
BAYESIAN DATA AUGMENTATION DOSE FINDING WITH
CONTINUAL REASSESSMENT METHOD AND DELAYED
TOXICITY

Suyu Liu‡, Guosheng Yin§, and Ying Yuan‡,*

‡MD Anderson Cancer Center
§University of Hong Kong

Abstract
A major practical impediment when implementing adaptive dose-finding designs is that the
toxicity outcome used by the decision rules may not be observed shortly after the initiation of the
treatment. To address this issue, we propose the data augmentation continual re-assessment
method (DA-CRM) for dose finding. By naturally treating the unobserved toxicities as missing
data, we show that such missing data are nonignorable in the sense that the missingness depends
on the unobserved outcomes. The Bayesian data augmentation approach is used to sample both the
missing data and model parameters from their posterior full conditional distributions. We evaluate
the performance of the DA-CRM through extensive simulation studies, and also compare it with
other existing methods. The results show that the proposed design satisfactorily resolves the issues
related to late-onset toxicities and possesses desirable operating characteristics: treating patients
more safely, and also selecting the maximum tolerated dose with a higher probability. The new
DA-CRM is illustrated with two phase I cancer clinical trials.

Keywords
Bayesian adaptive design; Late-onset toxicity; Nonignorable missing data; Phase I clinical trial

1. Introduction
The continual reassessment method (CRM) proposed by O’Quigley, Pepe and Fisher (1990)
is an influential phase I clinical trial design for finding the maximum tolerated dose (MTD)
of a new drug. The CRM assumes a single-parameter working dose–toxicity model and
continuously updates the estimates of the toxicity probabilities of the considered doses to
guide dose escalation. Under some regularity conditions, the MTD identified by the CRM
generally converges to the true MTD, even when the working model is misspecified (Shen
and O’Quigley, 1996). A variety of extensions of the CRM have been proposed to improve
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its practical implementation and operating characteristics (Goodman, Zahurak and
Piantadosi, 1995; Møller, 1995; Heyd and Carlin, 1999; Leung and Wang, 2002; and
O’Quigley and Paoletti, 2003; Garrett-Mayer, 2006; Iasonos and O’Quigley, 2011; among
others). Recently, several robust versions of the CRM have been proposed by using the
Bayesian model averaging and posterior maximization (Yin and Yuan, 2009; and Daimon,
Zohar and O’Quigley, 2011), so that the method is insensitive to the prior specification of
the dose–toxicity model.

In real applications, to achieve its best performance, the CRM requires that the toxicity
outcome be observed quickly such that, by the time of the next dose assignment, the toxicity
outcomes of the currently treated patients have been completely observed. However, late-
onset toxicities are common in phase I clinical trials, especially in oncology areas. For
example, in radiotherapy trials, dose-limiting toxicities (DLTs) often occur long after the
treatment is finished (Coia, Myerson and Tepper, 1995). Desai et al. (2007) reported a phase
I study to determine the MTD of oxaliplatin for combination with gemcitabine and the
concurrent radiation therapy in pancreatic cancer. In that trial, on average, a new patient
arrived every two weeks, whereas it took nine weeks to assess the toxicity outcomes of the
patients after the treatment is initiated. Consequently, at the moment of dose assignment for
a newly arriving patient, the patients under treatment might not have yet completed the full
assessment period and thus their toxicity outcomes might not be available for making the
decision of dose assignment. Late-onset toxicity has been becoming a more critical issue in
the emerging era of the development of novel molecularly targeted agents, because many of
these agents tend to induce late-onset toxicities. A recent review paper in the Journal of
Clinical Oncology found that among a total of 445 patients involved in 36 trials, 57% of the
grade 3 and 4 toxicities were late-onset and, as a result, particular attention has been called
upon to the issue of late-onset toxicity (Postel-Vinay et al., 2011).

Our research is motivated by one of the collaborative projects, which involves the
combination of chemo- and radiation therapy. The trial aims to determine the MTD of a
chemo-treatment while the radiation therapy is delivered as a simultaneous integrated boost
in patients with locally advanced esophageal cancer. The DLT is defined as CTCAE 3.0
(Common Terminology Criteria for Adverse Events version 3.0) grade 3 or 4 esophagitis,
and the target toxicity rate is 30%. In this trial, six dose levels are investigated and toxicity is
expected to be late-onset. The accrual rate is approximately 3 patients per month, but it
generally takes 3 months to fully assess toxicity for each patient. By the time of dose
assignment for a newly enrolled patient, some patients who have not experienced toxicity
thus far may experience toxicity later during the remaining follow-up. It is worth noting that
whether we view toxicity as late-onset or not is relative to the patient accrual rate. If patients
enter the trial at a fast rate and toxicity evaluation cannot keep up with the speed of
enrollment, this situation is considered as late-onset toxicity. On the other hand, if the
patient accrual is very slow, e.g., one patient every three months, and toxicity evaluation
also requires a follow-up of three months, then the trial conduct may not cause any missing
data problem. For broader applications besides this chemo-radiation trial and to gain more
insight into the missing data issue, we explore several options to design such late-onset
toxicity trials, including the CRM and some other possibilities discussed below.

