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Abstract
Objectives—The biomodification of dentin is a biomimetic approach, mediated by bioactive
agents, to enhance and reinforce the dentin by locally altering the biochemistry and biomechanical
properties. This review provides an overview of key dentin matrix components, targeting effects
of biomodification strategies, the chemistry of renewable natural sources, and current research on
their potential clinical applications.

Methods—The PubMed database and collected literature were used as a resource for peer-
reviewed articles to highlight the topics of dentin hierarchical structure, biomodification agents,
and laboratorial investigations of their clinical applications. In addition, new data is presented on
laboratorial methods for the standardization of proanthocyanidin-rich preparations as a renewable
source of plant-derived biomodification agents.

Results—Biomodification agents can be categorized as physical methods and chemical agents.
Synthetic and naturally occurring chemical strategies present distinctive mechanism of interaction
with the tissue. Initially thought to be driven only by inter- or intra-molecular collagen induced
non-enzymatic collagen cross-linking, multiple interactions with other dentin components are
fundamental for the long-term biomechanics and biostability of the tissue. Oligomeric
proanthocyanidins show promising bioactivity, and their chemical complexity requires systematic
evaluation of the active compounds to produce a fully standardized intervention material from
renewable resource, prior to their detailed clinical evaluation.

Significance—Understanding the hierarchical structure of dentin and the targeting effect of the
bioactive compounds will establish their use in both dentin-biomaterials interface and caries
management.
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1. Overview
Dentin is a complex mineralized tissue arranged in an elaborate 3-dimensional framework
composed of tubules extending from the pulp to the dentin-enamel junction, intra-tubular
and peri-tubular dentin. The mineral portion is composed of carbonate apatites. Fibrillar type
I collagen accounts for 90% of the organic matrix while the remaining 10% consists of non-
collagenous proteins, such as phosphoproteins and proteoglycans (Fig. 1). The peri-tubular
dentin, i.e. dentin surrounding the tubules, is highly mineralized (95 vol% of mineral), while
most organic content is localized at the inter-tubular dentin (30 vol% of mineral) [1]. Dentin
undergoes modifications by physiological aging and disease processes to produce different
forms of dentin [2]. This process affects the biomechanics and biochemistry of the tissue.

Although similar in composition to bone, dentin does not share the same ability to remodel.
This limits site regenerative therapies. An advantage of dentin over enamel is the presence
of a collagen based scaffold that provides an appropriate cell-free backbone for tissue repair
and regeneration. The presence of such a scaffold is a key to advance new concepts in tissue
engineering approaches to the treatment of missing hard tissue. Recently, biomodification of
dentin has been investigated as a biomimetic strategy therapy to mechanically strengthen the
existing collagen network and also control biodegradation rates of extracellular matrix
(ECM) components. This review provides an overview of important extracellular matrix
components of dentin, as well as mechanisms and application of dentin biomodification, and
specifically addresses the broad application of naturally occurring biomodification agents.

2. Extracellular Matrix Components Relevant to Dentin Biomodification
2.1. Type I Collagen

Fibrillar collagen is a strong and elastic biomaterial arranged into highly organized
hierarchical structures [3, 4]. Type I collagen is the most abundant of all collagen types and
is defined as a coiled-coil trimer molecule, each of which is composed of the repeated
sequence of amino acids Gly–X–Y, where X and Y are commonly found to be proline and
hydroxyproline, respectively. Type I collagen molecules are biosynthesized from a larger
precursor, procollagen, by cleavage at both its C- and N-terminal ends. The collagen fibrils
are formed by spontaneous self-assembly of the molecules into a periodic structure with 67–
69 nm repeat period overlap between neighboring molecules which is crucial for the
development of covalent inter-molecular cross-linking. The inter-molecular cross-linking,
the final post-translational modification of collagen, is the basis for the stability, tensile
strength and viscoelasticity of the collagen fibrils (Fig. 1). The slope of elastic stress-strain
curve for collagen fibers increases with increased degree of cross-linking [5], subtle
perturbations to the cross-linking profile have been correlated with the strength of hard
tissue [6]. In addition, the biodegradability and thermal stability of the tissue is also
controlled by the amount and type of collagen cross-linking.

