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The ability to predict how far a drug will penetrate into the tumour micro-

environment within its pharmacokinetic (PK) lifespan would provide

valuable information about therapeutic response. As the PK profile is direc-

tly related to the route and schedule of drug administration, an in silico tool

that can predict the drug administration schedule that results in optimal

drug delivery to tumours would streamline clinical trial design. This paper

investigates the application of mathematical and computational modelling

techniques to help improve our understanding of the fundamental mechan-

isms underlying drug delivery, and compares the performance of a simple

model with more complex approaches. Three models of drug transport are

developed, all based on the same drug binding model and parametrized by

bespoke in vitro experiments. Their predictions, compared for a ‘tumour

cord’ geometry, are qualitatively and quantitatively similar. We assess the

effect of varying the PK profile of the supplied drug, and the binding affinity

of the drug to tumour cells, on the concentration of drug reaching cells and the

accumulated exposure of cells to drug at arbitrary distances from a supplying

blood vessel. This is a contribution towards developing a useful drug trans-

port modelling tool for informing strategies for the treatment of tumour

cells which are ‘pharmacokinetically resistant’ to chemotherapeutic strategies.
1. Introduction
A characteristic feature of solid tumours is the presence of a poorly organized and

dysfunctional vasculature. The blood vessels that develop in response to angio-

genic stimuli are structurally and functionally different from those of normal

tissues, leading to poorly perfused areas of the tumour [1]. This results in the

establishment of a microenvironment that can have profound effects on tumour

biology and response to chemotherapy. The tumour microenvironment is charac-

terized by gradients of oxygen tension, nutrient status, catabolite concentrations,

extracellular pH, cell proliferation rates and a multitude of biochemical changes

that enable cells to adapt to these hostile conditions [2], unless conditions

become so extreme that tumour cells cannot survive and regions of necrosis

occur. Where delivery of cancer drugs to cells within the tumour microenviron-

ment is impaired, these cells are ‘pharmacokinetically resistant’; this form of

resistance, distinct from cellular resistance, is increasingly recognized as a barrier

to effective treatment [3]. In this paper, we use the generic term ‘chemotherapy’ to

cover both conventional cytotoxic drugs and novel ‘targeted’ therapies, because

the challenges of drug delivery apply to both.

The variations in microenvironment in vivo are extremely complex, and

depend on distance from a supporting blood vessel. Important insights can,
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Figure 1. HCT116 human colorectal tumour xenografts. (a) Histological sections at low magnification showing blood vessels (BV) surrounded by cords of viable cells
and necrotic areas (N) further distanced from the vessels. (b) Higher magnification of a blood vessel and surrounding viable area. (c) Section through a clinical
sample of a transitional cell carcinoma of the bladder immunostained for Glut-1, a glucose transporter which is upregulated under hypoxic conditions. Glut-1-
positive staining, visible as darker, denser regions (brown membrane staining), can be seen distal from the supporting blood vessel (BV). (d ) Schematic of the
tumour cord where the central blood vessel (BV) is surrounded by viable cells, but as distance from the BV increases (as indicated by the arrow) the microenviron-
ment becomes more extreme, leading to regions of necrosis. Cells that reside some distance away from the BV are ‘pharmacokinetically resistant’ to chemotherapy as
drugs cannot effectively penetrate through multi-cellular layers. The solid scale bars represent 500 mm (a,c) and 100 mm (b). (Online version in colour.)
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however, be gained from a much simpler representation,

that of a ‘tumour cord’, where a ‘collar’ of cells surrounds a

supporting blood vessel, with cells at a distance from the

vessel comprising regions of necrosis (figure 1). This model

forms the biological platform for the studies described

within this paper, which focuses on predicting the ability of

drugs to penetrate through several layers of cells from a cen-

tral blood vessel, and reach more distant cells. This ability of

drug to reach cells some distance from the vessel is key to the

effectiveness of chemotherapy, for both cytotoxics and tar-

geted drugs, because these cells are typically resistant to

current cytotoxic treatment, mainly owing to inadequate

drug penetration.

The interplay between cellular factors and drug transport is

complex, but drug delivery can be broken down into three

stages: drug delivery to a tumour is determined by the

supply of drug via the blood vessels in tumours; the flux or

movement of drug through the tumour mass; and sequestra-

tion, which includes binding to cellular or extracellular

components and metabolism of the drug [3]. The impact of

each stage on drug delivery will vary depending upon the

pharmacology of individual drugs and the biological properties

of individual cancers (e.g. differential expression of targets or

drug-metabolizing enzymes).

It is recognized from the outset that the models describ-

ing these processes represent considerable simplifications

of complex biology and geometry [4], which may be better

described by a more sophisticated computational framework

[5]. However, we believe simpler mathematical models play

an important role in developing more complex schemes by
providing what might be described as ‘semi-quantitative’

understanding of the biological transport mechanisms, and

offering a simple approach to assessing the relative merits

of different protocols. Changing drug administration proto-

cols varies the concentration and exposure time of drugs

within the central blood vessel (both in practice and in our

tumour cord models), and these models allow us to investi-

gate how these factors influence drug delivery. To test a

range of scheduling options in purely experimental animal

tumour models is expensive and conflicts with the aim of

reducing, refining and replacing (the 3Rs) animal exper-

iments that is currently promoted by institutions such as

the Medical Research Council. In silico modelling offers the

promise of being able to test multiple experimental scenarios

and streamline the search for drug treatment regimens that

optimize drug delivery to tumour cells throughout the

tumour microenvironment.

