migration of pancreatic precursors into the surrounding mesenchyme
has been shown to be dependent on the axon guidance protein, netrin-1
[31].

Adhesion molecules Endocrine cells of adult mammalian islets associate partially by the
expression of neural cell adhesion molecule (NCAM) [32].

Gene expression

Global gene expression β-Cells are more similar in global mRNA expression and chromatin
methylation pattern to neurons than any other cell type, including
pancreatic acinar cells [33].

Sodium channels Islet cells express the alpha-1 subunit sodium channel mRNA which is
primarily expressed in the brain [34].

Neurofilaments Dissociated b-cells have been found to synthesise neurofilaments in vitro
which may be recapitulating their developmental migration [26].

REST expression β-Cells lack expression of repressor element 1 silencing transcription
factor (REST) which is expressed in non-neuronal cells and suppresses the
neuronal phenotype [35].

Insulin & other pancreatic endocrine
hormones

Insulin, glucagon and ghrelin are expressed in the brain during
development and in adulthood [36, 37].

Glucosetransporters The β-cell specific glucose transporter, Glut-2, is expressed in certain
regions of the brain, including the hypothalamus, one of the sites of insulin
action [38].

Isl-1 The homeodomain protein Isl-1 is expressed in mature pancreatic
endocrine cells, calcitonin-producing thyroid cells and neurons of the
peripheral and central nervous systems [39].

Development

Pax-6 Pax-6 is involved in development of a-cells of the pancreas and proper
insulin secretion from b-cells [40], as well as neurogenesis in the
developing central nervous system [41].

Nkx6.1 Nkx6.1 is a transcription factor involved in the formation of b-cells in the
pancreas [40] as well as maturation and migration of hindbrain motor
neurons [42].
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Category Similarity Description

Notch Notch is a transmembrane signalling protein that has been implicated in
maintaining pancreatic precursors in a proliferative state, as well as
influencing cell fate decisions [40]. Notch has been shown to have similar
functions in the developing nervous system [41].

Neurogenin The transcription factor neurogenin-3 is repressed by Notch and when
activated it contributes to specification of endocrine cells in the pancreas
[40]. Notch may also repress neurogenin-1 and 2 which are involved in the
specification of neurons from neural progenitors [41].

HB9 HB9 is expressed in the embryonic gut and initiates formation of the
pancreatic bud and is later expressed in mature b-cells [40]. BHB9 is also
expressed in embryonic and adult motor neurons [43].

PDXI The pancreatic specific transcription factor PDXI is turned on in the brain
during development [44].
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