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The decisions animals make about how long to wait between activities can

determine the success of diverse behaviours such as foraging, group formation

or risk avoidance. Remarkably, for diverse animal species, including humans,

spontaneous patterns of waiting times show random ‘burstiness’ that appears

scale-invariant across a broad set of scales. However, a general theory linking

this phenomenon across the animal kingdom currently lacks an ecological

basis. Here, we demonstrate from tracking the activities of 15 sympatric preda-

tor species (cephalopods, sharks, skates and teleosts) under natural and

controlled conditions that bursty waiting times are an intrinsic spontaneous be-

haviour well approximated by heavy-tailed (power-law) models over data

ranges up to four orders of magnitude. Scaling exponents quantifying ratios

of frequent short to rare very long waits are species-specific, being determined

by traits such as foraging mode (active versus ambush predation), body size and

prey preference. A stochastic–deterministic decision model reproduced the

empirical waiting time scaling and species-specific exponents, indicating

that apparently complex scaling can emerge from simple decisions. Results

indicate temporal power-law scaling is a behavioural ‘rule of thumb’ that

is tuned to species’ ecological traits, implying a common pattern may have

naturally evolved that optimizes move–wait decisions in less predictable

natural environments.
1. Introduction
The timing of different activities chosen by an individual animal, such as when

to search for resources, to rest or to avoid threats, has a central influence on the

success of behaviours that can affect survival and lifetime reproductive output

[1,2]. In a foraging context, for example, how long an ambush predator waits in

a particular location in the absence of prey encounters before energy is

expended in moving to a new location will have an important impact on posi-

tive energy balance and hence growth rate [3,4]. The temporal structuring of

behaviour may be strongly influenced by natural selection, and so it seems

probable that general ‘rules’ of behaviour operate in stochastic biological sys-

tems and have naturally evolved to be optimal in specific situations or

environments [1,5]. To explore spatial and temporal patterning in behaviour,

some recent investigations have used a statistical modelling approach centred

on identifying simple features or rules operating in complex biological systems

[6,7], which draws on concepts and techniques used in statistical physics
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Figure 1. Temporal sequence of waiting times shows an intermittent pattern. Example patterns of waiting times for individual (a,b) European plaice P. platessa, (c,d )
thornback ray R. clavata and (e,f ) common sole S. solea in natural ((a) over 90 days duration; (c) 90 days; (e) 55.7 days) and in controlled environments ((b) 26.7 days;
(d) 23.6 days; ( f ) 26 days), respectively. Note the burstiness of waiting times is exemplified by many short waits interspersed with some rare but very long waits.
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to describe stochastic dynamical physical systems [6,8,9].

Results show that behavioural sequences in diverse organisms

spanning insects to humans can show spatial and temporal

scaling [6,7,10–26], patterns that may embody such general

rules. Thus, identifying behavioural scaling laws across diverse

species may help to understand how apparently complex

behaviours evolved [1,7].

Scaling in organismal behaviour, where behaviour com-

prises a series of actions such as the consecutive distances

moved between turns (step lengths) during searching, or

inter-event times (time spent waiting between periods of

activity), has been studied in detail only relatively recently

[5,6,11,13,15,22]. Classical models of inter-event waiting times

used for modelling traffic flow [6] assume that the time interval

between two consecutive actions by the same individual is

selected randomly following an exponentially decaying Poisson

distribution [6], resulting in waiting times with very similar

intervals. In contrast to Poisson distributions, power-law scal-

ing describes a frequency distribution of waiting times that

lack a characteristic scale, where the ‘bursty’ temporal pattern

of actions repeats unchanged across a wide, albeit finite range

of time scales, allowing for very long periods of inactivity sep-

arating bursts of intense activity [6]. Recent studies demonstrate

that waiting time distributions can deviate significantly from

the Poisson prediction and are well approximated by power

laws [6,11].

Scaling in organism activity or wait patterns such as these

are of broad interest because, theoretically, some types of

power-law scaling of behaviour can optimize an organism’s

chances of success during searching (e.g. the Lévy walk pat-

terns seen in animal foraging) [7,24,27,28]. Furthermore, it

has been demonstrated that behaviours as diverse as human

communication patterns [6,11], currency dispersal [12],

animal space use [15,17,21,22,24,26] and times between activity

in insects and rodents [10,13,14,18–20,23,25,29] all show

scale invariance across relevant scales, suggesting common

mechanisms may be present. However, the origins of behav-

ioural scaling phenomena are poorly understood [6,14,25]

and direct evidence for its ecological basis is lacking, even

though this may clarify whether patterns observed in widely

different species have some commonality.