There exists a plethora of models describing the transport of

drugs in tissue, ranging from compartmental models that

account for exchange of drug within spatially distinct intra-

cellular compartments [6–9] to continuum models describing

the transport over macroscopic tissue scales [10–14]. If model-

ling is to have greater predictive impact on the development

of new therapeutic agents, then it is important that the rela-

tive merits and limitations of these different descriptions are

clearly understood.

The key questions this paper seeks to address are ‘Does

each of these models give similar results for the variation in

drug concentration in the tumour cord?’ and ‘How do the

administration schedule and cell response affect drug
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Figure 2. A three-compartment model of drug distribution in tissue. C1 represents
the extracellular drug concentration, C2 the free intracellular drug concentration
and C3 the bound intracellular drug concentration. (Online version in colour.)
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delivery?’ Where differences do appear, we will seek to explain

the reasons for them and the consequences for the choice of

modelling approach. Three approaches to modelling the

spatio-temporal evolution of drug concentrations in a tumour

cord are compared, each of which is representative of a class

of models: (i) a multi-dimensional cell-centre model that

defines a network of nodes (each node corresponding to a com-

putational cell which is identifiable with a biological cell), in

which drug transport is defined locally between nodes and

their nearest neighbours; (ii) a compartmental model, which

makes use of the concentric-layer structure of tumour cords;

and (iii) a continuum model that assumes Fickian diffusion

in the cylindrical geometry of the cord. The first of these

approaches is amenable to multi-scale modelling [5,15],

because each node may be characterized by a bespoke microen-

vironment consisting of, for example, a cell cycle and molecular

pathways. The remaining models are tailored to the tumour

cord geometry, so are less flexible but much simpler (and

faster) computationally.

In §2, after outlining the underlying binding model,

which is parametrized by experimental data for the cytotoxic

drug doxorubicin, a description of each spatio-temporal

model is given, emphasizing the relationship between the

three discrete transport models. In §3, the model predictions

are compared for two scenarios: in the first, each model is

tested using a single set of model parameters (and hence a

single homogeneous biological environment) estimated

from bespoke in vitro experimental data, allowing us to inves-

tigate the influence that the choice of mathematical approach

to drug transport has on the predictions (with the same bind-

ing model). The second scenario explores the effect on the

model predictions of varying the pharmacokinetic (PK) pro-

file and model parameters representing the drug’s binding

affinity, a biological characteristic which can, to some

degree, be controlled by the administration of other drugs.

The results are then discussed in §4 in relation to the choice

of modelling approach.
2. Models
Three distinct modelling approaches are considered, each of

which represents drug delivery from a central blood vessel to

a surrounding tumour cord. Each model assumes axial

uniformity—the dependence of the drug concentration on

the distance from the central vessel does not vary along the

vessel, to reduce the complexity (as in reference [16]). A genu-

inely multi-dimensional model is developed in §2.2, followed

by two simplified, one-dimensional models (§§2.3 and 2.4) in

which radial symmetry is assumed.

The interaction of the chemotherapeutic agent with the

microenvironment is restricted to drug binding only. This

binding model, which is common to all three approaches, is

discussed in §1. The in vitro experiments used to parametrize

the model were conducted over relatively short time-scales

and contained no elimination mechanism for the drug: expli-

cit modelling of decay or elimination (other than clearance

via the supplying vessel) is left to future work.

2.1. Binding model
The interaction of the chemotherapeutic agent with the micro-

environment of cells is described by a three-compartment

model, composed of extracellular space (volume V1) with
a concentration C1 of free drug and intracellular space

(volume V2) with concentrations C2 and C3 corresponding to

free and bound drug, respectively (where, in this model, the

term bound includes both DNA-intercalated drug and drug

bound to the cell in other ways). The binding is described by

a simple kinetic model: drug binds reversibly to sites within

the cell.

Applying the principle of mass action leads to three coupled

ordinary differential equations which describe the system,

V1
dC1

dt
¼ ak1(C2 � C1), (2:1)

V2
dC2

dt
¼ ak1(C1 � C2)� V2k2C2(C0 � C3)þ V2k�2C3 (2:2)

and V2
dC3

dt
¼ V2k2C2(C0 � C3)� V2k�2C3, (2:3)

in which k1 is the rate constant for the transmembrane transport

of drug, a is the area of the interface between the extracellular

and intracellular spaces (the surface area of the cell), k2 and

k22 are the drug association and dissociation rates, respectively,

and C0 is the concentration of binding sites within the cell. It is

assumed that mixing in each compartment is instantaneous—

that is, intracellular and extracellular diffusion are assumed to

be fast on the scale of an individual cell. This model is illustrated

by the two-dimensional schematic in figure 2. Note that the

model presented in (2.1)–(2.3) is an extension of those in [12]

and [17], in which drug binding is non-saturable and non-

reversible. It would be straightforward to modify the binding

model in this way, or to account for Michaelis–Menten-type

transport should this be required, as in [8,18,19], for example.