Endogenous collagen cross-linkings are mediated by enzymatic and non-enzymatic
reactions. Enzymatic intra- and inter-molecular cross-links, formed between telopeptides
and adjacent triple helical chains through lysine–lysine covalent bonding [6–8], are
controlled by a number of factors, such as lysine hydroxylation, glycosylation, turnover rate,
molecular packing and external forces [9]. Non-enzymatic collagen cross-linkings are
mediated by oxidation and glycation processes [10]. Exogenous collagen cross-linking can
be induced by non-enzymatic reaction sources such as chemical agents and physical
methods, both of which have distinct mechanisms of interaction with type I collagen (see
sub-section 3.1).
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2.2. Proteoglycans
Proteoglycans (PGs) are a major group of non-collagenous proteins identified in both pre-
dentin and dentin. PGs play a crucial role in dentin mineralization [11, 12] and the structural
integrity of collagen fibrils [13]. They are classified into two distinct categories: the large
aggregating chondroitin/keratan sulfate family, composed of molecules such as versican and
aggregan, and the family of small leucine-rich proteoglycans (SLRPs) [14–16]. PGs found
in dentin are mainly small leucine-rich collagen-binding carrying chondroitin- (CS, e.g.
biglycan or decorin) with a limited distribution of keratan-sulfate (KS, e.g. fibromodulin,
lumican) glycosaminoglycans chains (GAGs) [17]. Although there are similarities in the
structure of decorin and biglycan, they differ in the pre-dentin/dentin distribution [18, 19]
and in gene-expression during tooth mineralization [20]. In addition to their roles in
mineralization, PGs control the tissue hydration and molecule diffusivity [21]. Hence,
modified forms of the tissue, such as sclerotic dentin, can affect the distribution of PGs [22].

2.3. Endogenous proteases
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases; able to
degrade different components of the ECM [23]. In the oral cavity, MMPs are related to
periodontal disease, caries progression, pulp inflammation and cancer [24–26]. In the
dentin-pulp complex, several MMPs have been identified such as MMP-2, -3, -8 and -9 [27–
29]. Another important family of proteases are the cysteine cathepsins [30, 31]. Cathepsins
belong to the papain family and were initially considered as lysosomal proteases, although
they can act extracellularly [32]. They become active at acidic pH and most are
endopeptidases, with some exceptions like cathepsin B that can also act as a
carboxypeptidase [33]. Cathepsins participate in ECM degradation in physiological and
pathological processes like bone remodeling, inflammation, rheumatoid arthritis, diabetes,
multiple sclerosis and cancer [32, 34]. In addition to their role in caries progression [30], the
cathpesins have also been associated with other oral diseases such as periodontitis, bone
resorption and oral cancer [35–37]. Like MMPs, cathepsins are active in intact and carious
dentin and show decreased activity with age in sound dentin [31].

3. Biomodification of dentin – a bio-inspired strategy
Current therapies to replace missing tissue have primarily relied on synthetic biomaterials to
restore function and shape of the tissue. Advances in tissue engineering and regeneration
have grown exponentially in the past decades but with limited application in dental hard
tissue repair resulting from the limited ability of the tissue to remodel. This site-specific
limitation in tissue regeneration of dentin requires unconventional approaches to be used in
an attempt to promote tissue repair. Therefore any shift from a restorative to a reparative/
regenerative dentistry will likely rely on better understanding on the tissue biochemistry,
hierarchical structure (Fig. 1) and implication to the biomechanics of the tooth.

One relatively small but significant step towards dentin tissue repair/regenerations is the
development of a biomimetic strategy to enhance the tissue properties by modifying the
chemistry of the tissue. The biomodification of existing hard tissue structures, specifically
tooth dentin, is a novel approach to improve the biomechanical and biochemical properties
of the tissue for preventive or reparative/restorative purposes. The approach was initially
thought to be driven by inter- or intra-molecular collagen induced non-enzymatic collagen
cross-linking [38]. However the multi-interactions between bioactive agents with various
extracellular components of the dentin matrix are likely the determinants of the tissue
enhanced biomechanics and biostability. Therefore the term biomodification is more
appropriate to define the bioactivity of these highly bioactive chemical mediators.
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3.1. Biomodification of dentin – sources and types
Type I collagen plays a major role on the replacement of missing tooth structure as the tooth
component that provides micromechanical retention of resin-based materials and also as
scaffold for tissue remineralization. Well-known synthetic agents, nature derived agents and
also physical methods have been shown to effectively interact with type I collagen [39–41]
and will be explored in this section. The sources and types of biomodification agents can be
similarly classified as collagen cross-linking agents. Table 1 summarizes currently
investigated agents for dental application. A brief overview of specific agents is given below
with special emphasis on naturally occurring polyphenols due to their enhanced bioactivity,
biocompatibility and applications when compared to other well-known agents.