In this study, we investigate the ecology of power-law tem-

poral patterning in animal behaviour. Because power-law

scaling in spontaneous behaviour has been observed for
animals in simple environments under controlled conditions,

it has been hypothesized that the scaling may be an intrinsic

process of neural dynamics [10,14,18–20,25] and not driven

by environmental structure, such as resource distributions

[7,17,24,25]. It is possible that the inverse power-law distri-

butions of intervals between spontaneous neuron firing

signals and burst durations observed in vitro [30–32] could

provide the timing signals necessary for the execution of tem-

poral scale-invariant behaviours [25]. Nonetheless, very little

is known about the presence of power-law scaling in temporal

patterns of free-ranging animals in complex, natural environ-

ments, and how these patterns compare with those exhibited

by the same species under controlled conditions. Here, we

use model sympatric predator species spanning ambush to

active foraging strategies (i) to test for the presence of scaling

in temporal patterning of behaviour among species in both

natural and simple environments, (ii) to determine whether

they show commonality in scaling exponents within and

between species and environments, and (iii) to explore what

processes could give rise to the observed patterns.
2. Material and methods
(a) Study animals and tagging
To provide accurate time series of move–wait phases, we recorded

the temporal behaviour patterns of 82 individuals from 15 species

of bottom-living, marine predatory cephalopod mollusc, elasmo-

branch (sharks, skates and rays) and teleost fish that comprise a

natural assemblage of sympatric species in heterogeneous shelf

habitats in the northeast Atlantic Ocean (see electronic supple-

mentary material, table S1 and figure S1). This sedentary predator

assemblage exhibits a broad continuum of foraging strategies

(hunting modes), from facultative ambush predation—where a

predator (e.g. common cuttlefish Sepia officinalis) can actively

pursue/overtake certain prey, or instead choose to remain statio-

nary to ambush prey—to obligate ambushing, where predators

(e.g. anglerfish Lophius piscatorius) only ambush highly active prey.

Individual animals were tracked in the natural environment and in

captivity (controlled conditions) for a total of 3204 days using

small, pressure-sensitive data-logging tags, which provided

27.5 million data points for analysis of the durations of times

spent waiting between activity (figure 1; for details, see electronic

supplementary material).
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Figure 2. Power-law scaling of waiting time distributions among individuals of diverse species. Example log – log plots show model best fits to truncated power-law
(red lines) and poor fits to an exponential (blue lines) for eight individuals from species tracked both (a – h) in the wild and (i – p) in captivity. (a,i) Common
cuttlefish, (b,j ) small-eyed ray, (c,k) thornback ray, (d,l ) blonde ray, (e,m) European plaice, ( f,n) turbot, (g,o) common sole and (h,p) anglerfish.
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Subadult or adult individual cephalopods, elasmobranchs

and teleosts were fitted with one of two types of G5 data-logging sto-

rage/archival tag (hereafter abbreviated to DST; Cefas Technology

Limited, Lowestoft, UK). Standard DSTs were 31 mm long by

8 mm diameter and weighed 1 g in water, whereas long-life DSTs

measured 35.5 mm long� 11.5 mm diameter and weighed 2.1 g

in water. DSTs monitor temperature from 2 to 348C (accuracy

0.18C, resolution 0.038C) and pressure to a depth of 100 m (or

200 m forone laboratoryand 10 field deployments: accuracy 1%, res-

olution 0.04%). During laboratory trials, DSTs were programmed to

record depth every 5 s for a period of one month, while tags

deployed on released animals were programmed to record depth

at 20 s, 30 s or 1 min intervals. During experimental trials in the lab-

oratory, animals were held in recirculated seawater aquaria fed

directly from the sea. Tagged animals at sea were tracked in the

coastal waters of the western English Channel, which comprises a

heterogeneous mosaic of habitats when characterized in terms

of water depth, substratum type, water column environmental

gradients and temporal scales of fluctuations in those gradients

(electronic supplementary material, figure S1). Water depth gener-

ally increases with distance from the shore, to a maximum depth

of 76.5 m. Details of tagging procedures and habitat mapping are

given in the electronic supplementary material.