Values for the kinetic rate constants for the binding process

are derived from a bespoke experimental binding assay. Dox-

orubicin binding to DLD-1, a colorectal adenocarcinoma cell

line, was studied by incubating 106 tumour cells suspended

in tissue culture medium (378C) with a range of doxorubicin

concentrations (0–100 mM). At evenly distributed times

between 0 and 2 h, a fixed volume of the culture was removed,

and cells pelleted by centrifugation. Free doxorubicin in the

supernatant was extracted and measured by a sensitive and

specific high-performance liquid chromatography technique

[20]. Binding was calculated by comparison with cell-free dox-

orubicin solutions incubated in parallel. The data from these

experiments are included in the electronic supplementary

material. DLD-1 was also the cell line used to estimate the

transport rate, k0, taken from [6].

Two sets of experiments were performed, providing both

steady-state and time-dependent data. A chi-squared minimiz-

ation, described in the electronic supplementary material, was

then performed to provide estimates for the parameters k1, k2,

k22 and C0, given in table 1.



Table 1. Summary of model parameter values for baseline studies. In the final column, ‘experiment’ refers to the fitting to experimental data described in §2.1
and the electronic supplementary material, and ‘histology’ indicates estimation from histological tissue images, such as those illustrated in figure 1 or at www.
virtualpathology.leeds.ac.uk, or from the cited references. The parameter k0 has been estimated based on the value of r1 (transport rate between cell layers) in
the multi-layer model of [6]. The parameter kv has been chosen to give slower transport across the vessel wall than across the cell membrane, though in the
disordered, leaky tumour vasculature this is likely to be highly variable. Note that the volume fractions used in §2 are defined by d1 ¼ d/1þ d and
d2 ¼ 1/1þ d, where they are combined with the relevant compartmental volumes, Vi. We chose these to match the volumes of biological cells, though this
is not necessary.

variable value description source of estimate

l 1.6 � 1025 m vessel radius histology [21]

L 2.0 � 1024 m cord radius (vessel þ approx. nine cells) histology [22,23]

r �1.0 � 1025 m cell radius histology [24]

d 0.0625 extracellular – intracellular volume ratio parameter histology [6,25]

a �1.94028 � 105 m21 membrane surface – tissue volume ratio a ¼ 2=(r
ffiffiffiffiffiffiffiffiffiffiffi
1þ d
p

)

k0 2.5 � 1026 m s21 permeability between cells [6]

k1 1.0 � 1026 m s21 permeability across cell membrane experiment

k2 0.90 � 1026 mM21 s21 drug association rate experiment

k22 14.0 � 1025 s21 drug dissociation rate experiment

kv 1.25 � 1027 m s21 permeability across vessel wall estimated

D 5.0 � 10211 m2 s21 interstitial diffusion rate D ¼ 2k0r

C0 2.6 � 103 mM binding site concentration experiment
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2.2. Multi-dimensional cell-centre model
The most general approach considered here is a multi-

dimensional model in which each biological cell in the cord

is represented as a computational node (cell centre) character-

ized by geometrical and biological information: position, cell

radius, binding rates and concentration of binding sites. Each

of these nodes in isolation acts in accordance with the three-

compartment binding model illustrated in figure 2, providing

the potential to insert a bespoke model of the microenviron-

ment for each node/cell. The binding model is augmented by

a description of the spatial transport of the drug, described

locally by defining transport terms between nodes and their

nearest neighbours.

A representative geometry of a slice through the tumour

cord is illustrated in figure 3 (cf. figure 1b). We assume

uniformity in the axial direction—variations along the

vessel are assumed negligible—so only two-dimensional

cord cross sections are considered in this paper. The terms

volume and area are used as though the model were fully

three dimensional but, for the sake of simplicity, the factor

of the cord length is omitted from all of the analysis, because

it cancels.

Each computational node (see figure 3) is assigned

associated interstitial and intracellular volumes, d1Vi and

d2Vi, respectively, where d1 and d2 are volume fractions,

parametrized by d in table 1 (see the electronic supplemen-

tary material for full details) and three concentrations:

interstitial, intracellular free and intracellular bound drug

denoted by C(i)
1 , C(i)

2 and C(i)
3 , respectively. The transport

between nodes is assumed to be proportional to the con-

centration difference and the interface area, Aij, between

connected nodes.

Under these assumptions, the spatial variation rep-

resented by introducing distinct computational nodes can
be included in the model by adapting equations (2.1)–(2.3)

to include terms for transport between nodes and having a

separate set of equations for each node, i.e.

d1Vi
dC(i)

1

dt
¼
X
j[N i

Aijk0(C(j)
1 � C(i)

1 )þ
X
j[Vi

Aijkv(C(j)
v � C(i)

1 )

þ a(i)k1(C(i)
2 � C(i)

1 ), (2:4)

d2Vi
dC(i)

2

dt
¼ a(i)k1(C(i)

1 � C(i)
2 )

� d2Vi{k2C(i)
2 (C0 � C(i)

3 )� k�2C(i)
3 } (2:5)

and d2Vi
dC(i)

3

dt
¼ d2Vi{k2C(i)

2 (C0 � C(i)
3 )� k�2C(i)

3 }: (2:6)

Here, Aij is the area of the interface between nodes i and j
(see the electronic supplementary material) and a(i) is the

area of the interface between the intra- and extracellular

space surrounding node i. N i and Vi are sets of indices of,

respectively, the nodes and blood vessels neighbouring

node i: all simulations presented in this paper have been

carried out with a single central vessel. Cv(t) is a predefined

PK profile in the blood vessel and determines the flux of

drug through the vessel wall. At the outer boundary, this

model automatically implies zero flux of drug, because

there are no connections to nodes outside the cord geo-

metry. This models a situation in which the tumour cord

is surrounded by similar cords, providing a symmetry

boundary condition.

