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On studying strategy update rules in the framework of evolutionary game

theory, one can differentiate between imitation processes and aspiration-

driven dynamics. In the former case, individuals imitate the strategy of a

more successful peer. In the latter case, individuals adjust their strategies

based on a comparison of their pay-offs from the evolutionary game to a

value they aspire, called the level of aspiration. Unlike imitation processes

of pairwise comparison, aspiration-driven updates do not require additional

information about the strategic environment and can thus be interpreted as

being more spontaneous. Recent work has mainly focused on understanding

how aspiration dynamics alter the evolutionary outcome in structured popu-

lations. However, the baseline case for understanding strategy selection is the

well-mixed population case, which is still lacking sufficient understanding.

We explore how aspiration-driven strategy-update dynamics under imperfect

rationality influence the average abundance of a strategy in multi-player evol-

utionary games with two strategies. We analytically derive a condition under

which a strategy is more abundant than the other in the weak selection limit-

ing case. This approach has a long-standing history in evolutionary games

and is mostly applied for its mathematical approachability. Hence, we also

explore strong selection numerically, which shows that our weak selection

condition is a robust predictor of the average abundance of a strategy. The

condition turns out to differ from that of a wide class of imitation dynamics,

as long as the game is not dyadic. Therefore, a strategy favoured under imita-

tion dynamics can be disfavoured under aspiration dynamics. This does not

require any population structure, and thus highlights the intrinsic difference

between imitation and aspiration dynamics.
1. Introduction
In the study of population dynamics, it turns out to be very useful to classify

individual interactions in terms of evolutionary games [1]. Early mathematical

theories of strategic interactions were based on the assumption of rational

choice [2,3]: an agent’s optimal action depends on its expectations of the actions

of others, and each of the other agents’ actions depend on their expectations

about the focal agent. In evolutionary game theory, successful strategies

spread by reproduction or imitation in a population [4–8].

Evolutionary game theory not only provides a platform for explaining bio-

logical problems of frequency-dependent fitness and complex individual

interactions, such as cooperation and coordination [9,10]. In finite populations,

it also links the neutral process of evolution [11] to frequency dependence by

introducing an intensity of selection [12–15]. Evolutionary game theory can

also be used to study cultural dynamics, including human strategic behaviour

and updating [16–18]. One of the most interesting open questions is how do

individuals update their strategies based on the knowledge and conception of

others and themselves?

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2014.0077&domain=pdf&date_stamp=2014-03-05
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Two fundamentally different mechanisms can be used to

classify strategy updating and population dynamics based on

individuals’ knowledge about their strategic environment or

themselves: imitation of others and self-learning based on

one’s own aspiration. In imitation dynamics, players update

their strategies after a comparison between their own and

another individual’s success in the evolutionary game [19–21].

For aspiration-driven updating, players switch strategies if an

aspiration level is not met, where the level of aspiration is an

intrinsic property of the focal individual [22–25]. In both

dynamics, novel strategies cannot emerge without additional

mechanisms, for example spontaneous exploration of strategy

space (similar to mutation) [19,26–30]. The major difference is

that the latter does not require any knowledge about the pay-

offs of others. Thus aspiration-level-based dynamics, a form of

self-learning, require less information about an individual’s

strategic environment than do imitation dynamics.

Aspiration-driven strategy-update dynamics are commonly

observed in studies of animal and human behavioural ecology.

For example, fish would ignore social information when they

have relevant personal information [31], and experienced

ants hunt for food based on their own previous chemical

trails rather than imitating others [32]. Furthermore, a form

of aspiration-level-driven dynamics plays a key role in the indi-

vidual behaviours in rat populations [33]. These examples

clearly show that the idea behind aspiration dynamics, i.e.

self-evaluation, is present in the animal world. In behavioural

sciences, such aspiration-driven strategy adjustments generally

operate on the behavioural level. However, it can be speculated

that self-learning processes can have such an effect that it might

actually have a downward impact on regulatory, and thus gen-

etic levels of brain and nervous system. This, in turn, could be

seen as a mechanism that alters the rate of genetic change [34].

Whereas such wide-reaching systemic alterations are more

speculative, it is clear that aspiration levels play a role in

human strategy updating [23].