(b) Waiting time analysis
To test for the presence of scaling patterns in waiting behaviour

within and between species, the frequency distributions of
individual animal waiting times were investigated using maxi-

mum-likelihood estimation (MLE). The methods used were those

employed by Humphries et al. [24,26] based on Clauset et al.
[33]. Details of data pre-processing are given in the electronic

supplementary material. We tested power law and truncated

Pareto-Lévy (truncated power-law) distributions for each individ-

ual animal waiting time series (as a ranked waiting time

distribution) and compared each of these with the following alter-

nate distributions: exponential, truncated exponential, lognormal

and gamma. Model best fits were assessed using Akaike infor-

mation criterion (AIC) weight values; see Humphries et al.
[24,26] for detailed descriptions. Power spectrum analysis was

used to investigate the existence of long-range correlations in the

time-series data of individual animals using programming rou-

tines in MATLAB [15]. In addition, to investigate the possibility

of a particular scale (average waiting time) dominating an entire

individual’s waiting time series, we used digital signal-processing

techniques to identify significant periodic components of the

binary time series of activity and waiting for the 16 individuals

shown in figure 2. For this purpose, we used programming rou-

tines in MATLAB to apply fast Fourier transforms (FFTs) with a

‘Hamming’ window function to the binary time-series data.

Further details are given in the electronic supplementary material.

(c) Trait data
The waiting time patterns of species were compared with species

traits (foraging mode, body size and prey preference). Frequency
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of occurrence data of prey in stomach contents of predators was

taken from the published literature for the species we studied

and where those investigations analysed stomach samples in

the northeast Atlantic region where our tagging work was con-

ducted. Body size data of predators were recorded maximum

lengths and masses. Sources and details are given in the electronic

supplementary material.
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(d) Stochastic priority-list model
A decision-based queuing process model such as a priority-list

model [6] prioritizes certain actions over others (e.g. waiting

over moving), so it is an appropriate candidate model to examine

how simple rules may potentially underlie apparently complex

empirical move–wait patterns (figure 1). We extended the sto-

chastic priority-list models introduced by Barabasi [6] and

Reynolds [34]. Two competing behaviours (activity 1: waiting;

activity 2: moving) are given ‘priorities’ x1 and x2 ¼ 1 2 x1 that

are randomly selected from some distribution r(x). These priori-

ties are treated as probabilities such that activity 1 is chosen as

the next activity to perform with probability x1 and activity 2

is chosen as the activity to perform with probability x2. If activity

1 is chosen, then the priorities x1 and x2 remain unchanged,

whereas if activity 2 is chosen, the animal moves and may

feed, affecting its ‘state’, and thus new priorities x1 and x2 are

randomly selected from r(x). Following this, a new activity is

selected and the cycle repeats. Following the previous approach

of Barabasi [6], a degree of determinism was introduced into the

model by replacing x1 with x01 ¼ (1/(1þ (x2/x1)g)) and x2 with

x02 ¼ 1� x01: This form is chosen because it smoothly interpolates

between the aforementioned stochastic protocol (obtained when

g ¼ 1) and a deterministic protocol (obtained as g! 1). In the

deterministic protocol, the highest-priority activity is the activity

that is always performed next (i.e. low-priority activities are no

longer occasionally selected). This is because x01 ! 1 if x1 . x2

and x01 ! 0 if x2 . x1. For intermediate cases (g . 1), the

highest-priority activity is executed with probability close to

unity while the lower-priority activity is rarely executed.

The priority-list model was implemented numerically with a

uniform distribution of priorities: r(x) ¼ 1 for 0 � x , 1, otherwise

r(x) ¼ 0. Simulation data for a given degree of determinism (value

of g) were pooled from 100 independent runs of the model each

performed over 105 time-steps. The AIC [33] was used to test

whether these data provided more evidence for the distributions

of simulated waiting times having inverse power-law

p1(t) ¼ (m� 1)am�1t�m, t � a,

or negative exponential tails

p2(t) ¼ le�l(t�a), t � a:

The power-law exponent, m, and the exponential decay rate, l,

were determined using MLE [33]. The start of the tail of the distri-

butions (a � 10) was ascertained by visual inspection of the

survival function (the complement of the cumulative distribution

function). To construct the survival function, the simulation data

for the waiting times ti were first ranked from largest to smallest

fi ¼ 1, . . . , ng. The probability that a waiting time is greater than

or equal to ti (the survival function) was then estimated as i/n.
3. Results
(a) Scaling patterns
The temporal sequence of predator waiting times shows an

intermittent pattern (figure 1), the greater proportion of wait-

ing events being short but interspersed, with rare very long

waits (maximum ¼ 475.4 h) that were up to 4.5 orders of
magnitude greater in duration than the shortest wait (5 s; elec-

