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Abstract
Neural decoding is an important approach for extracting information from population codes. We
previously proposed a novel transductive neural decoding paradigm and applied it to reconstruct
the rat’s position during navigation based on unsorted rat hippocampal ensemble spiking activity.
Here, we investigate several important technical issues of this new paradigm using one data set of
one animal. Several extensions of our decoding method are discussed.

I. INTRODUCTION

Neural decoding, as an inverse problem to neural encoding analysis, aims to infer sensory
stimuli or motor kinematics based on recorded ensemble neuronal spiking activity. Neural
decoding is important not only for understanding neural codes (i.e., neural response features
capable of representing all information that neurons carry about the stimuli of interest), but
also for extracting maximal information from population neurons in engineering
applications, such as brain-machine interfaces [13]. Traditional neural decoding methods
based on spiking activity [3], [21], [20], [12] rely on spike sorting, a process that is
computationally expensive, time-consuming, and prone to errors [8], [18], [19]. To
overcome this drawback, we have proposed a novel transductive neural decoding paradigm
and applied it to unsorted rat hippocampal population codes [10].1 Unlike traditional neural
encoding/decoding methods, the proposed paradigm does not require estimating tuning
curves (TCs) for individual sorted single units. Our paradigm is also different from other
spike-sorting-free decoding methods in the literature [6], [17] in that spike waveform
features are used in decoding analysis.

zhechen@mit.edu.
1The term “transductive” is motivated by “transductive inference” initiated in the machine learning literature [16], which aims to
avoid solving a more general problem. In the context of neural decoding, we aim to infer input stimuli from population codes without
resorting to spike sorting.
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In this paper, we first briefly review the transductive, spike sorting-free decoding method
[10], before discussing in greater detail several technical issues related to application of the
method to neural data. Next, we discuss extensions to the proposed method. From an
information-theoretic perspective, we also propose a practical way to assess the mutual
information between sensory stimuli and neural spiking responses, which are
mathematically characterized by a spatio-temporal Poisson process (STPP).

II. METHOD: TRANSDUCTIVE NEURAL DECODING

The basic idea of transductive neural decoding described in [10] is to model ensemble
neuronal spiking activity as a spatio-temporal point process [15], in which the timing of
spike events is defined with a random measure in time, and the “mark” associated with the
spike events is defined with another random measure in real space.

A. Spatio-temporal Poisson Process (STPP)
Let us consider a STPP, which is the simplest spatio-temporal point process in which events
are independent in time. Let λ(t, a) denote the rate function, and a ∈ S (where S is a vector
space). For any subset Sj ∈ S in the space, the number of the events occurring inside the
region is also a temporal Poisson process with associate rate function λSj(t):

(1)

The expected number of events in any spatio-temporal region is also Poisson distributed
with the mean rate given by

(2)

In the special case where the generalized rate function is a separable function of space and
time such that

(3)

where p(a) represents the spatial probability density function (pdf) of the random variable a,

and . The interpretation of the separable STPP is as follows: To generate
random Poisson events in space-time, the first step is to sample a Poisson process with a rate
function λS(t), and the second step, is to draw a random vector a (associated with each
event) from p(a). Therefore, the spatio-temporal point process may be viewed as a purely
temporal marked point process, with spatial marks at each time point of event occurrence
from the ground process, and the marked space is defined by a random probability measure
[15]. Detailed technical backgrounds are referred to [10].

B. Bayesian Decoding
In the context of neural decoding, let random variable a ≡ {a1, … ad} ∈ ℝd denote the
measured d-dimensional feature extracted from the spike waveform (e.g., peak amplitude,
waveform derivative, principal components, or any features that are used in spike sorting
process), let x ∈ ℝq denote the sensory stimulus or motor covariate (such as the animal’s
position, head direction, velocity, etc.) that is being decoded. Furthermore, let n denote the
number of spike events in the complete d-dimensional space within a time interval [t, t + Δt),
and let a1:n denote the associated n d-dimensional spike waveform features. The d-
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dimensional feature space is divided evenly into J non-overlapping regions S ≡ (S1 ∪ S2 …
∪ SJ), and a1:n ∈ S.