We study the statistical mechanics of a simple case of

aspiration-driven self-learning dynamics in well-mixed popu-

lations of finite size. Deterministic and stochastic models of

imitation dynamics have been well studied in both well-

mixed and structured populations [6,19,24,26,35,36]. For

aspiration dynamics, numerous works have emerged studying

population dynamics on graphs, but its impact in well-mixed

populations—a basic reference case, one would think—is

far less well understood. Although deterministic aspiration

dynamics, i.e. a kind of win-stay-lose-shift dynamics, in

which individuals are perfectly rational have been analysed

[37], it is not clear how processes with imperfect rationality

influence the evolutionary outcome. Here, we ask whether a

strategy favoured under pairwise comparison-driven imitation

dynamics can become disfavoured under aspiration-driven

self-learning dynamics. To this end, in our analytical analysis,

we limit ourselves to the weak selection, or weak rationality

approximation, where pay-offs via the game play little role

in the decision-making [35]. It has been shown that under

weak selection, the favoured strategy is invariant for a wide

class of imitation processes [21,27,38]. We show that for

pairwise games, the aspiration and imitation dynamics

always share the same favoured strategies. For multi-player

games, however, the weak selection criterion under aspiration

dynamics that determines whether a strategy is more abun-

dant than the other differs from the criterion under imitation

dynamics. This paves the way to construct multi-player
games, for which aspiration dynamics favour one strategy,

whereas imitation dynamics favour another. Furthermore, in

contrast to deterministic aspiration dynamics, if the favoured

strategy is determined by a global aspiration level, the average

abundance of a strategy in the stochastic aspiration dynamics

is invariant with respect to the aspiration level, provided selec-

tion is weak. We also extrapolate our results to stronger

selection cases through numerical simulation.
2. Mathematical model
2.1. Evolutionary games
We consider evolutionary game dynamics with two strategies

and d players. From these, the more widely studied 2 � 2

games emerge as a special case [36]. In individual encounters,

players obtain their pay-offs from simultaneous actions. A

focal player can be of type A, or B, and encounter a group

containing k other players of type A, to receive the pay-off

ak, or bk. For example, a B player, which encounters d 2 1

individuals of type A, obtains pay-off bd21. An A player in

a group of one other A player, and thus d 2 2 B players

obtains pay-off a1. All possible pay-offs of a focal individual

are uniquely defined by the number of A in the group, such

that the pay-off matrix reads

d� 1 � � � k � � � 0

A ad�1 � � � ak � � � a0

B bd�1 � � � bk � � � b0:

(2:1)

For any group engaging in a one-shot game, we can obtain

each member’s pay-off according to this matrix.

In a finite well-mixed population of size N, groups of

size d are assembled randomly, such that the probability of

choosing a group that consists of another k players of type

A, and of d 2 1 2 k players of type B, is given by a hyper-

geometric distribution [39]. For example, the probability

that an A player is in a group of k other As is given by

probA( k jN, i, d ) ¼ ( Ck
i�1 Cd�1�k

N�i )/Cd�1
N�1, where i (i � d )

is the number of A players in the population, and

Ck
n ¼ n!/( k! (n� k)! ) is the binomial coefficient.

The expected pay-offs for any A or B in a population of

size N, with i players of type A and N 2 i players of type

B, are given by

pA(i) ¼
Xd�1

k¼0

Ck
i�1 Cd�1�k

N�i

Cd�1
N�1

ak (2:2)

and

pB(i) ¼
Xd�1

k¼0

Ck
i Cd�1�k

N�i�1

Cd�1
N�1

bk: (2:3)

In summary, we define a d-player stage game [7], shown in

equation (2.1), from which the evolutionary game emerges

such that each individual obtains an expected pay-off based

on the current composition of the well-mixed population. In

the following, we introduce an update rule based on a

global level of aspiration. This allows us to define a Markov

chain describing the inherently stochastic dynamics in a

finite population: probabilistic change of the composition of

the population is driven by the fact that each individual com-

pares its actual pay-off to an imaginary value that it aspires.