tronic supplementary material, table S2). The intermittent

pattern of waiting times was conserved across species and

was present in both natural (wild; figure 1a,c,e) and simple

(captive; figure 1b,d,f ) environments. Statistical modelling

(see electronic supplementary material) showed that the fre-

quency distributions of waiting times for all individuals

across all species decayed slower than the exponential and

were well approximated by a truncated power-law (or in one

case a power-law), with straight-line fits on log–log plots

over a range between nearly two and four orders of magnitude

of the data (mean 2.5+0.6 s.d., n ¼ 82; figure 2; electronic sup-

plementary material, table S2). Best fitting of data to truncated

power-laws rather than pure power laws is intuitive because

the amount of time a living animal will wait before moving

to obtain a resource is finite. Interestingly, the truncation was

less pronounced (maximum waiting times were longer) in

free-ranging individuals compared with those kept in captiv-

ity. For example, the maximum waiting time of common sole

Solea solea was on average 17.4 times longer in the wild than

in captivity (figures 1e,f and 2g,o). This difference may be due

to several factors, but perhaps most important is the likelihood

of regular food availability in captivity, which results in the

cessation of waiting with the onset of feeding.

We confirmed that individual waiting time patterns were

reliably described by truncated power-law models using

three sets of additional analyses. First, exponential, truncated

exponential, gamma and lognormal distributions were tested

as alternative models to the truncated power-law and power-

law, but did not provide better fits to any individual (see

electronic supplementary material, results, tables S2 and S3,

and figure S2). Second, power spectrum analysis of the wait-

period time series confirmed that scaling exponents, b, which

characterize the frequency dependency of the power spectra,

S( f ) � f2b, were approximately 0.6 in the low-frequency

regime (wild, mean b ¼ 0.66 (0.08 s.d.), range, 0.48–0.77; con-

trolled, mean b ¼ 0.46 (0.17 s.d.), range 0.27–0.77; electronic

supplementary material, figure S3). This supports our result

of truncated power-law best fits because b . 0 (‘1/f’ noise) is

indicative of scale invariance [15,23,35]; by contrast, b � 0

characterizes ‘white’ noise and describes the pattern expected

from a scale-specific or a composite correlated random walk

(CCRW; composite Brownian walk, CBW) [23,35]. Therefore,

CBWs did not describe the temporal patterns we observed

for marine predator behaviours. Lastly, FFTs demonstrated

that the waiting time scaling patterns were not dependent on

behavioural periodicities in activity/waiting time series (for

details see the electronic supplementary material, tables S4

and S5, and figures S4 and S5).

Power-law scaling was ubiquitous among all species

studied here, and was present in all individuals of nine species

tracked in both natural and simple environments (figure 2).

The average scaling exponent (m) for individual predators

was not different in the wild compared with in captivity

(mean exponent: wild, m ¼ 1.58+0.36 s.d., 33 individuals,

nine spp.; captivity, m ¼ 1.59+0.38 s.d., 49 individuals,

15 spp.; F-test, F ¼ 0.91, p ¼ 0.79; t-test on means, t ¼ 20.13,

p ¼ 0.90), demonstrating that scaling in waiting time patterns

monitored in predators over weeks to months in natural habi-

tats exhibits the same temporal dynamics as found for

individuals in captivity. This indicates that environmental

complexity (see electronic supplementary material, results)

did not alter the principal features of temporal patterning in
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predator behaviour, lending support to the idea that scaling be-

haviour is not an emergent property of the environment’s

structure (e.g. the fractal distribution of food resources

[7,26,36]), as has been proposed for foragers in other systems

[35,37]. Therefore, it is possible that scaling in waiting times

is a general behaviour pattern that improves the chances of

foraging success [28] and has naturally evolved.

(b) Species-specific scaling
While we did not find differences in scaling exponents of wait-

time frequency distributions between natural and simple

environments, exponent values did vary between species, with

species’ average m values ranging from 0.96 to 2.07 (electronic

supplementary material, figure S6). An exponent of approxi-

mately 1 indicates a temporal scaling pattern having a higher

proportion of rare but very long waiting times (figure 2h,p),

compared with a pattern described by an exponent of approxi-

mately 2, where there are proportionately fewer long waits

and more shorter waiting times (figure 2a,i). The differences

between the mean exponents of species are significant, not

only between the highest and lowest m values (mean exponents:

S. officinalis 2.07, L. piscatorius 0.96: variance test, F ¼ 0.53,

p ¼ 0.55; t-test, t ¼ 26.36, p , 0.001; each with n ¼ 5),

but within the range also (e.g. thornback ray Raja clavata 1.82,

n ¼ 8, turbot Scophthalmus maximus 1.38, n ¼ 9: F ¼ 0.63,

p ¼ 0.55; t-test, t ¼ 2.41, p ¼ 0.03; electronic supplementary

material, figure S6).

