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Abstract The Ca2+ transport ATPase (SERCA) of sarcoplas-
mic reticulum (SR) plays an important role in muscle cytosol-
ic signaling, as it stores Ca2+ in intracellular membrane bound
compartments, thereby lowering cytosolic Ca2+ to induce
relaxation. The stored Ca2+ is in turn released uponmembrane
excitation to trigger muscle contraction. SERCA is activated
by high affinity binding of cytosolic Ca2+, whereupon ATP is
utilized by formation of a phosphoenzyme intermediate,
which undergoes protein conformational transitions yielding
reduced affinity and vectorial translocation of bound Ca2+. We
review here biochemical and biophysical evidence demon-
strating that release of bound Ca2+ into the lumen of SR
requires Ca2+/H+ exchange at the low affinity Ca2+ sites.
Rise of lumenal Ca2+ above its dissociation constant from
low affinity sites, or reduction of the H+ concentration by high
pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+

release into the lumen of SR is bypassed, and hydrolytic
cleavage of phosphoenzyme may yield uncoupled ATPase
cycles. We clarify how such Ca2+pump slippage does not
occur within the time length of muscle twitches, but under
special conditions and in special cells may contribute to
thermogenesis.
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SERCA Sarcoplasmic reticulum Ca2+ ATPase
SSM Solid supported membrane
SR Sarcoplasmic reticulum
SLN Sarcolipin
PLN Phospholamban

Introduction

Sarcoplasmic reticulum (SR) membrane vesicles, originally
referred to as “relaxing factor”, were first isolated from skel-
etal muscle by Ebashi and Lipmann (1962), and Hasselbach
and Makinose (1962), and were shown to contain a P–type
ATPase (SERCA1 isoform) sustaining Ca2+ transport. In mus-
cle cells, this transport activity plays an important role in
lowering cytosolic Ca2+ as required for relaxation of contrac-
tile elements, and storing transported Ca2+ in the lumen of SR
for subsequent release and contractile activation (Carafoli
2002; Clapham 2007). General information on SERCA1 cat-
alytic function and molecular structure is given in several
reviews (de Meis and Vianna 1979; Inesi et al. 1990;
Andersen and Vilsen 1995; Toyoshima 2008; Møller et al.
2010).

SERCA1 is a 996 amino acid membrane bound protein
(MacLennan et al. 1985) comprising ten transmembrane heli-
cal segments, and a globular headpiece that protrudes from the
cytosolic side of the membrane and includes three distinct
domains (A, N and P). Catalytic activation follows high
affinity binding of cytosolic Ca2+ within the transmembrane
region of the enzyme (Fig. 1). Activation is followed by
utilization of ATP bound to the N domain, and formation of
phosphorylated enzyme intermediate by transfer of the ATP
γ-phosphate to an aspartyl residue (Asp-351) in the P domain.
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Conformational transition of the phosphoenzyme then pro-
motes vectorial translocation of bound Ca2+ and release of
Ca2+ into the lumen of SR. Finally, the phosphoenzyme
undergoes hydrolytic cleavage with catalytic assistance by
an A domain critical sequence (Thr-Gly-Glu), leading to a
new cycle.

Ca2+/ATP coupling ratios

Cooperative binding of 2 Ca2+ per ATPase (Inesi et al. 1980)
implies transport of 2 Ca2+ per catalytic cycle, if both bound
Ca2+ are translocated with maximal efficiency. Ratios of 2
Ca2+ per ATP were in fact observed under conditions permit-
ting free Ca2+ to remain low in the lumen of the vesicles: (a )
steady state experiments in which oxalate is used for com-
plexation of lumenal Ca2+ (Martonosi and Feretos 1964) and
(b ) pre-steady state experiments in which lumenal Ca2+ has
yet to rise (Fig. 2a; Inesi et al. 1988). On the other hand, Ca2+/
ATP ratios lower than 2 have been observed with native SR
vesicles as well as reconstituted systems (Yu and Inesi 1995),
under conditions permitting lumenal Ca2+ to rise (mM) while
Ca2+ in the outer medium remains sufficiently high (μM) for
ATPase activation (Fig. 2b). Under these conditions, the lu-
menal Ca2+ concentration is higher than the dissociation con-
stant of Ca2+ from the lumenal sites, and therefore the
phosphoenyme bypasses the Ca2+ release step and proceeds
to hydrolytic cleavage of Pi, with consequent reduction of the

Ca2+/ATP transport ratio. Uncoupled ATPase subsides if
EGTA is added to the outer medium to reduce free Ca2+ below
the ATPase activating level (Fig. 2b).