Note here that we are only interested in the simplest way to
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Figure 1. Evolutionary game dynamics of d-player interactions driven by global aspiration. In our mathematical model of human strategy updating driven by self-
learning, a group of d players is chosen randomly from the finite population to play the game. According to this, game players calculate and obtain their actual
pay-offs. They are more likely to stochastically switch strategies if the pay-offs they aspire are not met. On the other hand, the higher the pay-offs are compared with
the aspiration level a, the less likely they switch their strategies. Besides, strategy switching is also determined by a selection intensity v. For vanishing selection
intensity, switching is entirely random irrespective of pay-offs and the aspiration level. For increasing selection intensity, the self-learning process becomes increas-
ingly more ‘optimal’ in the sense that for high v, individuals tend to always switch when they are dissatisfied, and never switch when they are tolerant. We
examine the simplest possible set-up, where the level of aspired pay-off a is a global parameter that does not change with the dynamics. We show, however,
that statements about the average abundance of a strategy do not depend on a under weak selection (v� 1): (Online version in colour.)
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model such a complex problem and do not address any learn-

ing process that may adjust such an aspiration level as the

system evolves. For a sketch of the aspiration-driven

evolutionary game, see figure 1.

2.2. Aspiration-level-driven stochastic dynamics
In addition to the inherent stochasticity in finite populations,

there is randomness in the process of individual assessments

of one’s own pay-off as compared to a random sample of the

rest of the population; even if an individual knew exactly

what to do, that individual might still fail to switch to an

optimal strategy, e.g. owing to a trembling hand [40,41].

Here, we examine the simplest case of an entire popu-

lation having a certain level of aspiration. Players need not

see any particular pay-offs but their own, which they com-

pare to an aspired value. This level of aspiration, a, is a

variable that influences the stochastic strategy updating.

The probability of switching strategy is random when indi-

viduals’ pay-offs are close to their level of aspiration,

reflecting the basic degree of uncertainty in the population.

When pay-offs exceed the aspiration, strategy switching is

unlikely. At high values of aspiration compared to pay-offs,

switching probabilities are high.

The level of aspiration provides a global benchmark of

tolerance or dissatisfaction in the population. In addition,

when modelling human strategy updating, one typically

introduces another global parameter that provides a measure

for how important individuals deem the impact of the actual

game played on their update, the intensity of selection, v.

Irrespective of the aspiration level and the frequency-

dependent pay-off distribution, vanishing values of v refer

to nearly random strategy updating. For large values of v,

individuals’ deviations from their aspiration level have a

strong impact on the dynamics.

Note that although the level of aspiration is a global vari-

able and does not differ individually, owing to pay-off
inhomogeneity there can always be a part of the population

that seeks to switch more often owing to dissatisfaction

with the pay-off distribution.

In our microscopic update process, we randomly choose

an individual, x, from the population and assume that the

pay-off of the focal individual is px. To model stochastic

self-learning of aspiration-driven switching, we can use the

following probability function:

g(a� px ) ¼ 1

1þ e�v (a�px )
, (2:4)

which is similar to the Fermi rule [22,42] but replaces a

randomly drawn opponent’s pay-off by one’s own aspiration.

The wider the positive gap between aspiration and pay-off,

the higher the switching probability. Reversely, if pay-offs

exceed the level of aspiration individuals become less active

with increasing pay-offs. The aspiration level, a, provides

the benchmark used to evaluate how ‘greedy’ an individual

is. Higher aspiration levels mean that individuals aspire to

higher pay-offs. If pay-offs meet aspiration, individuals

remain random in their updates. If pay-offs are below aspira-

tion, switching occurs with probability larger than random; if

they are above aspiration, switching occurs with probability

lower than random. The selection intensity governs how

strict individuals are in this respect. For v ¼ 0, strategy

switching is entirely random (neutral). Low values of v

lead to switching only slightly different from random but

follow the impact of a. For increasing v, the impact of the

difference between pay-offs and the aspiration becomes

more important. In the case of v! 1, individuals are strict

in the sense that they either switch strategies with probability

one if they are not satisfied or stay with their current strategy

if their aspiration level is met or overshot.