This confirms that there are species-specific scaling

exponents across the range. An expectation might be that pre-

dators from the same taxonomic groups, such as flat-bodied

bony fishes (Family Pleuronectidae) or flat-bodied rays

(Genus Raja), should each have similar within-taxa exponents

on account of species within each taxa sharing a common phy-

logeny. However, the species-specific scaling exponents are not

readily explained by species taxonomic groups: although the

two cephalopods S. officinalis and the curled octopus Eledone
cirrhosa both have higher mean exponents, 2.07 and 1.84,

respectively, the exponents of pleuronectids and rajids vary

widely, from 1.22 to 1.83 and 1.36 to 1.82, respectively (elec-

tronic supplementary material, figure S6). Of particular

interest in this context is that rather than being linked to phylo-

geny, the scaling exponents appear to correlate to the species’

foraging modes. For example, S. officinalis has the highest

scaling exponent and adopts a facultative ambush strategy,

while L. piscatorius with the lowest exponent has an obligate

ambush strategy.

(c) Scaling exponents and ecological traits
The idea that differences in scaling of temporal behaviour

reflect specific types of behavioural strategy raises the ques-

tion of whether exponent difference is driven by traits

linked to an organism’s state, because behavioural choices

can depend on state [5]. In a foraging context, we reasoned

that predators that frequently wait for long periods between

prey encounters and subsequent captures should have

higher total energy reserves (greater body size and lower

relative metabolic rate) than a predator that generally waits

for shorter periods. Based on this and previous observations

by others [38], we predicted that predators capable of waiting

for long periods (e.g. L. piscatorius exponent m � 1) choose to

target active (high-energy density) prey that are encountered

less frequently because they are more sparsely distributed, or
lower in abundance, but that when captured yield a greater

net energy gain than more frequent captures of more numer-

ous but less energy-rich prey. By contrast, predators with

higher proportions of shorter waiting times (e.g. S. officinalis
m � 2) are predicted to be smaller (lower total energy

reserves and higher relative metabolic rate) and more likely

to target generally more abundant but sedentary prey. It is

a general trend that highly active prey (e.g. fish), which

require a higher energy expenditure by the predator

to pursue/overtake them, often have a higher energy con-

tent than abundant, sedentary prey (e.g. crabs; electronic

supplementary material, figure S7).

To test these possibilities, we related scaling exponents to,

first, each predator’s length-specific body mass (the maximum

body mass/maximum body length), as a proxy for total

energy reserves (figure 3a), and, second, to the mean percentage

frequency of occurrence of fish found in a predator’s diet, a

proxy for predator specialization on energy-dense prey

(figure 3b; electronic supplementary material, table S6). For

both traits, we found negative relationships with scaling

exponents, confirming our predictions (figure 3; see legend).

Our finding demonstrates that while all predators we studied

exhibited scale-invariance in waiting time distributions, the

particular scaling exponents of species appear ‘tuned’ to traits

associated with a predator’s foraging strategy: larger predators

specializing on active, energy-dense prey have lower exponents

describing a temporal pattern with a higher proportion of very

long waits, whereas smaller predators with a more generalist

diet including sedentary prey have higher exponents describing

fewer longer waits. This introduces a degree of determinism

(i.e. which prey to select), associated with the heavy-tailed

probabilistic waiting time patterns observed.
(d) Simple decision model
Because there are competing behaviours during foraging (e.g.

whether to wait for an increasing time versus when to

become active and move elsewhere) it has been hypothesized

that the ecological advantage of power-law scaling of behav-

iour may be brought about by constantly updating motor

outputs with estimators of state and monitoring effects in a

decision-based queuing process [14], which prioritizes certain

actions over others. Priority-list models have been shown to

account well for some patterns in human [6] and animal

[34] behaviour. We extended a stochastic priority-list model

[34] by incorporating a deterministic component [6] that

reflects differing predator responses to different prey types,

to explore whether a set of simple behavioural rules

can recover the empirical waiting time patterns and their

exponents found here (see Material and methods).