A variable stoichiometric ratio (i.e., Ca2+/ATP) of active
transport may be considered to be an intrinsic feature of the
pump, if the ATPase reaction sequence allows an alternate
pathway leading to hydrolytic cleavage of Pi without vectorial
displacement of Ca2+ (Johnson et al. 1985; Inesi and de Meis
1989). The importance of this phenomenon, referred to as
slippage of the pump , is related to heat production and ther-
mogenesis, when the free energy derived fromATP hydrolysis
is not utilized for active transport (deMeis et al. 1997; deMeis
2001; de Meis et al. 2005).

Ca2+/H+ exchange at the lumenal gate

Exchange of Ca2+ with H+ upon vectorial translocation is a
specific feature of the Ca2+ ATPase (Lewis et al. 2012),
facilitating lumenal Ca2+ release (Yu et al. 1994; Bublitz
et al. 2013). Evidence of Ca2+/H+ exchange, H+ counter
transport (Chiesi and Inesi 1980; Yamaguchi and Kanazawa
1985; Ueno and Sekine 1981) and electrogenicity (Morimoto
and Kasai 1986; Cornelius and Møller 1991; Obara et al.
2005) in the operation of the Ca2+ ATPase was obtained with
vesicular fragments of SR membrane and with ATPase
reconstituted in phospholipids vesicles lacking non specific
H+ or Ca2+ channels. It is shown in Fig. 3a that the molar ratio
of Ca2+/H+ counter transport is 1 when the lumenal and

Fig. 1 Two-dimensional folding model of the SERCA1 sequence. The
diagram shows ten transmembrane segments (M1 to M10) including six
residues (Glu-309, Glu-771, Asn-796, Thr-799, Asp-800 and Glu-908)
contributing oxygen atoms for calcium binding, enzyme activation, and
transport. The extramembranous headpiece comprises: a nucleotide bind-
ing domain (N); the P domain, with several residues conserved in P-type
ATPases, including Asp-351 (in red) that undergoes phosphorylation to
form the catalytic phosphoenzyme intermediate (EP); and the A domain
with the Thr-Gly-Glu conserved sequence involved in catalytic assistance
of EP hydrolytic cleavage

Fig. 2 Pre-steady state measurements of ATPase activity and Ca2± trans-
port by native SR vesicles obtained from skeletal muscle. a Initial
phosphoenzyme formation and Ca2+ occlusion (2Ca2+/1EP) are observed
within the first cycle following addition of ATP. Ca2+ uptake and Pi
production rates follow with molar ratios of 2:1. Time resolution in the
millisecond time scale was obtained with rapid mixing instruments. b
Pre-steady state experiments extended to the second time scale, show that
the initial rates of Ca2+ uptake and Pi production begin with a ratio of 2:1,
but the Ca2+ uptake rate undergoes saturation, while uncoupled ATPase
activity continues as long as the medium Ca2+ is maintained above the
ATPase activation level. Uncoupled ATPase ceases if EGTA is added to
chelate medium Ca2+. Reaction mixtures contained 20–50 μg SR protein/
ml, 10 mM PIPES, pH 7.0, 100 mM KCl, 5 mMMgSO4, 0.2 mM CaCl2
and 0.2 mM EGTA. Radioactive tracers added according to the experi-
mental schedule. Reaction started with 100 mMATP and stopped by acid
quenching. 1 mM EGTA added when indicated. Temperature 25 °C.
Derived from Inesi et al. (1988) and Yu and Inesi (1995)
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medium pH is near neutrality. However, a higher number of
acidic residues involved in Ca2+ binding (Glu-771, Asp-800,
Glu-309, Glu-908) is likely to participate in Ca2+/H+ ex-
change (Bublitz et al. 2013; Obara et al. 2005), even though
only one H+ per Ca2+ may actually be counter transported. In
this case, the remaining H+ undergo lumenal dissociation. The
Ca2+/H+ exchange is facilitated by acidic residues pK chang-
es, as the phosphoenzyme undergoes its catalytic transition
(Yu et al. 1994).