Operatively, the CRM does not require that toxicity must be immediately observable, and
the update of posterior estimates and dose assignment can be based on the currently
observed toxicity data while ignoring the missing data. However, such observed data
represent a biased sample of the population because patients who would experience toxicity
are more likely to be included in the sample than those who do not experience toxicity. In
other words, the observed data contain an excessively higher percentage of toxicity than the
complete data. Consequently, the estimates based on only the observed data tend to
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overestimate the toxicity probabilities, and lead to overly conservative dose escalation.
Alternatively, Cheung and Chappell (2000) proposed the time-to-event CRM (TITE-CRM),
in which subjects who have not experienced toxicity thus far are weighted by their follow-up
times. Based on similar weighting methods, Braun (2006) studied both early- and late-onset
toxicities in phase I trials; Mauguen, Le Deley and Zohar (2011) investigated the EWOC
design with incomplete toxicity data; and Wages, Conaway and O’Quigley (2013) proposed
a dose-finding method for drug-combination trials. Yuan and Yin (2011) proposed an
expectation-maximization (EM) CRM approach to handling late-onset toxicity.

In the Bayesian paradigm, we propose a data augmentation approach to resolving the late-
onset toxicity problem based upon the missing data methodology (Little and Rubin, 2002;
and Daniels and Hogan, 2008). By treating the unobserved toxicity outcomes as missing
data, we naturally integrate the missing data technique and theory into the CRM framework.
In particular, we establish that the missing data due to late-onset toxicities are nonignorable.
We propose the Bayesian data augmentation CRM (DA-CRM) to iteratively impute the
missing data and sample from the posterior distribution of the model parameters based on
the imputed likelihood.

The remainder of the article is organized as follows. In Section 2, we briefly review the
original CRM methodology, and propose the DA-CRM based on Bayesian data
augmentation to address the missing data issue caused by late-onset toxicity. In Section 3.1,
we present simulation studies to compare the operating characteristics of the new design
with other available methods, and in Section 3.2 we conduct a sensitivity analysis to further
investigate the properties of the DA-CRM. We illustrate the proposed DA-CRM design with
two cancer clinical trials in Section 4, and conclude with a brief discussion in Section 5.

2. Dose-Finding Methods
2.1. Continual Reassessment Method

In a phase I dose-finding trial, patients enter the study sequentially and are followed for a
fixed period of time (0, T) to assess the toxicity of the drug. During this evaluation window
(0, T), we measure a binary toxicity outcome for each subject i,

Typically, the length of the assessment period T is chosen so that if a drug-related toxicity
occurs, it would occur within (0, T). Depending on the nature of the disease and the
treatment agent, the assessment period T may vary from days to months.

Suppose that a set of J doses of a new drug are under investigation, the CRM assumes a
working dose–toxicity curve, such as

where πd is the true toxicity probability at dose level d, αd is the prespecified probability
constant, satisfying a monotonic dose–toxicity order α1 < ⋯ < αJ, and a is an unknown
parameter. We continuously update this dose–toxicity curve by re-estimating a based on the
observed toxicity outcomes in the trial.
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Suppose that n patients have entered the trial, and let yi and di denote the binary toxicity
outcome and the received dose level for the ith subject, respectively. The likelihood function
based on the toxicity outcomes y = {yi, i = 1, …, n} is given by

Assuming a prior distribution f(a) for a, e.g., f(a) is a normal distribution with mean 0 and
variance σ2, a ~ N(0, σ2), then the posterior distribution of a is given by

(2.1)

and the posterior means of the dose toxicity probabilities are given by

Based on the updated estimates of the toxicity probabilities, the CRM as-signs a new cohort
of patients to dose level d* which has an estimated toxicity probability closest to the
prespecified target φ; that is,

The trial continues until the exhaustion of the total sample size, and then the dose with an
estimated toxicity probability closest to φ is selected as the MTD.