3.1.1. Synthetic Resources
Physical Methods: Also called the photo-oxidative method; most synthetic biomodifiers
use light exposure especially ultraviolet radiation [42, 43]. The photo-oxidative method
requires the presence of singlet oxygen; and riboflavin (vitamin B2) is one of the most
potent producers of oxygen radicals [41]. Photo-activation of riboflavin results in singlet-
oxygen-inducing chemical covalent bonds, bridging amine groups (N-H) of glycine of one
chain with carbonyl groups (C=O) of hydroxyproline and proline in adjacent chains [44, 45].
Riboflavin is non-toxic and collagen cross-linking induced by UVA and radiation/riboflavin
is a successful treatment for ophthalmic diseases such as keratoconus [41, 46]. While proven
effective in the laboratory as a photo-activation method of riboflavin [47], safety issues
regarding the use of UVA and its practicality for dental use need to be considered.

Chemical agents: Encompass the largest selection of potential synthetic and naturally
occurring mediators. Their established and postulated mechanisms of action are described
below:

Aldehydes: While Glutaraldehyde (GA) is the most widely known agent of this class,
similar cross-linking ability is found with other aldehydes such as formaldehyde and
glyceraldehyde. GA is a dialdehyde with high affinity for free primary amine groups of
amino acids [39]. GA has been associated with a decrease in the rate of collagen degradation
[40, 48] and improved dentin collagen properties [49], reacting primarily with the ε-amino
groups of peptidyl lysine and hydroxylysine residues of collagen fibrils. A disadvantage of
GA is its high cytotoxicity [40], which limits clinical applicability.

Carbodiimide hydrochloride (EDC) is known as a zero-length agent due to its ability to
cross-link peptides without introducing additional linkage groups. The cross-linking
mechanism is mediated by the activation of carboxylic acid groups of glutamic and aspartic
acids to form an O-acylisourea intermediate. The latter reacts with the ω-amino groups of
lysine or hydroxylysine to form an amide cross-link, leaving urea as the terminal by-product.
The addition of N-hydroxysuccinimide (NHS) to the EDC-containing solution is effective in
increasing the number of induced collagen cross-linking and preventing the hydrolysis of
activated carboxyl groups [50, 51]. While the cross-linking potential is limited [52], EDC is
less toxic than GA [53, 54].

3.1.2 Natural Renewable Resources—Also part of the family of chemical agents,
naturally occurring compounds have received great attention in the past decade for their
potential use in dentistry. Two of their most attractive characteristics are their very low
toxicity when compared to synthetic agents [40] and renewable/sustainable resources.
Sources such as Genipin (GE, an aglycone of an iridoid glycoside, one of the major
components in the fruit of Gardenia jasminoides) have found limited application due to its
slow cross-linking reaction [55]. Inter- and intra-molecular cross-linking is believed to be
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mediated by reactions with free amino acid (lysine, hydroxylysine, or arginine) to form a
nitrogen iridoid that undergoes dehydration to form an aromatic monomer [56–58].

A large variety of bioactivities have been reported for polyphenols from plants. Their
biological functions are the foundation for their prominent roles in plant-based dietary
supplements and nutritionals, and recent research continues to explore new applications. Of
particular interest to dental application are the proanthocyanidins (PACs), belongings to a
category known as condensed tannins, highly hydroxylated structures capable of forming an
insoluble complex with carbohydrates and proteins [59]. In addition to their dentin activity,
PACs increase collagen synthesis, are potent anti-microbial and anti-tumorigenics [60]. The
interaction of PACs and collagen results in the formation of complexes that are believed to
be stabilized primarily by hydrogen bonding between the protein amide carbonyl and the
phenolic hydroxyl [61] and also covalent and hydrophobic bonds. The relatively large
stability of PACs-protein complexes suggests structure specificity [62], which although
encouraging hydrogen binding also creates hydrophobic pockets [40]. Such
microenvironments decrease the dielectric constant enhancing the stability of such H-bonds.
Non-specific inhibition of protease activity and interactions with proteoglycans have
broadened their dental applications. Similar to other natural occurring agents, the source and
preparation from the raw materials are essentials for determining their interactions with the
tissue. In an attempt to unravel this complexity, the section below provides comprehensive
description of their chemistry, manipulation and characterization.