To infer the probability of the unknown variable of interest xt at time t, we resort to the
Bayes rule

(4)

where P(xt) denotes the prior probability, P(a1:n|xt) denotes the likelihood, and the
denominator denotes a normalizing constant. Provided that a non-informative temporal prior
for P(xt) is used (for this reason, from now on we will drop the subscript t on xt; the
extension of using a temporal prior is discussed later), then Bayesian decoding is aimed to
maximize the product of the likelihood and spatial prior P(x):

(5)

To compute the likelihood, we assume that the spike events follow a time-homogeneous
STPP with a generalized rate function λ(a, x). It follows that the number of events occurring
within a time window [t, t + Δt) and subregion Sj in the d-dimensional spike feature space

also follows a Poisson distribution with the rate function ,
which can be viewed as a spatial TC with respect to the covariate space x. By dividing the

spike feature space into J non-overlapping spatial subregions , we can factorize
the likelihood function into a product of Poisson likelihoods of all J subregions

(6)

where n(Sj) denotes the number of spike events within the region Sj. In the limiting case
when the subregion becomes sufficiently small such that n(Sj) is equal to 0 or 1 within the
time interval Δt, simplifying (6) and replacing it into (5) yields the posterior

(7)

where λ(x) denotes the rate of spike events occurring in the covariate space x.

To compute (7), we need to compute or establish a representation for the generalized rate
function λ(a, x) and its marginal rate function λ(x). In practice, these rate functions are
estimated a priori by recording spike events and their associated features while sampling
over the covariate space. Note that the generalized rate function used in (6) can be written as

(8)

where N denotes the total number of spike events recorded within time interval (0, T], μ is
the mean spiking rate defined in (2), π(x) denotes the occupancy probability of x during the
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complete time interval, and p(a, x) denotes the joint pdf of a and x. Furthermore, we have

, and , where p(a|x) denotes the
conditional pdf.

In the decoding phase, in order to compute the likelihood (6), we would need to evaluate the
target point in the functions λ(a, x) and λ(x), or equivalently in p(a, x) and p(x). Finally, to
choose the maximum a posteriori (MAP) estimate of x, denoted by xMAP we simply evaluate
the log-posterior (7) among all candidates in the x space, and choose the one that has the
highest value.

C. Density Estimation: Parametric vs. Nonparametric Methods
In our decoding paradigm, the essential task is to estimate the joint pdf p(a, x) and its
marginal p(x). Multivariate density estimation has been well studied in statistics [14].
Common methods include (i) parametric approaches, which model the data by a finite
mixture model (a process similar to spike sorting at the first place); and (ii) nonparametric
approaches, such as the histogram or kernel density estimation (KDE). Parametric
representation is compact but less flexible; nonparametric approaches are model-free but
more computationally expensive.

We investigate two methods here: one is based on an ℓ-mixtures of Gaussians (MoG) model,
another based on Gaussian KDE, using a non-isotropic multivariate Gaussian kernel K

(9)

(10)

where , (mr, Hr) denote the r-th mean vector and diagonal (yet non-isotropic)
covariance matrix, respectively, in the mixture model for the augmented vector

 denotes the m-th source data point from the training set, and σi and hj
denote the kernel bandwidth (BW) parameters for the i-th and j-th element in a and x,
respectively.

For the MoG model, the unknown parameters  are estimated from the
expectation-maximization (EM) algorithm. For the KDE, the BW parameters are estimated
from [2].

III. MUTUAL INFORMATION BETWEEN STIMULUS AND NEURAL RESPONSES

Let X denote the sensory stimuli, and let R denote the raw neuronal responses (spike
waveform). Any feature extraction from raw data (such as spike count, PCA) can be
modeled as a generic nonlinear function f. According to the Data Processing Inequality,
post-processing of R never increases the mutual information between X and R [13]

(11)
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This inequality is also applicable to spike sorting. In comparison to spike sorting-based
decoding, spike sorting-free decoding sidesteps the sorting (clustering) process and reduces
information loss, and prevents accumulating sorting error into decoding analysis.

The mutual information between the sensory input x and spike waveform features a is
written as [4]

(12)

where the marginal and joint entropy functions can be estimated from KDE. For instance,
given the multivariate kernel density estimator of an unknown pdf p(x), a simple plug-in
resubstitution estimator for differential entropy can be written as [1]:

, where  denotes a kernel density estimator based
on M data samples.

In the presence of multi-electrode recording, given the spike waveform feature (a1, …, aℓ)
from ℓ electrodes, the mutual information is given by [4]

(13)

where the second step follows from the conditional independence assumption between the
covariate x and the neural response ar from each electrode. The conditional entropy H(ar|x)
= H(x) − H(ar, x) can be estimated directly from KDE, and the joint entropy H(a1, …, aℓ)
may be estimated with a resampling method.