2.2. Nonignorable Missing Data
One of the practical limitations of the CRM is that the DLT needs to be ascertainable
quickly after the initiation of the treatment. Figure 1 illustrates the situation where the
patient inter-arrival time τ is shorter than the assessment period T. By the time a dose is to
be assigned to a newly accrued patient (say patient 4 at time 3τ), some of the patients who
have entered the trial (i.e., patients 2 and 3) may have been partially followed and their
toxicity outcomes are still not available. More precisely, for the ith subject, let ti denote the
time to toxicity. For subjects who do not experience toxicity during the trial, we set ti = ∞.
At the moment of decision making for dose assignment, let ui (0 ≤ ui ≤ T) denote the actual
follow-up time for subject i, and let Mi(ui) be the missing data indicator for Yi. Then it
follows that

(2.2)

That is, the toxicity outcome is missing with Mi(ui) = 1 for patients who have not yet
experienced toxicity (ti > ui) and have not been fully followed up to T (ui < T); and the
toxicity outcome is observed with Mi(ui) = 0 when patients either have experienced toxicity
(ti ≤ ui) or have completed the entire follow-up (ui = T) without experiencing toxicity. For
notational simplicity, we suppress ui and take Mi ≡ Mi(ui). Due to patients’ staggered entry,
it is reasonable to assume that ui is independent of ti, i.e., the time of dose assignment (or the
arrival of a new patient) is independent of the time to toxicity.

Liu et al. Page 4

Ann Appl Stat. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Under the missing data mechanism (2.2), the induced missing data are nonignorable or
informative because the probability of missingness of Yi depends on the underlying time to
toxicity, and thus implicitly depends on the value of Yi itself. More specifically, the data
from patients who would not experience toxicity (Yi = 0) in the assessment period are more
likely to be missing than data from patients who would experience toxicity (Yi = 1). The next
theorem provides a new insight to the issue of late-onset toxicity.

Theorem 1. Under the missing data mechanism (2.2), the missing data induced by late-onset
toxicity are nonignorable with Pr(Mi = 1|Yi = 0) > Pr(Mi = 1|Yi = 1).

The proof of the theorem is briefly sketched in the Appendix. In general, the missing data
are more likely to occur for those patients who would not experience toxicity in (0, T). This
phenomenon is also illustrated in Figure 1. Patient 2 who will not experience toxicity during
the assessment period is more likely to have a missing toxicity outcome at the decision-
making times 2τ and 3τ than patient 1 who has experienced toxicity between time τ and 2τ.
Compared with other missing data mechanisms, such as missing completely at random or
missing at random, nonignorable missing data are the most difficult to deal with (Little and
Rubin, 2002), which bring a new challenge to clinical trial designs. Because the missing data
are nonignorable, the naive approach by simply discarding the missing data and making
dose-escalation decisions solely based on the observed toxicity data is problematic. The
observed data represent a biased sample of the complete data and contain more toxicity
observations than they should be because the responses for patients who would experience
toxicity are more likely to be observed. As a result, approaches based only on the observed
toxicity data typically overestimate the toxicity probabilities and thus lead to overly
conservative dose escalation.

During the trial conduct, the amount of missing data depends on the ratio of the assessment
period T and the interarrival time τ, denoted as the A/I ratio = T/τ. The larger the value of
the A/I ratio, the greater the amount of missing data that would be produced, because there
would be more patients who may not have completed the toxicity assessment when a new
cohort arrives.

2.3. DA-CRM Using Bayesian Data Augmentation
An intuitive approach to dealing with the unobserved toxicity outcomes is to impute the
missing data so that the standard complete-data method can be applied. One way to achieve
this goal is to use data augmentation (DA) proposed by Tanner and Wong (1987). The DA
iterates between two steps: the imputation (I) step, in which the missing data are imputed,
and the posterior (P) step, in which the posterior samples of unknown parameters are
simulated based on the imputed data. As the CRM is originally formulated in the Bayesian
framework (O’Quigley et al., 1990), the DA provides a natural and coherent way to address
the missing data issue due to late-onset toxicity. Note that the missing data we consider here
is a special case of nonignorable missing data with a known missing data mechanism as
defined by (2.2). Therefore, the nonidentification problem that often plagues the
nonignorable missing data can be circumvented as follows.