It is assumed, in this model, that the transport of drug is

limited to the interstitium—drug is only exchanged between

neighbouring nodes via the compartments representing

extracellular space. Internalization and binding terms in

equations (2.4)–(2.6) are analogous to those for the binding

model. The additional rate parameter in this model is the

http://www.virtualpathology.leeds.ac.uk
http://www.virtualpathology.leeds.ac.uk


Figure 3. A representative tumour cord geometry for the two-dimensional
cell-centre model in which the computational nodes (cell centres) surround
a central vessel. The radius associated with each node is illustrated by the
surrounding circle and the connectivity is designated by the connecting
lines. (Online version in colour.)
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spatial transport coefficient k0, which has the units of per-

meability and is estimated in table 1 according to data

provided in [6].
2.3. Radially symmetric compartment model
A simpler way to augment the binding model with a spatial

component is to exploit the shell-like nature of tumour cords,

the geometrical property that cells are broadly arranged in

concentric circles around a central blood vessel (see figures

1 and 4a). It is again assumed that variations along the

vessel are negligible.

We now assume that the rate of transport of drug between

neighbouring shells is proportional to the shared interface

area (denoted by Ai for the interface between shells i and

i þ 1) and the difference in concentration across the interface.

Under these assumptions, the spatial variation in the radial

direction can be included by adapting equations (2.1)–(2.3)

to give

d1Vi
dC(i)

1

dt
¼ Ai�1k0(C(i�1)

1 � C(i)
1 )þ Aik0(C(iþ1)

1 � C(i)
1 )

þ aik1(C(i)
2 � C(i)

1 ), (2:7)

d2Vi
dC(i)

2

dt
¼ aik1(C(i)

1 � C(i)
2 )

� d2Vik2C(i)
2 (C0 � C(i)

3 )þ d2Vik�2C(i)
3 (2:8)

and d2Vi
dC(i)

3

dt
¼ d2Vik2C(i)

2 (C0 � C(i)
3 )� d2Vik�2C(i)

3 , (2:9)

for i¼ 1, . . . , n, where n is the number of shells, and ai is the cel-

lular surface area within the ith shell. In this work, n ¼ 9 is

chosen so that each shell can be identified with a layer of biologi-

cal cells. The superscript corresponds to the shell number, and

this index increases with distance from the blood supply

(see figure 4a). The boundary conditions are imposed at the

vessel wall by setting C(0)
1 ¼ Cv(t) to be a predefined PK profile
in the blood vessel and replacing k0 by kv at this interface.

A no-flux boundary condition is imposed at the outer boundary

of the cord by setting An ¼ 0 (equivalent to replacing k0 by zero at

this interface).

The volumes Vi of the shells are readily determined from

the geometry: assuming a shell thickness d and a vessel

radius l, the volume (again omitting the factor of the vessel

length owing to the assumed uniformity along the vessel)

of the ith shell is

Vi ¼ p((2i� 1)dþ 2l)d : (2:10)

The factors d1 and d2 are defined as in the cell-centre model,

so that d1Vi and d2Vi are, respectively, the extracellular and

intracellular volumes in the ith layer. The interface area

between shells i and i þ 1 is

Ai ¼ 2p(lþ id): (2:11)

Note the similarity between compartmental and cell-

centre equations. In fact, equations (2.7)–(2.9) can be

viewed as a special case of equations (2.4)–(2.6), in which

nodes are replaced by shells, and the concentrations within

each shell represent the averages over the conglomerate of

biological cells it contains.

2.4. Radially symmetric continuum model
The final model, the geometry of which is illustrated in

figure 4b, is derived by disregarding the cellular structure

of the tumour cord and assuming that transport of molecu-

les occurs by isotropic Fickian diffusion in a continuum.

A model for the tumour cord is then readily obtained as

the system of partial differential equations (PDEs) [10,12]

d1
@C1

@t
¼ Dr2C1 þ ak1(C2 � C1), (2:12)

d2
@C2

@t
¼ ak1(C1 � C2)� d2k2C2(C0 � C3)þ d2k�2C3 (2:13)

and d2
@C3

@t
¼ d2k2C2(C0 � C3)� d2k�2C3, (2:14)

where the factors d1 and d2 are defined as before, and D
is a diffusion coefficient related to the permeability k0.

The precise nature of this relationship can be derived by

noting that ð
Vi

Dr2CdV ¼
þ
@Vi

n �DrCdS (2:15)

¼
X
j[N i

ð
@Vij

n �DrCdS (2:16)

�
X
j[N i

Aij

dij
D(C(j)

1 � C(i)
1 ), (2:17)

in which n represents the unit normal pointing outwards

from volume Vi. Note that the direction of n varies over

the surface of Vi. Hence, the relationship between transport

coefficients of discrete and continuum models is

D ¼ dk0, (2:18)

where d is a length parameter, taken here to be the average

cell diameter, 20 mm. The parameter a in equations (2.12)

and (2.13) is easily derived from equations (2.7) or (2.8)

and represents the ratio of the cellular surface area within

a region to that region’s volume, a ¼ a/V (table 1).