Further evidence for Ca2+/H+ exchange is provided by
measurements of charge transfer upon addition of Ca2+ or
ATP to microsomal vesicles adsorbed on a solid supported
membrane (SSM) (Tadini-Buoninsegni et al. 2004, 2006,
2010). Related electrogenic events are recorded as current
transients due to flow of electrons along the external circuit
toward the electrode surface, as required to compensate for the
potential difference across the vesicular membrane produced
by displacement of positive charge upon vectorial transloca-
tion in the direction of the SSM electrode. In fact, whenATP is
added to the membrane bound ATPase adsorbed on the SSM
in the presence of saturating Ca2+, a current transient is ob-
served due to vectorial translocation and dissociation of bound
Ca2+ in the direction of the SSM electrode after
phosphoenzyme formation by utilization of ATP (Tadini-
Buoninsegni et al. 2004, 2006). The electrical current record-
ed by the SSMmethod is a measure of the rate of change of the
transmembrane potential and is not sensitive to stationary
currents. Therefore, only the electrogenic signal generated
within the first cycle is observed, whereas steady state events
after the first cycle are not detected. It is shown in Fig. 3b that
the net charge produced by ATP addition at neutral pH de-
creases significantly if ATP addition is performed at alkaline
pH. This indicates that when lack of H+ limits H+/Ca2+ ex-
change (i.e. alkaline pH), vectorial translocation of bound
Ca2+ in the direction of the SSM electrode is prevented, even

though K+ is present in high concentration and may neutralize
acidic residues at alkaline pH. This indicates a requirement for
specific H+ binding at the Ca2+ sites, in order to obtain Ca2+

release.
The specific relevance of ATP dependent charge transfer is

demonstrated by interference of mutations (Asp-351 to Asn)
preventing phosphoenzyme formation (Tadini-Buoninsegni
et al. 2006). Furthermore, cation/H+ exchange at the transport
sites following phosphoenzyme formation occurs in Ca2+

ATPases, but does not occur in copper ATPases (Lewis et al.
2012).

The importance of Ca2+/H+ exchange in determining re-
lease of bound Ca2+ from the phosphoenzyme can be also
demonstrated in steady state experiments. It is shown in Fig. 4
that the maximal levels of accumulated Ca2+ are significantly
reduced if the pH is raised above 7 (consider that the physio-
logical intracellular pH is 6.8, while the extracellular pH is
7.4)). This indicates that if exchange is limited due to low H+

concentration, Ca2+ is less likely to dissociate from the
phosphoenzyme. On the other hand, while Ca2+ translocation

Fig. 3 a ATP-dependent Ca2± uptake, H± countertransport, and devel-
opment of transmembrane electrical potential in reconstituted SERCA1
proteoliposomes. Proteoliposomes prepared at pH 7.0 were diluted
(5.0 μg protein/ml) in a medium (pH 7.0) containing 10 mM PIPES,
100 mM K2SO4, 5 mMMgSO4, 50 μM CaCl2, and 50 μM arsenazo III,
or 200 μM lumenal pyranine, or 1 μM oxonol VI. The reaction was
started at 11 °C by the addition of 0.2 mM ATP and followed by

differential absorption spectrometry. b Charge measurements on native
SR Ca2±ATPase (SERCA1) adsorbed on a solid supported membrane
(SSM). The current transients were obtained after rapid delivery of
100 μM ATP to ATPase preincubated with 10 μM free Ca2+ and
100 mM KCl, at pH 7 (solid line) or pH 7.8 (dotted line). Derived from
Yu et al. (1994) and Lewis et al. (2012)