In order to obtain consistent estimates, we need to model the nonignorable missing data
mechanism in (2.2). Toward this goal, we specify a flexible piecewise exponential model for
the time to toxicity for patients who would experience DLTs, which concerns the
conditional distribution of ti given Yi = 1. Specifically, we consider a partition of the follow-
up period [0, T] into K disjoint intervals [0, h1), [h1, h2), …, [hK−1 , hK ≡ T], and assume a
constant hazard λk in the kth interval. Define the observed time xi = min(ui, ti) and δik = 1 if
the ith subject experiences toxicity in the kth interval; and δik = 0 otherwise. Let λ = {λ1, …,
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λK}; when the toxicity data y = {y1, …, yn} are completely observed, the likelihood function
of λ based on n enrolled subjects is given by

where sik = hk − hk−1 if xi > hk; sik = xi − hk−1 if xi ∈ [hk−1, hk); and otherwise sik = 0. Similar
to the TITE-CRM, we assume that the time-to-DLT distribution is invariant to the dose
level, conditioning on that the patient will experience toxicity (Yi = 1). This assumption is
helpful to pool information across different doses and obtain more reliable estimates. The
sensitivity analysis in Section 3.2 shows that our method is not sensitive to the violation of
this assumption.

In the Bayesian paradigm, we assign each component of λ an independent gamma prior
distribution with the shape parameter ζk and the rate parameter ξk, denoted as Ga(ζk, ξk).
When there is some prior knowledge available regarding the shape of the hazard for the time
to toxicity, the hyperparameters ζk and ξk can be calibrated to match the prior information.
Here we focus on the common case in which the prior information is vague and we aim to
develop a default and automatic prior distribution for general use. Specifically, we assume
that a priori toxicity occurs uniformly throughout the assessment period (0, T), which
represents a neutral prior opinion between early-onset and late-onset toxicity. Under this
assumption, the hazard at the middle of the kth partition is λ̃k = K/{T(K − k + 0.5)}. Thus,
we assign λk a gamma prior distribution,

where C is a constant determining the size of the variance with respect to the mean, as the
mean for this prior distribution is λ̃k and the variance is Cλ̃k. Based on our simulations, we
found that C = 2 yields a reasonably vague prior and equips the design with good operating
characteristics.

Based on the time-to-toxicity model as above, the DA algorithm can be implemented as
follows. At the I step of the DA, we “impute” the missing data by drawing posterior samples
from their full conditional distributions. Let y = (yobs, ymis), where yobs and ymis denote the
observed and missing toxicity data, respectively; and let obs = (yobs, M) denote the
observed data with missing indicators M = {Mi, i = 1, …, n}. As the missing data are
informative, the observed data used for inference not only include the observed toxicity
outcomes yobs, but also the missing data indicators M. Inference that ignores M (such as the
CRM) would lead to biased estimates. It can be shown that, conditional on the observed data

obs and model parameters (a, λ), the full conditional distribution of yi ∈ ymis is given by

At the P step of the DA, given the imputed data y, we sequentially sample the unknown
model parameters from their full conditional distributions as follows:

i. Sample a from f(a|y) given by (2.1), where y is the “complete” data after filling in
the missing outcomes.
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ii. Sample λk, k = 1, …, K, from

The DA procedure iteratively draws a sequence of samples of the missing data and model
parameters through the imputation (I) step and posterior (P) step until the Markov chain
converges. The posterior samples of a can then be used to make inference on πd to direct
dose finding.

2.4. Dose-finding Algorithm
Let φ denote the physician-specified toxicity target, and assume that patients are treated in
cohorts, for example, with a cohort size of three. For safety, we restrict dose escalation or
de-escalation by one dose level of change at a time. The dose-finding algorithm for the DA-
CRM is described as follows.

1. Patients in the first cohort are treated at the lowest dose level.

2. At the current dose level dcurr, based on the cumulated data, we obtain the posterior
means for the toxicity probabilities, π̂d (d = 1, …, J). We then find dose level d*
that has a toxicity probability closest to φ, i.e.,

• If dcurr > d*, we de-escalate the dose level to dcurr − 1;

• if dcurr < d*, we escalate the dose level to dcurr + 1;

• otherwise, the dose stays at the same level as dcurr for the next cohort of
patients.

3. Once the maximum sample size is reached, the dose that has the toxicity
probability closest to φ is selected as the MTD.

In addition, we also impose an early stopping rule for safety: if Pr(π1 > φ| obs) > 0.96, the
trial will be terminated. That is, if the lowest dose is still overly toxic, the trial should be
stopped early.

3. Numerical Studies
3.1. Simulations

To examine the operating characteristics of the DA-CRM design, we conducted extensive
simulation studies. We considered six dose levels and assumed that toxicity monotonically
increased with respect to the dose. The target toxicity probability was 30% and a maximum
number of 12 cohorts were treated sequentially in a cohort size of three. The sample size
was chosen to match the maximum sample size required by the conventional “3+3” design.
The toxicity assessment period was T = 3 months and the accrual rate was 6 patients per
month. That is, the interarrival time between every two consecutive cohorts was τ = 0.5
month with the A/I ratio = 6.