Given these definitions, integrating equations (2.12)–

(2.14) over a cell or shell returns the equations of the multi-
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Figure 4. Schematics of the two radially symmetric models: (a) the shell-like arrangement for the compartmental model and (b) the continuum model, for the
tumour cord. (Online version in colour.)
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dimensional cell-centre and radially symmetric compartmental

models, respectively. The boundary conditions imposed are

the same as for the other two models. The flux of free drug

across the vessel wall is assumed to be proportional to the

difference in concentration between vessel and interstitium,

so [15]

DrC1 � n1 ¼ kv(Cv � C1jr¼l ), (2:19)

that is, the normal flux at the vessel wall is proportional to kv,

the vessel permeability and the difference in free drug concen-

tration across the vessel wall (Cv being the drug concentration in

the blood, determined by the prescribed PK profile). A no-flux

condition is imposed at the outer boundary

DrC1 � n2 ¼ 0 at r ¼ L: (2:20)

The respective unit normal vectors, at the vessel and the outer

boundary, pointing out of the intervening tissue, are denoted

by n1 and n2.

A spectral method [26,27] is used in this work for the

spatial discretization of equations (2.12)–(2.14). Note that,

because radial symmetry is assumed, the Laplacian term in

equation (2.12) is actually of the form

Dr2C1 ¼ D
@2C1

@r2
þ 1

r
@C1

@r

� �
: (2:21)

2.5. Pharmacokinetic profiles
The clinical pharmacokinetics of doxorubicin are well charac-

terized in the literature [28]. Doxorubicin concentrations are

known to decay in a tri-exponential manner following intra-

venous (IV) bolus or infusion and typical parameters are

available in the literature (e.g. [29], in which doxorubicin is

administered as an IV bolus, not infusion).

The first PK profile considered here is based on the data

provided by Robert et al. [29], in which Cv(t) is assumed to

decay as a tri-exponential (see also [8]), i.e.

Cv(t) ¼ D0

t

A
a

(eat � 1)e�at þ B
b

(ebt � 1)e�bt þC
g

(egt � 1)e�gt
� �

,

(2:22)

for t � t, where t is the infusion time, D0 is the dose and par-

ameters A, B, C, a, b and g are estimated by taking averages
of the values given in table 2 of reference [29]. This gives (to

three significant figures)

A ¼ 7:46� 10�2 l�1
a ¼ 2:69� 10�3 s�1

B ¼ 2:49� 10�3 l�1
b ¼ 2:83� 10�4 s�1

C ¼ 5:52� 10�4 l�1
g ¼ 1:18� 10�5 s�1:

The rapid initial infusion of the drug is modelled by taking

Cv(t)¼D0

t

A
a

(1�e�at)þB
b

(1�e�bt)þC
g

(1�e�gt)

� �
, (2:23)

for t , t, which lifts the concentration to the appropriate value

at t ¼ t. The duration of the perfusion for the total dose

injected, t ¼ 180 s, was also taken from [29], and the total

dose D0 ¼ 1.19827�102 mmol was calculated to give an ‘area

under the curve’ of

AUC ;
ð1

0

Cv(t)dt ¼ 104 mM s � 2:78mM h , (2:24)

which is typical of what one might find in a patient [30,31]. The

AUC is an important parameter, because the area under the

plasma drug concentration–time curve (AUC) is considered

to reflect the actual tumour (cellular) exposure to drug after

administration of a drug dose, and to correlate with tox-

icity—though it is more difficult to correlate with clinical

efficacy [32].

Two further PK profiles, both constructed to give the

same AUC, are also simulated, to investigate their influence

on the drug distribution.

— A mono-exponential profile, Cv(t) ¼ A0e�a
0t with A0 ¼

50 mM and a0 ¼ 0.005 s21.

— A uniform (steady-state) profile, Cv(t) ¼ A00 ¼ 3:85802�
10�2 mM up to t ¼ 72 h (and zero afterwards), represent-

ing prolonged infusion. This takes the form of a

rectangular pulse.

3. Results
3.1. Model comparison
The first set of numerical results are generated to address the

key question ‘Does each of these models give similar results
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for the variation in drug concentration in the tumour cord for

similar parameters?’ In order to assess this, we compare the pre-

dictions for a set of parameter values, shown in table 1, common

to all three models. These simulations are carried out for the

tri-exponential (IV bolus) PK profile described in §2.5.

All numerical experiments were carried out on the same

computational domain, comprising a single circular blood

vessel of radius 16 mm at the centre of a circular cord of

tumour cells of radius 200 mm. The vessel radius approximates

the average radius of arterioles and venules rather than larger

vessels. For the radially symmetric compartmental model, the

region between the vessel and outer boundary was divided

into nine shells of equal width (approximately the diameter

of a biological cell). The two-dimensional cell-centre results

were generated using 60 separate configurations, to assess

the effect that small random variations in the distribution of

the node positions and radii have on the drug distribution.

Each configuration is derived from a different randomly gener-

ated set of node positions and radii (see §2.2) and contains

approximately 400 nodes, the number required to fill the

domain with cells of the given radius.