Fig. 4 Maximal levels of Ca2± uptake and rates of ATPase activity in the
absence of oxalate as a function of pH. Experiments performed as in
Fig. 2B, except for pH regulation with 50 mM MES or HEPES buffer.
The reaction was started by addition of 1 mMATP, at 25 °C. Original data
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is reduced, steady state ATPase activity is increased as the pH
is raised, and continues after maximal levels of Ca2+ uptake
are reached. It is apparent that alkaline pH reduces Ca2+/H+

exchange and dissociation of bound Ca2+, whereby the
phosphoenyme bypasses the Ca2+ release step and proceeds
to hydrolytic cleavage of Pi. Therefore, reduction of the Ca2+/
ATP transport ratio can be produced either by a high Ca2+

concentration or a low H+ concentration in the lumen of the
vesicles.

A diagram of the sequential steps in the ATPase mechanism,
derived from the original reaction diagram of de Meis and
Vianna (1979) and modified to show Ca2+/H+ exchange and a
pathway for slippage of the Ca2+ pump, is given in Scheme 1.

In the diagram on Scheme 1, solid lines indicate the optimal
pathway, beginning with enzyme activation by high affinity
and cooperative binding of two Ca2+, yielding E1·2Ca

2+.
Utilization of ATP yields ADP·E1~ P·2Ca

2+, followed by
release of ADP and utilization of the phosphorylation poten-
tial to change vectorial orientation and affinity of the Ca2+

sites. Bound Ca2+ is then released into the lumenal medium in
exchange for H+. Hydrolytic cleavage of nH+·E2-P and tran-
sition of nH+·E2 to E1 finally yields closure of the lumenal
gate and exposure of the Ca2+ sites to the cytosolic medium.
Formation of E1·2Ca

2+ then starts a new cycle.
The dotted lines in Scheme 1 indicate that if lumenal Ca2+

is higher than its dissociation constant, or lumenal H+ is too
low to sustain exchange, Ca2+ release and formation of nH+·
E2 are prevented. Interference with completion of the ATPase
cycle would then cause reversal to E1~ P·2Ca

2+ (see below
Fig. 5b), whereby phosphorylation potential leads directly to
hydrolytic cleavage, rather than utilization for active transport.
This is rendered possible as low concentration of ADP pre-
vents its re-binding, and the remaining proximity of the A

domain to the phosphorylation site allows catalytic assistance
by the critical Thr-Gly-Glu sequence.

Strong evidence for the role of protons and the nH+·E2
state is provided with experiments of enzyme phosphorylation
by utilization of Pi (Masuda and de Meis 1973). It is shown in
Fig. 5a that this reaction (i.e., reverse reaction of
phosphoenzyme hydrolytic cleavage) is enhanced by acid
pH, and is inhibited by alkaline pH and Ca2+. This indicates
a requirement for proton occupancy of acidic residues in-
volved in Ca2+ binding (i.e., nH+·E2). On the other hand
(Fig. 5b), further reversal of the cycle upon addition of ADP
to form ATP, requires a switch to alkaline pH and addition of
mM Ca2+, in order to replace protons with Ca2+ on the low
affinity binding sites (i.e. transition of nH+·E2-P to E2-P·
2Ca2+ and ADP·E1~P·2Ca

2+).
High resolution crystal structures of most states (or their

analogs) comprising the ATPase reaction sequence have been
obtained, and are described in detailed reviews (Toyoshima
2008; Møller et al. 2010; Toyoshima and Inesi 2004).
Comparison of these structures reveals rearrangements of trans-
membrane helices upon Ca2+ binding, phosphoenzyme forma-
tion, occlusion and then dissociation of bound Ca2+, which are
mechanically linked to specific bending and rotation patterns of
each headpiece domain. These movements provide an expla-
nation for the long range linkage of phosphorylation and Ca2+

binding domains, including the roles of critical amino acids in
substrate binding, catalytic reactions, and Ca2+ transport. They
also demonstrate that the states included in the reaction diagram
are structurally distinct, and possess specific features that are
functionally relevant. It is of interest that movement of M1-M2
causes displacement of membrane helix M4L from M5 and
M6, thereby opening the lumenal gate and allowing outflow of
Ca2+, following Ca2+/H+ exchange. The lumenal gate is then