We considered four toxicity scenarios in which the MTD was located at different dose
levels. Due to the limitation of space, we show only scenarios 1 and 2 in Table 1, and the
other scenarios are provided in Table S1 of the Supplementary Materials. Under each
scenario, we simulated times to toxicity based on Weibull, log-logistic, and uniform
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distributions, respectively. For Weibull and log-logistic distributions, we controlled that
70% toxicity events would occur in the latter half of the assessment period (T/2, T).
Specifically, at each dose level, the scale and shape parameters of the Weibull distribution
were chosen such that

1. the cumulative distribution function at the end of the follow-up time T would be the
toxicity probability of that dose; and

2. among all the toxicities that occurred in (0, T), 70% of them would occur in (T/2,
T), the latter half of the assessment period.

Because the toxicity probability varies across different dose levels, the scale and shape
parameters of the Weibull distribution need to be carefully chosen for different dose levels,
and similarly for the scale and location parameters of the log-logistic distribution. For the
uniform distribution, we simulated the time to toxicity independently for each dose level and
controlled the cumulative distribution function at the end of the follow-up time T matching
the toxicity probability of each dose. In the proposed DA-CRM, we used K = 9 partitions to
construct the piecewise exponential time-to-toxicity model. We compared the DA-CRM
with the CRMobs, which determined the dose assignment based on only the observed
toxicity data as suggested by O’Quigley et al. (1990), and the TITE-CRM with the adaptive
weighting scheme proposed by Cheung and Chappell (2000). As a benchmark for
comparison, we also implemented the complete-data version of the CRM (denoted by
CRMcomp), assuming that all of the toxicity outcomes in the trial were completely observed
prior to each dose assignment. The CRMcomp required repeatedly suspending the accrual
prior to each dose assignment to wait that all of the toxicity outcomes in the trial were
completely observed. Although the CRMcomp is not feasible in practice when toxicities are
late-onset, it provides an optimal upper bound to evaluate the performances of other designs.
Actually, when all toxicity outcomes are observable (i.e., no missing data), the DA-CRM
and TITE-CRM are equivalent to the complete-data CRMcomp. For all methods, we set the
probability constants in the CRM (α1, …, α6) = (0.08, 0.12, 0.20, 0.30, 0.40, 0.50), and used
a normal prior distribution N(0, 2) for parameter a. Under each scenario, we simulated 5,000
trials.

Following each scenario in Tables 1 and S1, the first row is the true toxicity probabilities;
rows 2 and 3 show the dose selection probability (with the percentage of inconclusive trials
denoted by “None”) and the average number of patients treated at each dose based on the
complete-data design CRMcomp, respectively; the remaining rows provide the corresponding
summary statistics for the CRMobs, TITE-CRM and DA-CRM under various settings of late-
onset toxicity and time-to-toxicity distributions. The CRMcomp does not depend on the
distributions of the times to toxicity because the design assumes that all toxicity outcomes
are completely observed before each dose assignment.

When evaluating the trial designs with late-onset toxicities, one of the most important
measures of the design performance is patient safety because the main issue of the late-onset
toxicities is that ignoring them will lead to overly aggressive dose escalation and thus
treating too many patients at excessively toxic doses, i.e., the doses higher than the MTD.
As a measure of safety, in Tables 1 and S1, we also report the number of patients treated at
doses above the MTD (denoted as NMTD+) averaged across 5,000 simulated trials.

In scenario 1, the MTD (shown in boldface) is at dose level 3, and the complete-data design
CRMcomp yielded an optimal selection probability of 61.9%. The selection probability of the
MTD using the DA-CRM was slightly lower than this optimal value, but higher than that of
using the CRMobs. For instance, when the time to toxicity followed the log-logistic
distribution, the selection probability using the DA-CRM was 58.1%, whereas that of the
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CRMobs was 48.2%. The CRMobs appeared to be overly conservative and led to a high
percentage (about 13.6%) of inconclusive trials. This was because the CRMobs estimated the
toxicity probabilities based solely on the observed toxicity data, which is a biased sample of
the complete data with an excessively number of toxicities. Therefore, the CRMobs tended to
overestimate the toxicity probabilities, resulting in conservative dose escalations and high
percentages of early termination of the trial. The TITE-CRM yielded similar selection
percentages as the DA-CRM, but the DA-CRM was much safer: the number of patients
treated above the MTD (i.e., NMTD+) using the DA-CRM was notably smaller than that of
the TITE-CRM and close to that of the complete-data design. For example, when the time to
toxicity followed the Weibull distribution, NMTD+ was 9.0 and 10.4 using the complete-data
design and the DA-CRM, respectively, while that based on the TITE-CRM was 15.5. As the
CRMobs is overly conservative, NMTD+ = 4.0 is the smallest under the CRMobs.

