Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2014 Apr 2.
Published in final edited form as: JAMA Neurol. 2013 Nov;70(11):1425–1428. doi: 10.1001/jamaneurol.2013.3185

Longitudinal Clinical Follow-up of a Large Family With the R357P Twinkle Mutation

Carmen Paradas 1, Pilar Camaño 1, David Otaegui 1, Oguzhan Oz 1, Valentina Emmanuele 1, Salvatore DiMauro 1, Michio Hirano 1
PMCID: PMC3973017  NIHMSID: NIHMS556700  PMID: 24018892

Abstract

IMPORTANCE

Autosomal dominant progressive external ophthalmoplegia due to PEO1 mutations is considered relatively benign, but no data about long-term progression of this disease have been reported. The aim of this study was to provide a 16-year clinical follow-up of autosomal dominant progressive external ophthalmoplegia due to the p.R357P gene mutation in PEO1.

OBSERVATIONS

Twenty-two members of an Irish-American family were examined in 1996, when PEO1 sequencing revealed a c.1071G>C/p.R357P mutation in 9 of them. We reexamined the family in 2012 using a standardized clinical protocol. Autosomal dominant progressive external ophthalmoplegia due to the p.R357P PEO1 mutation is a late-onset ocular myopathy beginning with ptosis and progressing slowly. Ophthalmoparesis, if present, is mild and evident only by neurological examination.

CONCLUSIONS AND RELEVANCE

Our results are important for prognosis and genetic counseling.


Autosomal dominant progressive external ophthalmoplegia (adPEO) is usually associated with multiple mitochondrial DNA (mtDNA) deletions caused by mutations in nuclear genes involved in mtDNA maintenance, including POLG1 and POLG2,1 RRM2B,2 OPA1, ANT,3 and PEO1, which encodes an mtDNA helicase known as Twinkle.4,5 In these mitochondrial myopathies, adPEO can be isolated or part of a complex clinical syndrome but cannot by itself orient toward specific molecular defects. However, if consistent phenotype-genotype correlations could be identified, they might narrow the diagnostic possibilities and even suggest likely genetic causes. We think this may be the case with the especially mild presentations of adPEO due to PEO1 mutations.

Twinkle, a mitochondrial protein similar to bacteriophage T7 primase/helicase, is involved in mitochondrial replication. Published cohorts of patients with autosomal dominant PEO1 mutations showed that ptosis and ophthalmoparesis are the predominant or exclusive clinical features. However, assessment of ocular symptoms, especially ophthalmoparesis, has not always been very accurate and is often limited to defining adPEO as mild or severe.6,7

Of about100patientswithadPEOandPEO1mutations, only 3 harbored the p.R357P change6,8 and were less severely affected than recessive patients with mtDNA depletion.9,10 Even when associated with multisystem disorders, adPEOduetoPEO1 mutations11 was considered relatively benign. However, to our knowledge, there are no data about long-term progression, which are necessary to define the evolution of this disease.

Herein, we report a 16-year clinical follow-up of an Irish-American family with adPEO and the p.R357P PEO1 mutation.

Report of Cases

The index patient was a 51-year-old woman with bilateral ptosis. When she reported that other family members had droopy eyelids, we gathered a detailed family history, examined all living individuals of generations II, III, and IV, and collected blood samples for molecular analysis. Twenty-two members of this family were examined in 1996. The entire coding regions and exon/intron boundaries of PEO1 were amplified using appropriate oligonucleotide primers,5 and 9 of 22 patients harbored the heterozygous c.1071G>C/p.R357P mutation in the linker region of PEO1 (Figure 1). We reexamined them in 2012 using a standardized protocol to assess progression of clinical manifestations. The study was approved by our institutional ethical standards committee on human experimentation. Written informed consent was obtained from all patients participating in the study.

Figure 1. Pedigree.

Figure 1

Individual symbols have been partitioned and shaded with different fills. We differentiate symptoms (the patient is aware of the clinical manifestation) from signs (the clinical manifestation is revealed by physical examination). Arrow indicates proband.