4. Proanthocyanidins
4.1. Polyphenol Chemistry Underlying Dentin Interactions

Polyphenols represent secondary metabolites which are produced by plants likely as part of
their defense mechanism. Different classes of polyphenolic compounds commonly observed
in plants are phenolic acids, flavonoids (sub-classes: flavones, isoflavones, flavanols,
flavanones, and anthocyanins), stilbenes, and lignans [63]. An important aspect of the
flavonoid chemistry is the formation of oligomers/polymers from monomers such as
epicatechin or quercetin by mutual condensation, or conjugation with sugars to form O-
glycosides (e.g., rutin = quercetin-3-O-rutinoside) or C-glycosides (e.g., epicatechin-8-C-β-
D-galactopyranose in Theobroma cacao) [64] and other phenolic acids like gallic acid by
condensation reactions forming gallates e.g., epigallocatechin gallate in Camellia sinensis
(green tea). These conjugated/condensed products can be easily confused with the
monomers in the context of both their structure and nomenclature. For example, hesperidin,
a flavanone glycoside, is derived from the aglycone hesperitin, with the only difference
between the two compounds being the presence of a disaccharide, rutinose.

Proanthocyanidins (PACs) are divided into different classes based on the hydroxylation
patterns in the A and B rings of the flavanoid skeleton. PACs containing (−) epicatechin
(majority) or (+) catechin as their building blocks are known as procyanidins. The
monomeric building blocks of proanthocyanidins are flavan-3-ol units composed of three
rings (Fig. 2A) which based on IUPAC rules are labeled on the basis of their biosynthesis (A
– triketide, B –phenylpropanoid, C – pyran ring formed by condensation). Oligomeric
proanthocyanidins (OPACs) are most frequently composed of (−) epicatechin (2,3-cis) and
(+) catechin (2,3-trans) terminal and extension units. The presence of chiral centers at
positions 2 and 3 in the monomers and 2, 3, 4 in the dimers result in 4 and 8 stereoisomers,
respectively. This imparts an exceptional amount of structural diversity and complexity to
the already complicated biocombinatorial chemistry of the PACs.

In PAC oligomers and polymers, the monomers are linked together via A-type (C-4→C-6/
C-8 and C-2→oxygen at C-7) and B-type (C-4→C-6/C-8) linkages. The monomers range
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from (290–306 Da) molecular weight (MW) while the OPACs range from 500 to 3000 Da.
All PACs above 3000Da are considered polymers whose MWs can reach up to 20,000 Da or
even higher. As the molecular weight of PACs increase, they become increasingly polar due
to the presence of additional hydroxyl groups and hence potential for hydrogen bonding.
The polymeric PACs, which are frequently called “tannins”, have a tendency to form
complex aggregates. They possess significant solubilization difficulties in commonly used
polar organic solvents and are also known to precipitate proteins. Tannins have molecular
weights in the range of 1000 to 5000 Da. Two distinct and major classes of tannins are the
hydrolysable tannins, containing hydrolysable ester bonds between the major building
blocks, and the condensed tannins or proanthocyanidins, in which the monomers are linked
by C-C or C-O-C bonds.

The hydrolysable tannins are classified into gallitannins and ellagitannins which are
composed of gallic acid and ellagic acid units, respectively. These tannins can be hydrolyzed
by acid or enzymes such as tannase. These polyphenols were primarily used by the leather
industry for tanning purposes, but are also found in many plants of medicinal interest such
as pomegranate rind and bark, bearberry leaves and cloves.

The condensed tannins or PACs are not readily hydrolysable like the gallitannins or
ellagitannins, and glycosidation is not commonly observed [65]. Most of the observed
medicinal properties of tannins are attributed to the class of condensed tannins.

The third, relatively rarely studied class of tannins called the “complex tannins” consists of
conjugations between PACs and hydrolysable tannins via C-C bonds [64].

4.2. Structural Diversity and Chemical Space of Oligomeric Plant Phenols
4.2.1. Structures of Oligomeric Proanthocyanidins (OPACs)—OPACs are one of
the two large groups of polyphenols, which consist of condensed polyphenolic moieties.
Representing oligomeric or even polymeric condensates, the building blocks are flavan-3-ols
which are mainly linked through C-4→C-8 or C-4→C-6 carbon-carbon bonds (B-type
proanthocyanidins). Structures with an additional inter-flavanoid ether bond between
C-2β→O→C-7 (or C-2β→O→C-5), they are classified as A-type PACs [66]. PACs are
divided into different subclasses depending on the specific structure of the monomeric
flavan-3-ol units, which include catechin (C), epicatechin (EC), gallocatechin (GC),
epigallocatechin (EGC), afzelechin (AZ), epiafzelechin (EAZ), and all their 3-O-gallic acid
esters, i.e., catechingallate (CG), epicatechingallate (ECG), gallocatechingallate (GCG),
epigallocatechingallate (EGCG), respectively [66, 67]. The most abundant types of PAC are
procyanidins containing catechin (C) and epicatechin (EC) subunits (Fig. 3) [68].