The spread of successful strategies is modelled by a

birth–death process in discrete time. In one time step, three

events are possible: the abundance of A, i, can increase by
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one with probability p( i! iþ 1) ¼ Tþi , decrease by one with

probability p( i! i� 1) ¼ T�i or stay the same with prob-

ability p( i! i ) ¼ T0
i : All other transitions occur with

probability zero. The transition probabilities are given by

Tþi ¼
N � i

N
1

1þ e�v [a�pB(i) ]
, (2:5)

T�i ¼
i

N
1

1þ e�v [a�pA(i) ]
(2:6)

and T0
i ¼ 1� Tþi � T�i : (2:7)

In each time step, a randomly chosen individual evaluates its

success in the evolutionary game, given by equations (2.2)

or (2.3), compares it to the level of aspiration and then

changes strategy with probability lower than 1/2 if its pay-

off exceeds the aspiration. Otherwise, it switches with

probability greater than 1/2, except when the aspiration

level is exactly met, in which case it switches randomly

(note that this is very unlikely to ever be the case).

Compared to imitation (pairwise comparison) dynamics,

our self-learning process, which is essentially an Ehrenfest-

like Markov chain, has some different characteristics. Without

the introduction of mutation or random strategy exploration,

there exists a stationary distribution for the aspiration-driven

dynamics. Even in a homogeneous population, there is a

positive probability that an individual can switch to another

strategy owing to the dissatisfaction resulting from pay-

off–aspiration difference. This facilitates the escape from

the states that are absorbing in the pairwise comparison

process and other Moran-like evolutionary dynamics.

Hence, there exists a non-trivial stationary distribution of

the Markov chain satisfying detailed balance. Specifically,

for the case of v ¼ 0 (neutral selection), the dynamics defined

by equations (2.5)–(2.7) are characterized by linear rates,

while these rates are quadratic for the neutral imitation

dynamics and Moran process.

In the following analysis and discussion, we are interested

in the limit of weak selection, v� 1, and its ability to aptly

predict the success of cooperation in commonly used evol-

utionary d-player games. The limit of weak selection, which

has a long-standing history in population genetics and mol-

ecular evolution [11], also plays a role in social learning

and cultural evolution. Recent experimental results suggest

that the intensity with which human subjects adjust their

strategies might be low [18]. Although it has been unclear

to what degree and in what way human strategy updating

deviates from random [43,44], the weak selection limit is of

importance to quantitatively characterize the evolutionary

dynamics. In the limiting case of weak selection, we are

able to analytically classify strategies with respect to the neu-

tral benchmark, v! 0 [19,21,35,45,46]. We note that a

strategy is favoured by selection if its average equilibrium

frequency under weak selection is greater than one half. In

order to come to such a quantitative observation, we need

to calculate the stationary distribution over the abundance

of strategy A.
2.3. Stationary distribution
The Markov chain given by equations (2.5)–(2.7) is a

one-dimensional birth–death process with reflecting bound-

aries. It satisfies the detailed balance condition

c j�1 Tþj�1 ¼ cj T�j , where (c0, c1, . . . , cj, . . . , cN) is the

stationary distribution over the abundance of A in
equilibrium [47,48]. Considering
PN

j¼0 cj ¼ 1, we find the

exact solution by recursion, given by

cj ¼
j ¼ 0:

1

1þ
PN

k¼1 qþ0 k�1/q�1 k

j . 0:
qþ0 j�1/q�1 j

1þ
PN

k¼1 qþ0 k�1/q�1 k

,

8>>><
>>>:

(2:8)

where q+j k ¼
Qk

l¼j T+
l is the probability of successive tran-

sitions from j to k. Analytical solution equation (2.8) allows

us to find the exact value of the average abundance of

strategy A

kXAl(v) ¼
XN

j¼0

j
N

cj(v), (2:9)

for any strength of selection.
3. Results and discussion
It has been shown that imitation processes are similar to each

other under weak selection [21,27,38]. Thus, in order to

compare the essential differences between imitation and

aspiration processes, we consider such selection limit. To

better understand the effects of selection intensity, aspiration

level and pay-off matrix on the average abundance of strategy

A, we further analyse which strategy is more abundant based

on equation (2.8). For a fixed population size, under weak

selection, i.e. v! 0, the stationary distribution cj(v) can be

expressed approximately as

cj(v) � cj(0)þ v
@

@ v
cj(v)