Besides reviewing clinical records, we interviewed all patients, gathering information about subjective severity and progression of symptoms. We performed physical and neurological examinations and assessed muscle strength by manual muscle testing using the Medical Research Council scale. Because descriptive evaluations of facial weakness, ptosis, and ocular movements are not sufficiently accurate for follow-up studies, we compared photographs taken during the first and second visits.

At recruitment (mean age, 50.6 years; range, 40–57 years), 4 of 9 patients showed ptosis, while only 2 had ophthalmoparesis. At that point, 6 of 9 mutation carriers had no complaints, although 1 showed mild asymmetric ptosis on examination (Table, eFigure in Supplement).

Table.

Patient’s Clinical Data at Recruitment and After 16 Years of Follow-Up

Patient No./ Sex/Age at Recruitment, y Age at Last Visit, y First Symptom/ Age at Onset, y Ophthalmoplegia on Examination/Grade
Ptosis on Examination/Age at Eyelid Surgery, y
Weakness, MRC Grade
EQ-5D Score for Health in 2012, %
1996 2012 1996 2012 1996 2012
III-2/M/54 70 Ptosis/63 No No No/no Yes/no No No 100

III-3/F/51 67 Ptosis/39 Upgaze/severe Upgaze/severe; lateral gaze/mild Yes/50 Yes/57 Orbicularis oculi, neck flexion, 4+/5 Orbicularis oculi, neck flexion, 4/5 95

III-4/M/49 65 Ptosis/57 No No No/no Yes/63 No No 95

III-7/F/57 74 Asymptomatic No Upgaze/mild No/no No/no No No 100

III-8/F/56 72 Ptosis/64 No No Yesa Yes/66 No No 90

III-9/M/40 56 Ptosis/55 No No No/no Yes/no No No 100

III-10/F/53 69 Ptosis/43 Lateral gaze/mild ND (AD) Yesa Yesa/54 Neck flexion, 4/5 ND (AD) ND

III-12/M/45 61 Asymptomatic No No No/no No No No 100

III-16/F/51 67 Ptosis/46 No No Yes/50 Yes/60 No No 100

Abbreviations: AD, Alzheimer disease; MRC, Medical Research Council; ND, not done.

a

Asymmetric

After 16 years of follow-up (mean age, 67 years; range, 56–74 years), 3 more individuals had developed ptosis, which was the only symptom in 5 patients (Figure 2).

Figure 2. Ptosis and External Ocular Movements After 16 Years of Follow-up.

Figure 2

The photographs in the basal column were taken in primary eye position. In the next columns, we asked the patients to look up, down, left, and right to evaluate any restriction in eye movements.

Age at onset ranged from 39 to 64 years (mean, 52.4 years), and the first symptom was always ptosis, symmetric in all but 2 cases. Most patients stated that ptosis had progressed and become severe. In fact, 5 of the 9 carrier patients subjected themselves to blepharoplasty. The mean time from onset to blepharoplasty was 4.8 years (range, 1–11 years). The surgical technique involved resection of the levator muscle or plication of the distal levator muscle aponeurosis. Two of 5 patients who underwent operation needed reintervention (patients III-3 and III-16). The times between onset of ptosis and first blepharoplasty (resection) were 7 and 10 years, respectively, while the times between resection and suspension were 7 and 22 years, respectively, with no need for new eyelid repair at the most recent visit. Without surgery, the eyelids started to cover the pupils and interfere with vision.

Only 2 patients showed ophthalmoparesis without diplopia at recruitment and 1 more at follow-up, although none were aware of a problem. The ophthalmoparesis affected mainly up-gaze, with complete palsy in patient III-3 and mild restriction in patient III-7. Lateral gaze was involved to a lesser degree in 2 patients, whose lateral movements were restricted by a few millimeters.

Manual muscle testing demonstrated normal strength in all muscles except for mild neck flexion weakness in 2 patients, without overt progression. One patient had weakness of the orbicularis oculi only at the follow-up visit.

At the last visit, 2 patients were still neurologically normal at ages 61 and 73 years.

We used the EQ-5D functional questionnaire to assess activities of daily life, psychological impact of the disease, and general health status as perceived by patients.12 The descriptive profile yielded top scores for all modalities, and the health state on the visual analog scale ranged between 90% and 100%.

Findings on sensory and motor nerve conduction studies and electromyography were normal, as were serum creatine kinase and venous lactate levels. Funduscopy and optical coherence tomography showed no alterations of the optic nerve or the retina.