From the perspective of 3D structural diversity, OPACs possess a large number of structural
variations, which result from the different monomer types, the different inter-flavanoid
linkages (bond types and linked positions), and degree of polymerization (Table 3). The
main flavan-3-ol units of grape seed PACs are C, EC, CG, and ECG, and these monomers
are mainly linked with C-4 (α or β)→C-8 or C-4 (α or β)→C-6 inter-flavanoid bonds [69].
Accordingly, there are 64 theoretical structural possibilities for grape seed PAs dimers, as
calculated using the principle of permutation as shown in Fig. 3. Table 3 provides an
overview of the theoretical numbers of potential permutations in the OPACs of various
plants under investigation in the authors’ laboratory. The calculations take into account the
degree of polymerization (DP), the known types of monomers, and the linkages that have
been described for each plant. While the assumption of a “combinatorial biosynthesis”
approach may be an overestimate of the actual OPACs metabolomes, it still demonstrates
the exponential increase in the number of theoretical structural variations of PACs
oligomers, with thousands of variations already starting at the level of tetramers (DP = 4). In
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addition to the rapidly increasing numbers of combinations and linkages, it is important to
note that, despite their apparent similarities in 2D drawings, the molecules are in fact very
different from a 3D perspective (Fig. 5). Accordingly, the distinctly different shapes, spatial
arrangement, and chemical properties of seemingly similar structures need to be considered
when interpreting their biological activities.

4.2.2. Analysis of Oligomeric Polyphenols—Separation and chemical analysis of
oligomeric polyphenols have been performed with various chromatographic methods, such
as size-exclusion, reverse-phased, and normal-phased chromatographies. However, analysis
of oligomeric polyphenols is rather complex as it involves distinction of relatively large
numbers of structurally very similar molecules with many types of isomers, high polarity
(phenolic OHs), and relatively high molecular weights. Size-exclusion chromatography with
Sephadex LH-20 has been commonly used to fractionate PACs by using a gradient solvent
system of aqueous acetone and aqueous alcohol [70–72]. This method is commonly used at
the pre-separation step for preparative HPLC or before quantitative analysis. Reverse-phase
HPLC is commonly used for the separation of flavan-3-ol monomers, dimers, and trimers.
However, higher oligomers do not separate well in this system, especially as the number of
possible isomers increases geometrically with DP. Moreover, the elution order of the
compounds does not strictly follow the DP linearly [73]. Typically, studies involving the
analysis or separation of PACs have been performed to gain insights on the distribution of
the degree of DP. Normal-phase HPLC can also be used for the separation and quantitative
analysis of proanthocyanidins in plants and foods. In fact, normal-phased HPLC has been
reported to separate OPACs according to their DP up to decamers [73–75]. However,
polymeric compounds are not easily eluted from LC columns, especially from silica gel
based stationary phases to which their affinities are too high for elution. This irreversible
adsorption behavior can be avoided with the modified normal phase materials. Such an
example is the newly developed method which uses a Diol stationary phase to isolate PACs
from cacao [76] (Fig. 5). The Diol column can be used with solvents having a wide-range of
polarity and it does not adsorb proanthocyanidins.

Nuclear magnetic resonance (NMR) spectroscopy is generally used for structure elucidation
of chemical compounds. However, NMR analysis of PACs is challenged by the generally
broad signals which results from atropisomerism and the occurrence of distinct conformers
at room temperature. Derivatization by, e.g., permethylation or peracetylation to increase the
steric hindrance of each unit eliminates or ameliorates these dynamic affects and reduces the
spectral complexity, but also increases the molecular weight and produces samples which
are no longer suitable for biological evaluation (in place of their underivatized parent
compounds) due to loss hydroxyl group. While synthetic methods and NMR analysis at low
temperatures can be applied for the elucidation of higher oligomers, there are practical limits
for the identification of their exact structures. Accordingly, in the last 20 years, the
monomers and dimers are by far the most commonly studied compounds (>200 publications
per year). Phytochemical reports about higher oligomers are scarce: 28 publications
elucidate trimers (citation), only five reports describe tetrameric PACs (citation), and no
reports on pentameric or higher oligomers could be located.