IV. RESULTS: POSITION RECONSTRUCTION WITH UNSORTED RAT HIPPOCAMPAL ENSEMBLE SPIKING ACTIVITY

A. Experimental Data
For experimental protocol and details, the reader is referred to [10]. Animals were traveling
in a 3.1-m linear track environment, which was binned with 0.1-m bin size resulting in 31
position bins. Simultaneous tetrode recordings were collected from the CA1 area of rat
hippocampus. In each recording recording session, the waveforms of all unsorted spikes
were re-thresholded at 75 μV. Next, for unsorted spike events, the spikes with a peak to
trough width of greater than 150 μs are considered as originating from pyramidal cells and
are included in the decoding analysis. For each tetrode, the peak amplitudes from 4 channels
are used to construct a ∈ ℝ4 (see the left panel of Fig. 1 for illustration). In one selected data
set studied here, we collect 48 putative pyramidal cells from 18 tetrodes within about 30-min
recordings. The first half of the data is used as the training set. The temporal bin size is
chosen as Δt = 250 ms, and only run periods (velocity filter 0.15 m/s) are chosen in encoding
and decoding analyses. The decoding error is defined as |xtrue − xMAP| (x ∈ ℝ) for each
temporal bin.

B. Experimental Results
1) Transductive Decoding with Sorted vs. All Spikes—For the selected data set, we
show the number of spikes per tetrode based on sorted (10664) spikes or all recorded
(39383) spikes (Fig. 2, left panel). As seen, nearly 73% recorded spikes are discarded in
spike sorting. Potentially, many non-clusterable spikes contain tuning information; and
traditional spike sorting-based decoding methods may suffer an information loss by
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discarding those spikes. The decoding error cumulative distribution function (cdf) curve
(Fig. 2, right panel) indicates a statistically significant improvement in decoding accuracy
(two-sample KS test: P < 0.001). The median (mean) statistics of decoding error are 0.1111
(0.1920) m for using all spikes, and 0.1172 (0.2051) m for using only sorted spikes. This
result also confirms our previous finding [10].

2) Parametric vs. Nonparametric Density Estimation—Next, we compare two
density estimators (Eqs. 9 and 10) in our proposed transductive neural decoding paradigm.
For the nonparmetric method, we use Gaussian KDE with non-isotropic BW parameters. For
the parametric method, we use various numbers (4, 6, 8, 10, 12) of MoG for each tetrode,
resulting in a maximum of 216 multivariate Gaussians for 18 tetrodes. Note that using a
Gaussian mixture for density estimation is in spirit similar to the clustering process during
spike sorting, except that we estimate (a, x) jointly (instead of a alone in spike sorting), and
that the spread of the kernels is allowed to be overlapping (without making hard decisions).
The decoding results are shown in Fig. 3 (left panel). As seen, the decoding accuracy also
improves as the number of the Gaussian mixtures increases. The nonparametric method has
a better decoding performance due to its more accurate representation of the density.
Besides, for the decoding purpose, a local density representation is more preferable to a
global characterization.

3) Reduction of Source Samples—In KDE representation, the density is represented
by M source data points (at one electrode). Obviously, the storage requirement and
computational complexity of decoding is linearly proportional to M. To reduce the
computational burden, we attempt to reduce the source samples by two methods. The first
method uses a higher threshold (in our case, greater than 75 μV) to exclude low-amplitude
spike events. Generally, the low-amplitude spikes have less recoverable information of the
stimulus. The second method aims to compress source samples using some computational
methods [11], [7], [9]. Here we use a computationally efficient KD-tree method (http://
www.ics.uci.edu/~ihler/code/kde.html).

The results of the decoding error statistics are summarized in Table I. As seen from the
mean/median error statistics, the decoding accuracy degrades while using a very high
threshold; however, better performance can also be expected using a slightly higher
threshold (e.g., 100 μV). On the other hand, reducing source sample size using a
computational method always degrades decoding accuracy, regardless of the data source
(sorted spikes or all spikes).

4) Scaling the BW Parameters—In the presence of noisy spikes (in the low-amplitude
space), it is common to use a larger kernel BW to smooth the noise-contaminated samples.
To test this idea, we fix the position BW (0.05 m) and scale the initial amplitude BW

(estimated from [2]) by different scalars  in all four dimensions. The
decoding error cdf curves are shown in Fig. 3 (right panel). For this data set, the optimal
scaling parameter is 2, achieving the median (mean) decoding error of 0.1043 (0.1346) m.
Note that the mean decoding error is greatly reduced.