The nature of the binding model means that the node spa-

cing does not have to match the biological cell size, because

each compartment contains both intracellular and extracellular

concentrations. However, future developments may treat the

cells as separate entities, immersed in interstitial fluid, so

this is a useful length scale at which to investigate the model.

The impact on the results of changing the spacing is similar

to that of changing the resolution in an approximation to a con-

tinuum model. Increasing the spacing will effectively increase

the rate of diffusion, because the model assumes that, at each

time step, any drug that passes into a compartment instan-

taneously equidistributes its concentration throughout that

compartment. We have conducted numerical experiments

with different cell sizes and, although there are small quantitat-

ive differences, we have found no evidence that the qualitative

behaviour might be changed.

In order to visualize the two-dimensional simulation

results, both mean values and standard deviations are

plotted, after clustering the nodes from all 60 configurations

into 20 bins, according to their distance from the blood

vessel. The mean distance is plotted against the mean concen-

tration for each of these bins, and the standard deviations

of both variables are illustrated by horizontal (distance) and

vertical (concentration) bars. The compartmental model is

illustrated using solid dots plotted at the centres of the cylind-

rical shells, and the continuum model is represented by a

solid line.

Figure 5 shows snapshots of the concentration profiles, as a

function of distance from the source of the drug, for C3 after 1,

6, 24 and 72 h, generated using the tri-exponential PK profile

from §2.5 and the parameter values shown in table 1. Note

that the results for C1 and C2 (in the electronic supplementary

material) are almost indistinguishable. This similarity is

common to all the tests we have run and consistent with very

rapid transport of drug across the cell membrane.
3.2. Comparing pharmacokinetic profiles
Section 2.5 described three distinct PK profiles, one representing

administration by an IV bolus with a tri-exponential decay

(characteristic of doxorubicin), a simplified, mono-exponential,

approximation to this decay profile and a uniform profile
representing infusion of the drug. All profiles had the same

AUC, because this is a standard measure of cellular toxicity.

Because the numerical results presented in §3.1 showed

similar results for all three models of the tumour cord, the sim-

plest—the compartmental model described in §2.3—was

chosen to illustrate how the distribution of the drug is influ-

enced by the PK profile of the supplied drug, Cv(t). The

model parameters used are those given in table 1. The other

models have been run with the same parameters, but the data

are not shown because they contain no significant differences.

Figure 6 shows the evolution of the extracellular and

bound drug distributions, C1 and C3, as a function of distance

from the drug source for each of the three PK profiles

described in §2.5. The time variation of the concentrations

of both free and bound drug in a given cell layer generally

follows that of the PK profile in the vessel, though there is

a time-lag which increases the further away from the vessel

a cell layer is. For both exponential profiles, the concentration

increases initially to a peak value (particularly rapidly for the

mono-exponential profile), then decreases monotonically, but

for the uniform profile, it increases monotonically for the

duration of the experiment.

This is confirmed by examining the temporal variation of

the concentrations at specific points in the domain. Figure 7

shows this at the centres of the first (innermost), fifth

(middle) and ninth (outermost) shells of the compartmental

model. Note that the extracellular drug concentrations at very

early times (less than 1 h) extend far beyond the maximum

value on the vertical axis of the graph for the IV bolus profiles:

the true maximum values are given in table 2. These peaks

become less extreme further away from the vessel.

Figure 8 shows the variation of the exposure of the cells to

the bound drug (AUC, given by
Ð T

0 C3dt) as a function of

distance from the blood vessel, after T ¼ 24 h and T ¼ 72 h.

Early in the simulations, the exponential profiles give a far

higher exposure than the uniform profile, but as time progres-

ses, the differences between the profiles reduce. However,

results at later times should be interpreted carefully, because

elimination of drug is not included in the model, and the only

drug clearance is due to the drug returning to the vessel. This

effect will be addressed in future models, through the inclusion

of elimination mechanisms such as cellular metabolism, seques-

tration/binding to the extracellular matrix and drug efflux.

Drug clearance owing to lymphatics may be considered for

larger tumour volumes, though functional lymphatic vessels

are not thought to be prevalent in tumours [3].
3.3. Comparing binding affinities
The final set of numerical experiments investigates the effect

that changing the binding affinity of the intracellular drug, par-

ameters k2 and k22 in our model, has on the exposure of the cells

to bound drug. This attempts to address one aspect of the ques-

tion ‘How does the administration schedule and cell response

affect drug delivery?’ As in §3.2, the compartmental model

(§2.3) was used to produce the numerical results presented

here. No significant differences were seen when the same

tests were carried out with the other models (data not shown).

The qualitative changes caused by adjusting k2 and k22

depended most significantly on the ratio k22/k2, so only

results for different values of k2 (the association rate) are

shown in figure 9. All other parameters take the values

shown in table 1.
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4. Discussion
In §2, three different approaches to modelling the delivery of

drug from a blood vessel to a surrounding tumour cord

were presented. One of these, a discrete cell-centre model

which identifies computational nodes with individual bio-

logical cells, is genuinely multi-dimensional and could be

applied to more complex geometries than the one investi-

gated here, such as those modelled using a finite-element

discretization of a reaction–diffusion system in [33]. The

remaining two (a discrete, compartment-based, model and

a continuum, PDE-based, model) are tailored to the specific

problem of drug delivery from a single vessel to a homo-

geneous tumour cord, assuming radial symmetry. All were

built on a binding model involving extracellular drug and

free and bound intracellular drug, which extends those of
[12] and [17] by allowing drug binding to be saturable and

reversible.