In scenario 2, the MTD is the fourth dose, and in scenario 3 (see Table S1), the MTD is the
second. Compared to the TITE-CRM, the DA-CRM yielded comparable MTD-selection
probabilities but appeared to be safer, which reduced NMTD+ by more than 30% in both
scenarios. For example, in scenario 2, when the time to toxicity followed the Weibull
distribution, NMTD+ using the DA-CRM was 7.3, approximately 35% less than that using the
TITE-CRM (NMTD+ = 11.2). A similar extent of decreasing in NMTD+ was observed in
scenario 3 when using the DA-CRM. The CRMobs again led to a high percentage of
inconclusive trials (particularly under the uniform distribution), and a relatively low
selection percentage of the MTD due to the overestimation of the toxicity probabilities. For
Scenario 4 in Table S1, in which the fifth dose is the MTD, the CRMobs yielded a similar
selection percentage as the TITE-CRM and DA-CRM.

We further investigated the performance of the designs under a smaller sample size of 27
patients treated in a cohort size of 3, and 21 patients treated in a cohort size of 1. The pattern
of the results is generally similar to those described above (see Tables S2 and S3 in the
Supplementary Materials). We also examined the operating characteristics of the DA-CRM
under a lower A/I ratio of 3 with the cohort interarrival time τ = 1 month (see Table S4 in
the Supplementary Materials). In this case, the accrual rate was relatively slower and thus
late-onset toxicities became of less concern since the majority of toxicity outcomes would be
observed at the moment of dose assignment. As expected, the performances of the CRMobs,
TITE-CRM, and DA-CRM were rather comparable across different scenarios and time-
toxicity distributions. Actually, when the A/I ratio is less than or equal to 1 (i.e., no late-
onset toxicities and no missing data), the CRMobs, TITE-CRM, and DA-CRM are exactly
the same.

These results suggest that, when the A/I ratio is low (e.g., when the disease under study is
rare and thus the accrual rate is slow), the CRMobs has little bias and is still a good design
option for phase I clinical trials. However, when the accrual is fast, for example, in multi-
center clinical trials for some common type of cancer (e.g., breast or lung cancer), the A/I
ratio can be high (particularly when radiotherapies or some targeted agents are used), and
using the proposed DA-CRM can lead to better operating characteristics.

3.2. Sensitivity Analysis
We investigated the robustness of the proposed DA-CRM design when (1) the underlying
times to toxicity were heterogeneous across the doses, by simulating the times to toxicity
from a Weibull distribution at dose levels of 1, 3 and 5, and from a log-logistic distribution
at dose levels of 2, 4 and 6; (2) the number of partitions used in the piecewise exponential
model for the times to toxicity was K = 5 and 12; and (3) the prior distribution for a was
N(0, 0.57), the “least-informative” prior proposed by Lee and Cheung (2011). The results
show that the performance of the DA-CRM (e.g., the selection percentages and NMTD+) was
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very similar across different conditions (see Table S5 in the Supplementary Materials),
which suggests the robustness of the proposed design.

4. Applications
4.1. Pancreatic cancer trial

Muler et al. (2004) described a phase I trial to determine the MTD of cisplatin that could be
added to the full-dose gemcitabine and radiation therapy in patients with pancreatic cancer.
The protocol treatment was consisted of two 28-day cycles of chemotherapy, with radiation
given during the first cycle of chemotherapy. Radiation and gemcitabine doses were held
constant, while four dose levels of cisplatin (20, 30, 40 and 50 mg/m2) were investigated in
the trial. The DLTs were defined as CTCAE 2.0 grade 4 thrombocytopenia, grade 4
neutropenia lasting more than 7 days, or grade 3 toxicity in other organ systems. Patients
were required to be followed for nine weeks in order to fully assess their toxicity outcomes.
The goal of the trial was to determine the dose of cisplatin associated with a target DLT rate
of 20%.