For most distributions r(x), the stochastic priority-list

model produces power-law-distributed waiting times with

an exponent m ¼ 2 and distributions of moving times

with exponential tails [34]. For the purely stochastic model,

our results confirm in all cases that inverse power-law tails

were convincingly favoured over negative exponential tails,

and inverse power-law scaling extended over at least three dec-

ades (figure 4a). Although this purely stochastic model

produces power-law scaling of waiting times, it did not repro-

duce the variability of exponents we observed across species

(figure 3). Our stochastic–deterministic model produces distri-

butions of waiting times that have inverse power-law tails, and

the power-law exponent is dependent upon the degree of
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state. Relationships between species mean scaling exponent and (a) predator
maximum body mass/maximum body length (a proxy for total energy reserves)
and (b) predator’s specialization on active prey (mean frequency of occurrence of
fish prey in its diet). A multiple linear regression model with exponent as the
response variable and predator body mass/body length and percentage fish in
diet as predictor variables accounted for 63% of the variation in the response
(r2 ¼ 0.63; ANOVA, F2,8 ¼ 6.81, p ¼ 0.019). Considering only fish data
improved the model fit, with predictors accounting for 77% of response
variation (r2 ¼ 0.77; ANOVA, F2,7 ¼ 11.55, p ¼ 0.006); see the electronic
supplementary material.

T
10 102 103 104

pr
op

or
tio

n 
of

 w
ai

tin
g 

tim
es

 w
ith

 d
ur

at
io

n 
>

 T

10–1

10–2

10–3

1

1.4

1.0 1.5 2.0

g

m

2.5 3.0

1.6

1.8

2.0

(a)

(b)

Figure 4. (a) Simulation data for the proportion of waiting times with dur-
ation more than T produced by the stochastic priority-list model (g ¼ 1)
(open circles) together with the best fit inverse power-law (black line).
The maximum-likelihood estimate for m ¼ 2.0 and predicts a predator wait-
ing time pattern dominated by short waits. A straight line on this log – log
plot is indicative of inverse power-law scaling similar to empirical waiting
time distributions (figure 2). (b) The dependency of m on the degree of
determinism (g) ( filled circles), where m ¼ 2 predicts a waiting time pat-
tern when prey has lower energy content and m! 1 as the energy content
of the prey increases. The line is added to guide the eye.
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determinism (i.e. by the value of g), and ranges between 2

and 1; here, the distributions of moving times also have

exponential tails. However, the characteristic time scale

depends on r(x), and as a consequence may vary with meta-

bolic state and size. These analytical results were confirmed

by numerical simulations and showed that the maximum-

likelihood estimates for m decrease monotonically with

increasing g (figure 4b).

This model was recast in terms of predation: x2 is the

likelihood of there being prey in the immediate vicinity and

x1 ¼ 1 2 x2. When prey have lower energy content (generally

slower moving), the predator often (but not always) moves

when the likelihood of there being prey present is high (the

stochastic protocol). When prey have high energy content

(generally faster moving), the predator always moves to

feed when the likelihood of there being prey close by is

high (the deterministic protocol). Therefore, we found for

our stochastic–deterministic model that predator waiting-
times are characterized by the power-law exponent m ¼ 2

when preferred prey have low-energy content (e.g. lower

per cent fish in diet), and m! 1 as the energy content of

the prey increases (e.g. higher per cent fish in diet).

These model results agree well with our empirical results:

predators such as L. piscatorius, S. maximus and blonde ray

Raja brachyura, which largely specialize on higher-energy-

content prey (e.g. active fish), showed scaling exponents of

waiting times approaching 1, as predicted by the model,

while predators such as S. officinalis, R. clavata and the Euro-

pean plaice Pleuronectes platessa, which are more generalist

feeders on mostly lower-energy-content prey, showed expo-

nents approaching 2 (figure 3b; electronic supplementary

material, table S6). Furthermore, the model yielded distri-

butions of activity times with exponential tails, with the

characteristic time scale being predator-specific, which may

vary with metabolic state and size (figure 4). The model’s

prediction that distributions of activity times have expo-

nential tails was confirmed empirically for all tracked

predators: we found typical activity times were predator-

rather than prey-specific, and hence varied by body size as

expected (see the electronic supplementary material, results

and discussion, and figure S8).
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The modelling results indicate that a simple set of stochas-

tic/deterministic behavioural rules associated with choice

(e.g. how long to wait in response to perceived prey type)