4.2.4. PACs-Dentin Matrix Interactions—Since 2007, the topic of natural cross-linkers
of dentin collagen and their enhancement of dentin strength has attracted more and more
attention. Studies of PACs or PACs-rich extracts have primarily focused on their ability to
enhance the mechanical properties of the tissue as well as to reduce biodegradability of the
tissue by host-derived and exogenous proteases [49, 55, 77–91]. Other PACs-rich extracts,
such as cocoa seed extract have also been shown to greatly decrease the enzymatic
degradation, increase stiffness and decrease the swelling ratio of demineralized dentin [92,
93]. However it is a concentration and time dependent process that also can cause a
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brownish coloration of dentin. Reported discolorations are likely related to the content of
polymeric, high-molecular weight PACs and their oxidation products. Specific information
about the chemical species that are colored is unavailable in the literature. Current studies
are underway by the authors research group to elucidate the underlying chemical
mechanisms and determine methods to produce PAC-rich materials that do not cause
discoloration.

The authors’ collaborative research project on the development of a clinical preparation with
dentin enhancing properties evolved from preliminary studies of polyphenol-rich plant
extracts of grape seeds (Vitis vinifera) and cocoa (Theobroma cacao) [83]. Aimed at the
identification of active components from these extracts and standardization of a clinical
preparation, we have been using phytochemical methodology and chromatography methods
to investigate the components soluble in aqueous alcohol by chromatographic methods. Gel
Permeation Chromatography (GPE) with Sephadex LH-20 was applied to fractionate both
extracts, and the active PAC-rich fractions were concentrated into several fractions. The
preliminary data showed fractions 5–10 were the most active and that the degree of
polymerization of the PACs in these fractions was 3–10 based on HPLC analysis (Fig. 6).

The removal of GAGs from dentin has also been observed only following biomodification
with high concentrations of PACs [82]. Due to the GAGs hydrophilicity, PGs contribute to
dentin-resin bonds during re-wetting procedures by maintenance of the collagen fibril
architecture [94, 95]. In contrast, the removal of PGs and/or GAGs by MMP-3
(proteoglycanase) [96] and chondroitinase ABC (to remove CS GAGs) [97] increases the
penetrability of the resin monomers into the fully expanded collagen network. The removal
of proteoglycans may be partially associated with the mechanical changes to the dentin
matrix treated with PAC sources, and perhaps biodegradation rates by changing the tissue
hydration and molecule diffusivity through the tissue [21, 98]; consequently reducing
biodegradation and increasing resin diffusion through the matrix. It is important to highlight
that PGs play an important role in dentin biomechanics [82] and tissue hydration/diffusivity
[21], and therefore effects of PACs on PGs raises more questions than answers regarding the
hierarchical structure of the tissue and its biomechanical behavior.

Inhibition of proteases by PACs has been extensively investigated for various systemic
applications and particularly shown to prevent, reduce or reverse cancer [99] due to their
inhibitory MMP activity [99, 100]. Isolated PAC compounds from cranberry have shown
inhibitory effects of MMPs associated with reduction of periodontal disease progression
[101–103]. The direct effects of PACs on endogenous proteases broaden their application as
a multi-targeting agent for reparative and preventive therapies of dental hard tissue.

5. Clinical Applications of Dentin Biomodification
5.1. Tooth-Biomaterials Interfaces

The most common cause of replacement of resin composite restorations is secondary caries
[104, 105]. These warrant the need for novel treatment strategies to reinforce the dentin
structure. Resin-dentin bonded interfaces may be considered a unique form of tissue
engineering in which a collagen-based dentin matrix scaffold is reinforced by resin to
produce a hybrid layer that couples adhesives/resin composites to the underlying
mineralized dentin [106]. Instead of serving as a stable anchor between the bulk adhesive
and subjacent intact dentin, the hybrid layer is rather the weakest link at the adhesive
interface bond [107]. These denuded collagen matrices are also filled with water, which
serves as a functional media for the degradation of resin matrices and collagen [107, 108].
These pitfalls have been recognized by the research community as a major factor leading to
the short service life of adhesive resin composite restorations.
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In addition, altered forms of dentin in general have a negative impact on the bonding ability
of current adhesive systems. Caries-affected dentin, a common substrate in dental
preparations requiring restorative therapies, is well-known to impair the bonding
performance of contemporary systems [85, 109, 110]. The development of new therapies has
not received the much needed consideration of pathological and physiological variations of
the tissue substrate. Strengthening of type I collagen and reduced biodegradation are likely
to reinforce the dentin structure and in combination are promising strategies to develop a
strong and long lasting tooth-biomaterial interface. Evidence of targeting effects of dentin
biomodification in dentin-resin bonded interfaces is summarized below.