As shown in Table 2, one challenge of designing this trial is that the accrual was fast,
compared to the 9-week assessment period for DLTs (i.e., the toxicity was late-onset). In the
DA-CRM design, we took α =(0.1, 0.15, 0.2, 0.25) as the prior estimates of the toxicity
probabilities for the four dose levels of cisplatin, and used 30 mg/m2 as the starting dose of
the trial. For patient safety, we required that at least two patients must have fully completed
their toxicity assessment at the lower dose before the dose can be escalated to the next
higher level.

Figure 2 summarizes how the posterior estimates of the toxicity probabilities of four doses
were updated as more patients were enrolled during the trial conduct. The first four patients
were assigned to the dose of 30 mg/m2. Based on the days from the initiation of the trial,
when patient 5 arrived on day 70, patient 1 had completed the follow-up, while patients 2, 3
and 4 had finished only 43%, 32% and 22% of their follow-ups, without experiencing any
DLTs. The estimates of toxicity probabilities of four doses were π̂ =(0.113, 0.131, 0.148,
0.165). We escalated the dose and subsequently treated patients 5 to 8 at the dose of 40 mg/
m2. Patient 2 died after 63 days on therapy, but was judged to be secondary to the
hypercoaguable state associated with pancreatic cancer. Therefore, that death was classified
as unrelated to therapy (i.e., not a DLT).

Upon the arrival of patient 9 on day 224, patients 1 to 7 had completed their toxicity
assessment and none of them had experienced DLT. These data yielded the updated toxicity
estimates π̂ =(0.005, 0.008, 0.013, 0.019), suggesting that the doses of 30 mg/m2 and 40 mg/
m2 were safe. As a result, we further escalated the dose and assigned patients 9 to 11 to 50
mg/m2. On day 301 when patient 12 was accrued, patients 1 to 10 had completed their
toxicity assessment without experiencing DLT, yielding the updated estimates of the toxicity
probabilities π̂ =(0.007, 0.012, 0.019, 0.027). Consequently, patients 12 to 15 were also
treated at 50 mg/m2.

After patient 12 experienced a DLT (i.e., duodenal ulcer) on day 347, the estimates of the
toxicity probabilities began to increase, i.e., π̂=(0.085, 0.125, 0.165, 0.207), but not
sufficiently to trigger dose de-escalation. According to the dose-finding algorithm, the
incoming patients 16 and 17 should be treated at 50 mg/m2. However, because the
investigators were concerned about a potential DLT in patient 15, only patient 17 was
treated at 50 mg/m2, while patient 16 was treated at a lower dose 40 mg/m2.
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By the time that patient 18, the last enrolled patient, arrived on day 455, 4 out of 8 patients
previously treated at 50 mg/m2 had experienced DLTs (i.e., one duodenal ulcer, one diarrhea
resulting in dehydration, and two grade 3 anorexia and nausea leading to a two-level decline
in performance status). This significantly increased π̂ to (0.126, 0.177, 0.228, 0.275).
Therefore, patient 18 was assigned to a lower dose 30 mg/m2. At the end of the trial, the
estimates of the toxicity probabilities were π̂ =(0.118, 0.167, 0.215, 0.264) and thus the dose
40 mg/m2 was selected as the MTD because its estimated toxicity probability was closest to
the target of 0.2.

4.2. Esophageal cancer trial
In the esophageal cancer clinical trial described in Section 1, the target toxicity probability
was 30% and a total of 30 patients were treated sequentially in cohorts of size 3. Six doses
were investigated and the trial started by treating the first cohort at dose level 1. Under the
DA-CRM design, the posterior estimates of the dose toxicity probabilities were updated only
when the first patient of each new cohort (i.e., patient 4, 7, 10, 13, 16 …) was enrolled.

The three patients in cohort 1 were enrolled at days 3, 6 and 18, respectively (see Table S6
in the Supplementary Materials). On day 28 when patient 4 (i.e., the first patient of cohort 2)
was enrolled, the three patients in cohort 1 had finished only 28%, 24% and 11% of their 3-
month follow-ups without experiencing toxicity (i.e., DLT). The estimates of the toxicity
probabilities of six dose levels were π̂ =(0.172, 0.185, 0.209, 0.236, 0.264, 0.294). We
escalated the dose and treated patient 4, and subsequently patients 5 and 6, at dose level 2.

When patient 7 (the first patient of cohort 3) arrived on day 57, we again updated the
estimates of the toxicity probabilities and obtained π̂ =(0.315, 0.336, 0.369, 0.407, 0.445,
0.486). Although at that moment, we still had not observed any DLTs yet, the values of π̂
increased compared with the previous estimates of π. This is because on day 57, more
patients (i.e., patients 1 to 6) were under treatment and none of them had finished their 3-
month follow-ups yet. There was greater uncertainty regarding the toxicity probabilities of
the doses and it was preferable to be conservative. Our algorithm automatically took into
account such uncertainty and de-escalated the dose back to the first level for treating cohort
3.