can indeed give rise to the waiting time scaling patterns

and species-specific scaling exponents we observed for sym-

patric marine predators. Combined with our observation that

differences in scaling exponent change predictably with body

size (mass/length; figure 3a), the results suggest that scaling

behaviour may have arisen through a complex set of selective

forces acting on traits associated with state.
g
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4. Discussion
This study demonstrates the presence of power-law scaling

in the temporal dynamics of spontaneous behaviour across

sympatric species in both natural (unpredictable) and simple

(predictable) environments, and that the different scaling expo-

nents are predicted in part by total energy reserves (body size)

and predator specialization (prey type/energy density). The

output from a simple behavioural (priority-list) model incorpor-

ating a deterministic choice component of predator response to

prey type was consistent with empirical results suggesting that

the power-law scaling in predator behaviour we observed,

which results in apparently complex wait–move patterns, can

potentially arise from simple decision-making processes.

An important finding here was the demonstration that the

power-law scaling pattern of waiting times was not likely to be

an emergent property of environmental structure; instead, our

results indicate that it arises from an internally generated,

adaptive process, as hypothesized previously [7,35]. While

power-law waiting time distributions are evident in the

spontaneous behaviour of insects, rodents and humans

[6,14,19,20,25,29], there has not previously been a clear demon-

stration that free-ranging species exhibit the same scaling in

waiting times as when they are in captive, controlled con-

ditions. Therefore, our study provides support for a recently

proposed mechanism underlying power-law patterns of spon-

taneous behaviour in animals [14]: namely, a nonlinear

signature of spontaneous behaviour under controlled con-

ditions suggests that deterministic endogenous processes are

involved in generating behavioural variability such as that

described by power-law scaling [14]. Recent research provi-

des further support by showing that power-law-distributed

rest-bout durations are modulated, but not perturbed, by dopa-

mine, a neurotransmitter that plays a number of important

roles in brain function, including in cognition, voluntary move-

ment and motivation [10,19]. For similar studies with mice and

humans, the presence of an underlying neuro- and/or psycho-

biological principle governing power-law scaling of behaviour

has been suggested [29]. Moreover, the scaling exponents

found for Drosophila, desert locusts and rodents were approxi-

mately 1.5 [14,19,20,25], which is close to the mean exponent

(approx. 1.59) shown here characterizing marine predators.

Thus, our findings strongly support the possibility of waiting

time scaling as an intrinsic and general behavioural ‘rule of

thumb’ in animals by extending it to free-ranging molluscs

and lower vertebrates.

It is possible that the temporal (waiting time) scaling laws

we identify are the parallel in ambush predators of the spatially

scale-invariant Lévy walk (power-law) patterns that seem

common among animals that move continually during search-

ing, and which theoretically optimize foraging success,
suggesting it to be an adaptive behaviour [15,17,23,24,27].

The proposition that temporal scaling behaviour is intrinsic is

supported by empirical evidence showing that the Lévy walk

movement patterns observed in mobile marine animals

[17,21,24,39] appear independent of resource density or distri-

butions [40]. Theory predicts that Lévy walk movement

patterns are optimal in areas with sparsely distributed prey,

but in areas where prey is abundant Brownian motion is

sufficiently efficient [7]. An adaptive, intrinsic mechanism

having power-law scaling predicts this dynamic behaviour:

simulations show that if a Lévy forager truncates its move

step to consume prey when it is detected in its vicinity

(i.e. has simple prey targeting), then a Brownian distribution

of move steps will emerge when prey is highly abundant

(i.e. closer together) [7,27]. Empirical results for mussels search-

ing for conspecifics (resource targets) to aggregate with showed

that part of the mussel movement patterns comprising non-

truncated steps only (because no targets were encountered

during these move steps) displayed Lévy walks regardless of

resource density in the surrounding environment [40]. This

suggests that the Lévy walk pattern exhibited by mussels is

intrinsic. Taking these studies and the present one together

suggests an intrinsic pattern of stochastic (power-law) spon-

taneous behaviour may apply more generally, from highly

mobile pursuit predators such as tunas [17] to the less mobile

ambush predators investigated here.

Despite widespread compelling evidence that diverse

organisms display movement patterns that can be approxi-

mated by scale-invariant Lévy walks [13–15,17,21–26], it

was demonstrated recently that the Lévy movement pattern

of mussels [39] was marginally better fitted by CBWs,

which describe the sum of weighted exponential distributions

(e.g. a sum of two, three or four exponentials) [41]. It is not

surprising that more complex models such as CBWs will pro-

vide marginally better fits to movement data than the simpler

Lévy walk model [42]; nonetheless it potentially weakens the

arguments for power-law scaling in behaviour. Although it is

not unexpected that CBWs are likely to provide slightly better

fits than truncated power-law models owing to their greater

complexity [42], it is by no means absolute. For example, pre-

vious truncated power-law best fits to spatial foraging

patterns of albatrosses [24] were confirmed when tested

against CBWs with a sum of two, three or four exponential

models [26], indicating that CBWs are not always strong

alternative models to scale-invariant power-law distributions.