The two radially symmetric models are much simpler and

therefore computationally much faster than the multi-

dimensional model, but this leads to the question ‘Does each

of these models give similar results for the variation in drug

concentration in the tumour cord?’ Figure 5 shows a representa-

tive comparison of the bound drug variations of the three

models for a PK profile derived from in vivo data for an IV

bolus. The concentrations predicted by the three models differ

by less than 15% throughout the simulation. In fact, the plotted

standard deviations for the multi-dimensional cell-centre

model show that the variation between the randomly generated

two-dimensional configurations (particularly when there is a

steep gradient in the drug concentration close to the central
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vessel) is typically larger than the difference between the aver-

age multi-dimensional results and the radially symmetric

results. This observation is supported by further simulations,
some of which are shown in the electronic supplementary

material. In all cases, the qualitative features of the concentration

profiles are similar, whichever model is used.
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Table 2. Maximum concentrations of free extracellular and bound intracellular drug, to 3 significant figures, and the experiment times at which they occur, to
the nearest second (for three distances from the centre of the blood vessel and all three PK profiles).

layer index 1 5 9

distance from vessel centre (mm) 26 108 190

tri-exponential/IV bolus

maximum C1 (mM) 0.382 0.140 0.112

time of maximum C1 (h:m:s) 00:03:56 00:08:21 00:10:01

maximum C3 (mM) 1.06 0.838 0.822

time of maximum C3 (h:m:s) 21:18:33 59:48:33 70:23:33

mono-exponential/IV bolus

maximum C1 (mM) 1.80 0.523 0.406

time of maximum C1 (h:m:s) 00:01:15 00:04:25 00:06:14

maximum C3 (mM) 1.93 0.983 0.872

time of maximum C3 (h:m:s) 00:41:02 01:02:28 31:45:39

uniform/infusion

maximum C1 (mM) 0.00830 0.00681 0.00650

time of maximum C1 (h:m:s) 72:00:00 72:00:00 72:00:00

maximum C3 (mM) 1.16 0.904 0.853

time of maximum C3 (h:m:s) 72:00:00 72:00:00 72:00:00
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In figure 5, the two radially symmetric models agree more

closely with each other than with the multi-dimensional

model. This is not generally the case for all parameter sets.

We note that the discrete models would be expected to con-

verge to the continuum model asymptotically if the sizes of

the ‘cells’ were allowed to tend to zero, though this is not bio-

logically realistic, because continuum models of this type are

designed for use at much larger length scales. By contrast,

although the discrete models operate on realistic cell sizes,

in doing so, they implicitly assume that diffusion/mixing

within a cell happens instantaneously.

We have conducted a range of numerical simulations for the

tumour cord geometry, with different parameters, without find-

ing any systematic differences between the results which might

suggest that one model is consistently more accurate than the

others. All three models give qualitatively and quantitatively

similar results, and we do not yet have experimental data to

enable us to assess whether one model is better or worse than

another. The multi-dimensional model is, computationally,

more expensive and therefore inefficient for the radially sym-

metric tests considered here, but we include it because it would

be used for more complex geometries and heterogeneous

tissue. Continuum models are very commonly used, but are

based on the assumption that the differential equation is valid

at every point in space. The radially symmetric, compartment-

based, model only assumes that the differential equation is

valid in an integral-averaged sense (and is, in effect, a finite

volume discretization of the continuum model [34], an inte-

gration of the continuum model over volumes chosen to be on

the scale of the biological cells), leading to a very natural frame-

work for simulating mass balance processes. The compartmental

model is limited to radially symmetric problems (cords, multi-

cell spheroids), but this is a common constraint imposed in

computational modelling for (i) efficiency of computation and

(ii) direct comparison with mathematical analysis, which is

often limited to such quasi-one-dimensional geometries.
We therefore choose to use the radially symmetric, compart-

ment-based model to investigate further the effect of varying

the supplied PK profile and the behaviour of the underlying

binding model, and note that the similarity of the results pro-

vides some validation of the more complex approaches. This

gives us confidence that they could be used reliably in the

more complex scenarios for which they are designed. A more

comprehensive validation would involve comparison with

measurements of drug distribution from an in vitro tumour

cord model system. Simple modifications to the model geometry

would also allow validation against experimental data for multi-

cell spheroids. In both cases, knowledge of heterogeneity in the

system could be readily incorporated in the multi-dimensional

approach described in §2.2.

Drug delivery to tumours is dependent upon a number of

factors, the principal ones being the dose and schedule of

administration, delivery of the drug via the blood vessels,

the flux or distribution of drug through avascular tissue

and consumption of drug by the cells or the extracellular

matrix [3]. For example, increasing the diffusion rate, k0,

tends to make the distribution of the drug more homo-

geneous ([35] and the electronic supplementary material),

because the drug can be transported further before it is

bound. However, in this paper, we focus on other factors.