One day 91 when the first patient of cohort 4 (i.e., patient 10) was accrued, patients 1, 2 and
3 were very close to completing their 3-month follow-ups without experiencing toxicity,
indicating that the first dose level was safe and dose escalation was needed. The proposed
algorithm timely reflected this data information and escalated the dose to level 2. The dose
was further escalated to levels 3 and 4 for treating cohorts 5 and 6, respectively, as no DLT
was observed. By the time when patient 19 arrived, the toxicity outcomes of all patients
treated in the trial had been observed. In particular, all three patients (i.e., patients 16–18)
treated at dose level 4 had experienced DLTs. Our algorithm de-escalated the dose to level 3
to treat cohort 7. Thereafter, there were always at least 18 toxicity outcomes (from patients
1–18) fully observed, thus π̂ became rather stable and consistently indicated that dose 3 was
the MTD. The last 3 cohorts were all treated at dose level 3 and, at the end of the trial, dose
3 was selected as the MTD with the estimated toxicity probability of 0.259.

Figure 3 displays the estimate of the unknown parameter α during the trial conduct. At the
beginning of the trial, there was quite variability for the estimate of α due to sparse data,
while the estimate became stabilized after six cohorts of patients were enrolled.
Correspondingly, Table 3 summarizes the estimates of the toxicity probabilities π for the six
doses at each decision-making time.
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5. Conclusions
We have proposed the DA-CRM design to address the issues associated with late-onset
toxicities in phase I dose-finding trials. In the new design, unobserved toxicity outcomes are
naturally treated as missing data. We established that such missing data are nonignorable
and linked the missing data mechanism with the time to toxicity based on a flexible
piecewise exponential model. Simulation studies showed that the DA-CRM outperforms
other available methods, particularly when toxicities need a long follow-up time to be
assessed. The selection percentage of the DA-CRM is often close to the optimal value, and
much fewer patients would be treated at overly toxic doses.

This paper has focused on the single-agent dose finding using the CRM, but the proposed
methodology provides a general and systematic approach to transforming the late-onset
toxicity problem into a standard complete-data problem by imputing the missing toxicity
outcomes. The proposed method can serve as a universal adaptor to extend existing trial
designs to accommodate more complicated dose-finding problems with late-onset toxicity.
For example, by incorporating the data augmentation procedure into the partial-order CRM
(Wages, Conaway and O’Quigley, 2011), we can address the late-onset toxicity for drug-
combination trials or dose finding with group heterogeneity. It is also worth emphasizing
that although we have focused on the late-onset toxicity, the proposed method can also be
used to handle other kinds of late-onset outcomes, such as delayed efficacy responses in
phase I/II or phase II trials, as well as response-adaptive randomization designs.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: PROOF OF THEOREM 1
Considering that each subject is fully followed up to T, if ti > T, then Yi = 0; and if ti ≤ T,
then Yi = 1. We demonstrate the nonignorable missingness for the missing data caused by
late-onset toxicity as follows. For a subject who will not experience toxicity, the probability
that his/her toxicity outcome will be missing is given by

where the last equality follows because ti and ui are independent, and Pr(ti > ui|ui < T, ti > T)
= 1. Similarly, for a subject who will experience toxicity, the probability that his/her toxicity
outcome will be missing is given by
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Because of Pr(ti > ui|ui < T, ti T) < 1, it follows that

Therefore, the missing data are more likely to occur for those patients who will not
experience toxicity in (0, T).
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Fig 1.
Illustration of missing toxicity outcomes under fast accrual. For each patient, the horizontal
line segment represents the follow-up, on which toxicity is indicated by cross. At time τ, the
toxicity outcome of patient 1 is missing (i.e., Y1 is missing); at time 2τ, the toxicity outcome
of patient 2 is missing (i.e., Y1 = 1, but Y2 is missing); and at time 3τ, the toxicity outcomes
of both patients 2 and 3 are missing (i.e., Y1 = 1, but Y2 and Y3 are missing).
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Fig 2.
Estimates of the toxicity probabilities of four doses with the cumulative number of patients
in the pancreatic cancer trial. Numbers 1–4 in the figure indicate the four dose levels.
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Fig 3.
Estimate of the unknown parameter α with cumulative cohorts in the esophageal cancer
trial.
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