Recently, however, it was shown that Lévy walks could be

distinguished reliably from CCRWs (CBWs) by applying

power spectra [34]. In our study, we used power spectrum

analysis [34] to demonstrate that the power spectra of tem-

poral waiting time patterns of marine predators were not

consistent with those expected from a CCRW, which sup-

ports the view that the possibility of mistakenly selecting a

scale-invariant (e.g. truncated power law) model over a

scale-dependent (e.g. CCRW) model was minimized by the

approach taken. Therefore, we conclude that the scaling in

waiting time patterns of benthic predators we found were

not likely to be better fitted by scale-dependent models.

Our study also provides the first indication that the fre-

quently observed differences in scaling exponents [17,25]

share a common ecology across sympatric species through a

continuum of behavioural strategies (foraging modes) corre-

lated with an animal’s state (i.e. body mass). It is possible

that such a heavy-tailed waiting time behaviour pattern,
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which has similarities to an intermittent search strategy, may

optimize encounter rate with highly active, patchily distribu-

ted prey [28]. We hypothesize that power-law scaling of wait

times may have naturally evolved as a universal behavioural

‘rule of thumb’ for approximating the optimal encounter rate

with prey in different and unpredictable environments.

Further, we hypothesize that the species-specific temporal

scaling patterns (described quantitatively by exponents)

have been selected alongside traits such as body size, as

a result of competition for forage resources (see electro-

nic supplementary material, figure S9). Our results are

consistent with the hypothesis that competition for valued,

energy-dense prey that are unpredictably distributed (e.g.

fast-moving fish), where temporal gaps between prey patches

can be long, drives selection for predators of increasing body

size (electronic supplementary material, figure S9). As such,

hunting mode, body size and prey preference predict well

the variation in scaling exponents we observed. Theoretical

models indicate that broad trends in body size and com-

position of animals can be understood by considering

behaviour such as the starvation–predation trade-off that is

fundamental to all predator–prey systems [43]. For example,

models show that storage of body fat increases with greater

time gaps in food supply [43]. Our results are consistent

with this theoretical expectation by showing predators with

lower scaling exponents (more frequent very long waits)

are larger in body size than predators experiencing fewer

interruptions to food supply.

In this study, we have taken a quantitative approach that

collapses complex temporal behaviour patterns recorded

from free-ranging animals onto a single parameter, the scaling

exponent (m). In doing so, we have identified connectivity

between the adaptiveness of temporal scaling dynamics, an

organism’s traits affecting state and the selective forces shaping

behavioural choices, which may provide a basis for a general

model unifying scaling phenomena in behaviour patterns

[6,7,10–29] with behavioural optimality models [1,2,5].

Perhaps more important, though, the predictable varia-

tion of the waiting time scaling exponent with ecological

traits (e.g. body size and prey preference) indicates a potential

use for predicting animal behaviour waiting time patterns in

relation to other traits (such as thermal sensitivity, perhaps).
For example, understanding how future climate change will

alter animal dispersal patterns is a crucial but often missing

component in assessments of species’ distributional changes

owing to climate [44]. Understanding how animal waiting-

time patterns (which in turn affect dispersal likelihood) vary

with species thermal sensitivity may provide a means to

obtain more realistic estimates of dispersal potential (since

long waits arrest dispersal) in response to climate warming,

which could inform extrapolations to other species having

similar life-history and ecological traits. Furthermore, the

common ecology of temporal behavioural dynamics we

show here for diverse species with independent evolutionary

lineages dating back at least 400 Myr suggests that links

between waiting time scaling laws and ecological traits are

widespread across taxa. Waiting time scaling exponents

could have relevance for comparing behaviour between taxa

to test ideas about whether scale-invariant patterns of behav-

iour are adaptive and have naturally evolved. For instance,

the behaviour patterns of marine and terrestrial predators are

seldom explored within a single study, yet a comparison of

waiting-time patterns in widely separated taxa—such as

marine fish and terrestrial snakes that ambush prey—may pro-

vide powerful insights into the role of environment in the

evolution of foraging behaviour.
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