In §3.2, three different delivery profiles were compared, all

of which provide the same overall dose. Figures 6 and 7 show

significant differences between the distribution of drug in the

tissue at any given point in time. When the PK profile in the

blood vessel represents an IV bolus, a sharp peak in free

drug concentration occurs in the first hour as the drug diffuses

rapidly into the surrounding tissue and is transported into the

cells. The profiles at t ¼ 1 h in figure 6 are similar in shape to the

experimentally measured gradients in [23]. The concentration

of free drug then drops steeply as it is bound until an approxi-

mate equilibrium is reached. This is followed by a slower

decrease once the concentration of drug in the vessel drops
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below that of the free drug in the tissue, and the net flux is of

drug returning to the vessel. Because the binding process acts

more slowly than the initial influx of drug, the concentration

of bound drug changes less rapidly and only cells close to

the vessel experience an initial peak in concentration (most

extreme for the mono-exponential PK profile). As a conse-

quence, early in the simulation, when the concentration in

the vessel is high and changing rapidly, the drug concentration

close to the vessel is much higher than in cells further away,

because drug has not had sufficient time to reach and bind to
cells at a relatively large distance from the vessel. Later, the

drug concentration in the vessel is still decreasing, but slowly

enough, relative to the rates at which it is transported through

the tissue and binds to the cells, for the drug distribution in the

tissue to remain uniform throughout.

When the PK profile represents infusion over a longer

period, the concentrations in the tissue steadily increase

during the period of infusion, after an initial rapid increase

in free drug concentrations. The spatial distribution of the

concentration is quite even, though slightly higher close to

the vessel, because the concentration of supplied drug is

not varying in time.

Given the large differences in concentration profiles, it

might be expected that the exposure to bound drug also

depends critically on the supplied PK profile. The results

shown in figure 8 suggest that, for the model of binding pro-

posed in §2.1, all of the PK profiles give a similar spatial

distribution of exposure to bound drug. After 72 h, infusion

gives a significantly lower exposure than IV bolus (40–50%

lower than the mono-exponential profile), but this difference

is less significant than after 24 h and continues to reduce over

longer time scales. However, our binding model contains no

explicit elimination or decay term: drug can only leave the

system through free drug returning to the vessel when the con-

centration in the vessel is below that in the adjacent tissue.

A more sophisticated binding model could account for this

and include a representation of the cell cycle, which will have

an influence over longer time scales. These would need to be

included before investigating the dependence of exposure on

PK profiles over longer time scales.

In order to assess how the binding affects the delivery of

the drug, a final set of numerical simulations investigated the

influence of binding affinity. Figure 9 shows that the

exposure of the cells to bound drug depends strongly on

the ratio of the intracellular drug association and dissociation

rates (b ¼ k22/k2). For the original parameter set (table 1) b �
16 mM, for which the exposure of the cells to bound drug was

fairly uniformly distributed between the blood vessel and the
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outer boundary of the domain (200 mm from the centre of the

vessel), decreasing only slightly with distance from the

vessel. When b is increased—the net affinity for the drug is

reduced—the spatial distribution remains uniform, but the

exposure of each layer of cells is reduced. When b is

decreased, the exposure of the cells close to the vessel

increases, but the exposure further away from the vessel actu-

ally starts to decrease. If k2 is increased further than shown in

figure 9, then this behaviour becomes more pronounced, to

the point where almost no drug gets beyond 100 mm from

the supply, because it is all consumed by the cells close to

the vessel. This ‘binding site barrier’ [35,36] is reduced in

tissue which allows more rapid interstitial drug diffusion

(see numerical results in the electronic supplementary

material).

This suggests that, for this model of binding, there is an

optimal binding affinity which allows optimal exposure

to doxorubicin: if the binding is too weak, then none of

the cells gains enough exposure; if it is too strong, then the

cells distant from the vessel are pharmacokinetically resistant,

because the closer cells consume the drug. If true, then this

might have implications for the use of additional agents

which can alter the binding behaviour of doxorubicin, e.g. by

occupying binding sites, to adjust drug penetration. It also

suggests that variations in the tumour microenvironment

could influence the effectiveness of the drug.

The model presented in this paper has been tailored

to simulate a tumour cord geometry, and the parameters

have been estimated based on the binding of doxorubicin

to colorectal adenocarcinoma cells (DLD-1). However, it is
sufficiently general to be applied to other drugs and other

cell lines if the appropriate data are available. This may

require the design of new binding models.

There is no sufficient evidence to suggest that any of the

three models of drug transport proposed in this paper is

better than the others, so the simplest was chosen to investi-

gate the influence of the delivery profile and the cell biology.

However, the comparison has validated the more flexible multi-

dimensional model, which therefore provides a framework that

can be used to gain insights into progressively more complex

situations in which the influence of the characteristics of the

tumour microenvironment on the PK delivery of the drug

and the effects of spatial heterogeneity can be investigated.

It is important to emphasize that all models are approxi-

mations to reality and the models described here are clearly

significant simplifications of complex biology and geometry.

The value of models in biology and medicine lies in their

role in the iterative development of a quantitative, logical,

predictive framework, placing them at the heart of ‘model-

building’; the need to write down equations describing the

biological mechanisms demands assumptions and yields pre-

dictions which can be tested and measurements which have

to be made. This, in turn, leads to improved models and

initiates a further cycle of experimentation and model building.

We also believe that these models have the ability to demon-

strate, at least semi-quantitatively, the relative efficacy of

some aspects of therapeutic protocols.
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