A biopsy of the orbicularis oculi performed during blepharoplasty in patient III-3 showed scattered cytochrome oxidase–negative fibers. Biochemical analysis of the respiratory chain showed normal citrate synthase activity and decreased activities of complexes I, III, and IV (15%–30% of normal). Analysis of mtDNA isolated from the orbicularis oculi showed multiple mtDNA deletions both by Southern blot and by long-range polymerase chain reaction.

Discussion

This study describes a 16-year clinical follow-up of a large family with adPEO due to a PEO1 mutation. These patients showed late-onset ocular myopathy with slow and benign progression, beginning with ptosis in all cases. In most of them, ptosis was the only clinical symptom for many years, a feature previously described only in 4 of about 100 described patients with different Twinkle mutations.6,13 Although onset was late, once it appeared, ptosis progressed relentlessly and became severe in a few years, leading the patients to seek blepharoplasty on average 4.8 years after onset. Notably, when blepharoplasty consisted of shortening the levator muscle, the ptosis relapsed and a subsequent suspension of the eyelid from the frontalis muscle gave better results. Thus far, no patients who underwent suspension as the firsts urgery needed a second eye-lid repair after 2, 6, and 15 years. We therefore suggest plication of the distal levator muscle aponeurosis as the first option in this disease.14,15

Asymptomatic ophthalmoparesis was revealed by neurological examination only in 3 of the 9 patients. It affected up-gaze, whereas lateral gaze was only slightly involved. No further deterioration of extraocular movements was detected during follow-up, showing that the eyelid levator muscle is disproportionately affected in patients with this mutation.

A review of all described patients with mutations in genes involved in adPEO showed that most had multisystemic symptoms (eTable in Supplement) and a minority had only adPEO with ptosis. Three other patients carrying the p.R357P mutation in PEO1 also showed a very benign phenotype. The similar data obtained by us in 9 more patients support the notion that this among all Twinkle mutations has an especially mild clinical expression. Accordingly, the coexistence of isolated ptosis or very mild adPEO, mitochondrial myopathy, and multiple mtDNA deletions suggests that p.R357P in PEO1 may be the underlying mutation rather than other changes in PEO1 or ANT1. We base this conclusion on the large number of patients and the long follow-up in our family, which is representative of this benign syndrome. Thus, in our experience adPEO due to PEO1 p.R357P mutation is a late-onset ocular myopathy, mostly confined to ptosis, with slow and benign progression, which is important for prognosis and family counseling.

Supplementary Material

Supplementary material

Acknowledgments

Funding/Support: This study was supported by grant HD32062 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, by grant U54NS078059 from the National Institute of Neurological Disorders and Stroke and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, and by the Marriott Mitochondrial Disorder Clinical Research Fund. Hirano was supported by grants R01 HD057543 and R01 HD056103 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the Office of Dietary Supplements as well as by the Muscular Dystrophy Association. Paradas was supported by fellowship BA12/0097 from the Spanish government, Health Institute Carlos III, Ministerio de Economia y Competitividad.

Role of the Sponsor: The sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript.

Footnotes

Conflict of Interest Disclosures: DiMauro receives compensation as a member of the editorial board of MedLink Neurology. Hirano has received honoraria as a member of the Athena Diagnostics speakers’ bureau. No other disclosures were reported.

Previous Presentation: This study was presented as a poster at the 65th Annual Meeting of the American Academy of Neurology; March 21, 2013; San Diego, California.

Author Contributions: Study concept and design: Paradas, Hirano.

Acquisition of data: Paradas, Camaño, Otaegui, Oz, Emmanuele, Hirano.

Analysis and interpretation of data: Paradas, Emmanuele, DiMauro, Hirano.

Drafting of the manuscript: Paradas, Oz, Hirano.

Critical revision of the manuscript for important intellectual content: Camaño, Otaegui, Emmanuele, DiMauro, Hirano.

Administrative, technical, or material support: Camaño, Otaegui, Hirano.

Study supervision: DiMauro, Hirano.