Improving tissue biomechanics—Even if degradation of resin-sparse collagen fibrils
can be prevented, the mechanical properties of these denuded collagen fibrils are far inferior
to those of resin-infiltrated collagen or mineralized collagen [111]. Enhanced properties of
dentin matrix have been extensively demonstrated for various types of dentin
biomodification strategies [47, 49, 55, 82–84]. In addition, recently, tissue specific action of
different agents has been reported in carious teeth [112], with enhanced activity at dentin
zones around the carious lesion as opposed to apparently sound sites.

Enhancement of the biomechanical properties of the dentin matrix is directly related to
immediate increased dentin-resin bond strength to sound [47, 86, 113, 114] and caries-
affected dentin [85]. A closer look at the interface components shows that the mechanical
properties of the underlying dentin and hybrid layer are significantly improved and largely
attributed to agent-mediated non-enzymatic collagen cross-linking [79, 80]. Changes to the
surface hydration and molecule diffusivity may have a considerable effect on the bond
strength as well [82]. Long-term stability has also been reported and attributed to
irreversible collagen cross-linking and reduced dentin matrix biodegradation [81, 115].
Mediators such as EDC/NHS have a significant long-term effect on the resin-dentin bond
strength without affecting the immediate bond strength, likely due to reduced biodegradation
rates [116]. It is also noteworthy that the effect on the resin-dentin bonded stability depends
on the restorative material [115].

Biodegradation – inhibition of proteases—The low pH environment found during
restorative procedures can potentially release and activate MMPs and cathepsins, leading to
subsequent cleavage of exposed dentin collagen [108]. Collagenolytic and gelatinolytic
activities have been shown to occur in dentin and hybrid layers [29, 117, 118].

In general, most dentin biomodification strategies impair exogenous and endogenous
proteolytic activity in a concentration dependent manner. Biomodification of dentin matrices
by PACs induces remarkable resistance against degradation either from bacterial
collagenase [82, 87, 88, 91, 119] or endogenous proteases such as MMPs [102]. Inhibitory
effects of PACs on proteases have been described as non-specific, making the determination
of their mechanisms of action challenging. However, the potent inhibitory effects are likely
to involve several mechanisms such as down regulation of endogenous proteases expression,
protease inactivation/silencing and protection of cleavage sites within collagen; expanding
their potency and clinical application.

Recently, potent inhibitory effects of EDC and Riboflavin/UVA on MMPs [114, 116] have
highlighted the potential of these agents to reduce dentin matrix breakdown and enhance the
long-term stability of dentin-resin interfaces. Aldehyde-based inhibitory activity on
proteases has been shown to affect bacterial collagenase [82], while preliminary studies
exhibit a dose dependent inhibitory activity of MMP-2 and MMP-9 (unpublished data).
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5.2. Dental Caries Prevention and Remineralization
The effects of dentin biomodification on caries prevention or on remineralization have been
largely confined to naturally derived agents. Plant extracts have been used as oral hygiene
agents for hundreds of years [120]. While several studies have investigated direct effect on
dental biofilm and microorganisms, limited studies addressed the role of polyphenol-tooth
complex in caries progression and remineralization therapies. The use of polyphenols in
particular, as dentin-active agents has appeared in the dental literature mostly in the last
decade. The first report in 2001 concerns the effect of miswak extract in the treatment of
dentin [121]. In subsequent studies, a comparison of 50% miswak extract and chlorhexidine
gluconate, showed that the plant extract had similar benefits as to those of chlorhexidine
gluconate. Although the studies did not include phytochemical analyses, general
phytochemical research on miswak by others showed that the plant contains tannins,
saponins, flavonoids and sterols.

The PACs affinity for proline-rich proteins increases their applicability on root dentin caries.
Recently, decreased in vitro caries progression and remineralization of root dentin were
shown to be promoted by PAC-rich grape seed extract [78, 122–124]. The beneficial effect
is believed to involve two mechanisms: stabilization of dentin matrix for matrix
remineralization and formation of calcium-PAC complexes promoting mineral deposition.
PACs also demonstrate a potent anti-bacterial effect [125, 126], further contributing to their
use for caries prevention.