Scheme 1 Diagram outlining the sequential reactions on a SERCA
catalytic and transport cycle as explained in the text above. The solid
lines indicate the optimal pathway of a well coupled ATP utilization and

net Ca2+. The dotted lines indicate a short cut of the enyme cycle,
whereby ATP utilization is uncoupled from net Ca2+ transport, as ex-
plained in the text above
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closed upon cleavage of phosphate and dissociation of H+,
when reverse rotation of the A domain is accompanied by
upward displacement of M4L and reduction of the space be-
tween the M4 and M6 helices.

Effects of accessory polypeptides

Several studies have demonstrated that sarcolipin (SLN), a 31
amino acid polypeptide (Odermatt et al. 1997; Odermatt et al.
1998) is constitutively bound to the Ca2+ ATPase (SERCA1) of
(at least human and rabbit) fast twitch skeletal muscle, and
produces uncoupling of ATP utilization and Ca2+ transport, with
a consequent thermogenic effect (Mall et al. 2006; Bal et al.

2012). However, these studies were performed by genetic ma-
nipulations and reconstitution procedures, which may not apply
to the physiologic signalingmechanism of a fast twitch in native
muscles, but rather reflect phenomena occurring under special
circumstance and/or in other tissues (see below). In fact, other
studies have shown that incorporation of SLN into proteolipo-
somes with SERCA simply results in a lower apparent affinity
for calcium and a lower turnover rate (Gorski et al. 2013).

It is of interest that the Ca2+ ATPase SERCA2 isoform,
prevalent in cardiac muscle (Lytton et al. 1992), is associated
with phospholamban (PLN), a 52 amino acid polypeptide, to
some extent similar to SLN. The definite effect of PLB on
SERCA2 is a lower Ca2+ binding affinity (Koss and Kranias
1996; MacLennan and Kranias 2003; Toyoshima et al. 2003)

Fig. 6 a Ca2± signaling in cultured cardiac myocytes subjected to field
stimulation. Following stimulation the cytosolic Ca2+ concentration rises
from 0.04 μM to 0.6 μM, and then returns to the 0.04 μM resting level
within 0.6 s. b Rates of Ca2± uptake by cardiac sarcoplasmic reticulum
vesicles as a function of free Ca2± concentration. Before the measure-
ments, the vesicles were pre-incubated with either a control buffer (filled
circle), or with a monoclonal antibody neutralizing phospholamban

(filled triangele). Note how neutralization of phospholamban decreases
the Ca2+ concentration required for activation of the transport ATPase.
Note also how the cytosolic Ca2+ concentrations observed at the low and
high ends of the Ca2+ signal, correspond to Ca2+ levels indufficient or
suitable to yield SERCA activation. Derived from Prasad and Inesi (2012)
and Cantilina et al. (1993)

Fig. 5 a Equilibrium levels of phosphoenzyme obtained through utili-
zation of Pi by SERCA1 at acid or alkaline pH, in the absence or presence
of Ca2±. Reaction medium: 50 mM MES (pH 6.0) or HEPES (pH 7.5),
20 % Me2SO4, 10 mM MgCl2, 100 mM KCl, 2 mM EGTA or 1 mM
CaCl2 (in the absence of EGTA), and 50 μg protein/ml. The reaction was
started by the addition of 50μM[32P]Pi. The samples were acid quenched
after 2 min incubation at 30 °C, and processed by electrophoresis for
determination of radioactive ATPase protein. b Ca2± concentration and

pH dependence of phosphoryl transfer from phosphoenzyme to ADP, to
yield ATP. Phosphoenzyme was obtained by incubating 3.0 mg of pro-
tein/ml in 60 mM Tris-maleate, pH 6.3, 4 mM [32P]Pi, 20 mM MgC12,
0.5 mM EGTA. Following a 2 min incubation at 30 °C, the reaction
mixture was diluted 10-fold with 60 mM Tris-maleate (pH 8.0), 1 mM
ADP, CaC12 and EGTA to yield free Ca2+ as indicated. The samples were
acid quenched after 5 min incubation and processed for determination of
ATP. Derived from Lewis et al. (2012) and de Meis and Inesi (1982)
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and/or a slower E1 to 2Ca2+·E1 transition (Cantilina et al.
1993). This results in a higher Ca2+ concentration requirement
for Ca2+ transport activation (Fig. 6).