References

  • 1.Van Goethem G, Dermaut B, Löfgren A, Martin JJ, Van Broeckhoven C. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet. 2001;28(3):211–212. doi: 10.1038/90034. [DOI] [PubMed] [Google Scholar]
  • 2.Bourdon A, Minai L, Serre V, et al. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet. 2007;39(6):776–780. doi: 10.1038/ng2040. [DOI] [PubMed] [Google Scholar]
  • 3.Kaukonen J, Juselius JK, Tiranti V, et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science. 2000;289(5480):782–785. doi: 10.1126/science.289.5480.782. [DOI] [PubMed] [Google Scholar]
  • 4.Sen D, Nandakumar D, Tang GQ, Patel SS. Human mitochondrial DNA helicase TWINKLE is both an unwinding and annealing helicase. J Biol Chem. 2012;287(18):14545–14556. doi: 10.1074/jbc.M111.309468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Spelbrink JN, Li FY, Tiranti V, et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet. 2001;28(3):223–231. doi: 10.1038/90058. [DOI] [PubMed] [Google Scholar]
  • 6.Fratter C, Gorman GS, Stewart JD, et al. The clinical, histochemical, and molecular spectrum of PEO1 (Twinkle)-linked adPEO. Neurology. 2010;74(20):1619–1626. doi: 10.1212/WNL.0b013e3181df099f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Martin-Negrier ML, Sole G, Jardel C, Vital C, Ferrer X, Vital A. TWINKLE gene mutation: report of a French family with an autosomal dominant progressive external ophthalmoplegia and literature review. Eur J Neurol. 2011;18(3):436–441. doi: 10.1111/j.1468-1331.2010.03171.x. [DOI] [PubMed] [Google Scholar]
  • 8.Rivera H, Blázquez A, Carretero J, et al. Mild ocular myopathy associated with a novel mutation in mitochondrial twinkle helicase. Neuromuscul Disord. 2007;17(9–10):677–680. doi: 10.1016/j.nmd.2007.05.006. [DOI] [PubMed] [Google Scholar]
  • 9.Lönnqvist T, Paetau A, Valanne L, Pihko H. Recessive twinkle mutations cause severe epileptic encephalopathy. Brain. 2009;132(pt 6):1553–1562. doi: 10.1093/brain/awp045. [DOI] [PubMed] [Google Scholar]
  • 10.Sarzi E, Goffart S, Serre V, et al. Twinkle helicase (PEO1) gene mutation causes mitochondrial DNA depletion. Ann Neurol. 2007;62(6):579–587. doi: 10.1002/ana.21207. [DOI] [PubMed] [Google Scholar]
  • 11.Bohlega S, Van Goethem G, Al Semari A, et al. Novel Twinkle gene mutation in autosomal dominant progressive external ophthalmoplegia and multisystem failure. Neuromuscul Disord. 2009;19(12):845–848. doi: 10.1016/j.nmd.2009.10.002. [DOI] [PubMed] [Google Scholar]
  • 12.Johnson JA, Coons SJ, Ergo A, Szava-Kovats G. Valuation of EuroQOL (EQ-5D) health states in an adult US sample. Pharmacoeconomics. 1998;13(4):421–433. doi: 10.2165/00019053-199813040-00005. [DOI] [PubMed] [Google Scholar]
  • 13.Virgilio R, Ronchi D, Hadjigeorgiou GM, et al. Novel Twinkle (PEO1) gene mutations in mendelian progressive external ophthalmoplegia. J Neurol. 2008;255(9):1384–1391. doi: 10.1007/s00415-008-0926-3. [DOI] [PubMed] [Google Scholar]
  • 14.Bladen JC, Moosajee M, Tumuluri K, Olver JM. The use of a pleated strip of autogenous temporalis fascia graft for frontalis suspension in recurrent poor levator function ptosis in adult patients. Orbit. 2012;31(2):114–118. doi: 10.3109/01676830.2011.648805. [DOI] [PubMed] [Google Scholar]
  • 15.Allen RC, Zimmerman MB, Watterberg EA, Morrison LA, Carter KD. Primary bilateral silicone frontalis suspension for good levator function ptosis in oculopharyngeal muscular dystrophy. Br J Ophthalmol. 2012;96(6):841–845. doi: 10.1136/bjophthalmol-2011-300667. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material

RESOURCES