Polyphenols from green tea are among the most well studied PACs and many bioactivities
have been reported, including those affecting dentin. Investigations of the protective
function of green tea extract on dentin erosion and abrasion [127–130] found that green tea
extract solution significantly reduced dentin wear and this observation was attributed to the
polyphenols in the green tea acting as inhibitors of MMP. Epigallocatechin-3-gallate
(EGCG) is a major bioactive component in green tea extract, and known to be an inhibitor of
proteases [131]. However, the mechanism of action of green tea extract is likely more
complex, involving multi-functional activities in biofilm and hard tissue. Two recent
published articles have evaluated its function as an agent acting against the degradation of
collagen in dental erosion and of dentin matrix loss [132, 133].

6. Conclusions
In summary, dentin biomodification is a bio-inspired strategy to enhance the properties of
dentin matrix with major impact on novel preventive and reparative/regenerative dental
therapies. It is essential to consider the mechanism and limitations of a wide range of
available strategies. Preliminary in vitro studies have provided strong evidence of its
application in dentin-resin bonded interfaces and caries development/progression. PACs
appear to be most promising due to their biocompatibility, high dentin bioactivity and
renewable resources. For their further development and investigation, care must be taken to
select appropriate source materials and perform rigorous standardization to develop
intervention materials that are suitable for clinical use.
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Figure 1.
Distribution and hierarchical structure of dentin extracellular matrix components relevant to
dentin biomodification. (A) Tooth structure. EN: enamel, D: dentin, PD: predentin, P: pulp.
(B) Proteoglycans and endogenous proteases distribution in coronal dentin. Endogenous
proteases include MMPs and cysteine-cathepsins with greater presence of both enzymes in
deep dentin areas and predentin and the dentin enamel junction [31, 134, 135].
Proteoglycans are also identified in deep dentin, especially predentin region [136]. (C)
Dentinal tubule cross-section view at higher magnification representing collagen fibrils,
proteoglycans and endogenous proteases. ITD: intertubular dentin; T: dentin tubule.
Proteoglycans are bound to collagen and immunolocalized throughout and highly
concentrated at the peritubular dentin [136, 137]. Cathepsin B was localized in the
odontoblasts and dentinal tubules, especially in peritubular dentin [31]. MMP-2, -9 and -3
are localized along collagen fibrils, mainly at intertubular dentin [28, 138], but no MMPs
were identified inside the tubules [134]. (D) Collagen fibril interactions with non-
collagenous proteins in dentin organic matrix. The protein core present in proteoglycans
binds to collagen and forms aggregates of microfibrils by holding the collagen network
together [137]. (E) Enzymatic collagen cross-links provide tensile properties and stability to
the collagen fibrils.
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Figure 2.
(A) Composition of the monomeric building block of proanthocyanidins. (B) Schematic
representation of the permutation of catechin monomers in PACs with various degrees of
polymerization.
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Figure 3.
Structures of common procyanidins. The color coding distinguishes the two most abundant
monomers, catechin(C) and epicatechin (EC).
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Figure 4.
Comparison of the structures of procyanidin B1 and B7 in 2D structure drawings and a 3D-
model. The difference in their inter-flavanol linkages leads to an important change in the
overall geometry. While the overlay of their 2D structures can demonstrates the effect when
arranging the molecules as shown here, a comparison of 3D models is required to assess the
actual differences in molecular shape. C- Cathechin; EC -Epicatechin
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Figure 5.
Diol-Phased HPLC UV 280 nm trace of procyanidins of cacao.
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Figure 6.
HPLC Profiles of Fractions (UV 280 nm): (A) Grape seed extract sub-fractions and (B)
Cocoa seed extract sub-fractions.
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Table 2

Examples of Common Oligomeric Proanthocyanidins (OPACs) and Their Simplified Codesa)

Degree of Oligomerization Name Code

dimer procyanidin A1

procyanidin A2

procyanidin B1

procyanidin B2

procyanidin B3

procyanidin B4

procyanidin B5

procyanidin B6

procyanidin B7

procyanidin B8

prodelphinidin B1

prodelphinidin B2

prodelphinidin B3

prodelphinidin B4

trimer procyanidin C1

procyanidin C2
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Degree of Oligomerization Name Code

tetramer cinnamtannin A2

cinnamtannin B2

a)
 C=catechin, EC=epicatechin, GC=gallocatechin, EGC=epigallocatechin
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