Both SLN and PLN reside within a groove surrounded by
transmembrane helices M2, M4, M6 and M9, as shown by
crystallographic studies (Toyoshima et al. 2013; Winther et al.
2013; Akin et al. 2013), and also indicated by NMR (Buffy
et al. 2006) and cross-linking experiments (Sahoo et al. 2013).
This is a critical position, since structural studies demonstrate
that the helices delimiting this groove undergo displacements
affecting Ca2+ binding, Ca2+ dissociation, as well as opening
and closing of the lumenal gate. This explains how the pres-
ence of SLN and PLN may affect rates of movements and
related partial reactions of the ATPase cycle. Some difference
in the effects of the two polypeptides could be related to
specific sequences and points of interactions (Sahoo et al.
2013), as well as to the cytosolic segment of PLN (absent in
SLN) which may interact with SERCA headpiece domains
and delay their movements to yield the E1

.2Ca2+ state. It is
worth considering that a slight shift of the Ca2+ concentration
required for ATP activation would affect the rates of Ca2+

transport at low levels of cytoplasmic Ca2+, and therefore the
efficiency of twitch relaxation. However, it is not likely that
the Km (equilibrium constant) of the Ca2+ sites on lumenal
orientation would be significantly affected. The physiological
interest of PLB and SLN is related to the reversibility of their
effects upon phosphorylation catalyzed by signaling kinases
(Koss and Kranias 1996; MacLennan and Kranias 2003;
Toyoshima et al. 2003).

Contractile relaxation and uncoupling of the Ca2+ pump

Considering the possibility of Ca2+ pump uncoupling, an im-
portant question is whether uncoupling of SERCA1 interferes
with reduction of cytosolic Ca2+ below the level allowing
contractile relaxation of muscle fibers. The evidence presented
above indicates that the Ca2+ pump is perfectly coupled when
the SR lumen Ca2+in is low, even if cytosolic Ca2+out is rela-
tively high. In the light of this information, we consider that
relaxation of a muscle twitch occurs in less than 1 s and, within
this time, lumenal Ca2+ does not reach a concentration higher
than its dissociation from E2-P·2Ca

2+, as shown in experiments
performed with rabbit native SR vesicles (Fig. 2). On the other
hand, when cytosolic Ca2+ is reduced to a level producing
contractile relaxation, such a Ca2+ level will be also low with
regard to SERCA activation, and the ATPase would then pro-
ceed at very low rates or remain inactive. Therefore during
relaxation, the pump remains quiescent, mostly in the Mg2+

bound E1 state (Toyoshima et al. 2013), with no significant
slippage. Slippage of the pump would occur if lumenal Ca2+

were to become higher than its dissociation constant fromE2-P·
2Ca2+, and cytosolic Ca2+ were to remain above the level

required for full ATPase activation. This may occur upon
prolonged muscle activity, if cytosolic Ca2+ is maintained rel-
atively high by multiple action potentials and Ca2+ flux through
plasma membrane voltage sensitive channels, as expected in
shivering thermogenesis. Alternatively, a rise of intracellular
pH above 7.0, may affect intracellular Ca2+ signaling, as re-
cently reported for G protein signaling (Isom et al. 2013). In this
case, some degree of SERCA uncoupling would be produced,
contributing to the muscle twitching observed in alkalosis.
Furthermore, thermogenic uncoupling may occur in tissues
where SERCA is inserted in membrane compartments allowing
lumenal Ca2+ rise to high levels, while cytosolic Ca2+ remains
sufficiently high. Most importantly, it was reported that in
brown fat, in addition to uncoupling of the mitochondrial
respiratory chain, uncoupled SERCA contributes to non shiv-
ering thermogenesis (de Meis et al. 2006).
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