V. DISCUSSION

A. Curse of Dimensionality
In a general setting, the dimensionality of the covariate space can be very large: either q is
large, or the range for individual univariate dimension is large (with a relatively small bin
size). For MAP estimation, a naive even binning of the covariate space can be extremely
inefficient, since the occupancy density π(x) may be very sparse. To tackle the “curse of
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dimensionality” problem, we may use a divide-and-conquer approach by constructing q
independent decoders, each one equipped with its own density estimator. Another way is to
use informative cues to draw candidate samples from an informative covariate space (an
idea similar to importance sampling) [5]. Here we discuss two sampling approaches.

1) Sampling from a Temporal Prior—Within the state-space framework, we can
sample the current covariate x from a transition prior of the covariate at the previous discrete
time step [3], [21]:

(14)

where p(xt|xt−1) denotes a transition probability density. The posterior can be estimated used
a recursive Bayesian filtering rule (for notation simplicity, we have ignored the subscript 1:n
for a)

(15)

where P(at|xt, a1:t−1) = P(at|xt) (because of the statistical independence between at and a1:t−1
in the spike waveform feature space) denotes the data likelihood at the t-th time step.

2) Kernel Regression—Since at every time step t, we observe the current spike
waveform feature at; ideally, the candidate sample is drawn from the mode of the posterior
P(x|at). However, searching for the mode in a high-dimensional covariate space is a very
challenging problem. Instead, we can search for the mean in the sample space, which may
be computed by a continuous multi-input multi-ouput mapping through nonparametric
regression x = g(a), where g(·) is a locally smooth multivariate function

(16)

Eq. (16) is known as Nadaraya-Watson kernel regression. However, in the presence of
noisy spikes and multi-modes in P(x|a), this scheme might not be effective. Alternatively,
we may draw candidate samples from P(a|x) using an auxiliary variable [5].

B. Other Issues
Several remaining issues are worth mentioning. First, region-dependent kernel BW
parameters can be considered in KDE. For instance, in the low spike-amplitude space, we
may use a small BW for the dense noisy spikes, while a large BW is preferred in the
median-to-high amplitude space. In addition, finding a meaningful representation of the
feature (e.g., by nonlinear transformation) and selecting an appropriate kernel function (in
either parametric or nonparametric density estimation) would help separate different feature
clusters and improve the decoding accuracy. Second, we have assumed that each sample
point contributes equally in KDE. Alternatively, samples can be merged (according to
certain similarity measure) and assigned with unequal weights [22], which also helps reduce
the sample size.

All of above-mentioned topics will be the subject of our future decoding analysis
investigation, using recordings not only from the rat hippocampus, but also from other brain
regions (e.g., primate primary motor cortex). In addition, real-time implementations of our
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transductive neural decoding paradigm using online (parametric or nonparametric) density
estimation is currently under investigation.
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Fig. 1.
Left: Raw spike amplitudes from one tetrode (shown in 2 channels). Right: Estimated
mutual information (bits) between the position (x) and spike amplitude (a) in each tetrode
(computed from Eq. 12); note that they are all bounded by the entropy of stimulus (3.36
bits).
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Fig. 2.
Left: Numbers of spike counts per tetrode for sorted vs. all spikes. Right: Decoding error cdf
curves from using sorted and all spikes.
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Fig. 3.
Decoding error cdf curves from both mixtures of Gaussians (MoG) and KDE methods (left),
and from using various BW scalings (right).
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TABLE I

STATISTICS OF THE MEAN/MEDIAN DECODING ERROR (UNIT: METER) USING VARIOUS THRESHOLDS OR VARIOUS COMPRESSED SAMPLE SIZE M FOR OUR TRANSDUCTIVE

AMPLITUDE-BASED DECODING.

threshold (μV) sorted spikes all spikes

100 0.2056/0.1159 0.1928/0.1009

125 0.2174/0.1176 0.2057/0.1116

150 0.2347/0.1197 0.2132/0.1154

M (per tetrode) sorted spikes all spikes

500 0.4536/0.1876 N/A

1000 0.3283/0.1307 N/A

2000 0.2444/0.1194 0.5642/0.1598

3000 0.2051/0.1172 0.3960/0.1279

ALL data 0.2051/0.1172 0.1920/0.1111
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