� �
v¼0

, (3:1)

where the neutral stationary distribution is simply given

by cj(0) ¼ Cj
N/2N , and the first-order term of this Taylor

expansion amounts to

@

@ v
cj(v)

� �
v¼0

¼ Ci
N

2Nþ1

Xj

k¼1

[pA(k)� pB(k � 1) ]

(

� 1

2N

XN

k¼1

Ck
N

Xk

l¼1

[pA(l)� pB(l� 1) ]

)
: (3:2)

Interestingly, in the limiting case of weak selection, the first-

order approximation of the stationary distribution of A does

not depend on the aspiration level. For higher order terms

of selection intensity, however, cj(v) does depend on the

aspiration level.

In the following, we discuss the condition under which a

strategy is favoured and compare the predictions for station-

ary strategy abundance under self-learning and imitation

dynamics. Thereafter, we consider three prominent examples

of games with multiple players through analytical, numerical

and simulation methods, the results of which are detailed in

figures 2–4 and appendix B. All three examples are social

dilemmas in the sense that the Nash equilibrium of the

one-shot game is not the social optimum. First, the widely

studied public goods game represents the class of games

where there is only one pure Nash equilibrium [49]. Next,

the public goods game with a threshold, a simplified version

of the collective-risk dilemma [50–52], represents the class of

coordination games with multiple pure Nash equilibria,

depending on the threshold. Last, we consider the d-player
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volunteer’s dilemma, or snowdrift game, which has a mixed

Nash equilibrium [53,54].
3.1. Average abundance of strategy A
Based on approximation (3.1), for any symmetric multi-player

game with two strategies of normal form (2.1), we can now

calculate a weak selection condition such that in equilibrium

A is more abundant than B. As for neutrality, cj(0) ¼ Cj
N=2N

holds, and thus kXAl(0) ¼ 1/2, it is sufficient to consider

positivity of the sum of jv[@vcj(v)]v¼0/N over all j ¼ 0, . . . ,
N. Under weak selection, strategy A is favoured by selection,

i.e. kXAl(v) . 1/2, if

Xd�1

k¼0

Ck
d�1( ak � bk) . 0, (3:3)

which holds for any d-player games with two strategies in a

population with more than two individuals. For a detailed

derivation of our main analytical result, see appendix

A. Note that for a two-player game, d ¼ 2, the above condition
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simplifies to a1 þ a0 . b1 þ b0, which is similar to the concept

of risk-dominance translated to finite populations [35].

The left-hand side expression of inequality (3.3) can also

be compared to a similar condition under the class of pair-

wise comparison processes [19,22], where two randomly

selected individuals compare their pay-offs and switch with

a certain probability based on the observed inequality.

Typically, weak selection results for pairwise comparison

processes lead to the result that strategy A is favoured by

selection if [35,55,56]

Xd�1

k¼0

( ak � bk) . 0, (3:4)

which applies both to evaluate whether fixation of A is more

likely than fixation of B, or whether the average abundance of

A is greater than one-half under weak mutation and weak

selection, which can be shown using properties of the

embedded Markov chain [57]. The sums on the left-hand

sides of (3.3) and (3.4) can thus be compared with each

other in order to reveal the nature of our self-learning process

driven by a global aspiration level.

Our main result, equation (3.3), holds for a variety of

self-learning dynamics, not only for the probability function

given in equation (2.4). Considering the general self-

learning function g[v(a 2 px)] with g(0) = 0, here g(x) is

strictly increasing with increasing x. Denoting u ¼ v(a2px),

we have g0(v) ¼ g0(u) u0(v): Then, for v! 0, g0(v)jv¼0 ¼
g0(0)(a� px), and equation (3.2) can be rewritten in a more

general form

@

@v
cj(v)

� �
v¼0

¼ g0(0)

g(0)

Cj
N

22N 2N
Xj

k¼1

[pA(k)� pB(k � 1)]

(

�
XN

k¼1

Ck
N

Xk

i¼1

[pA(i)� pB(i� 1)]

)
: (3:5)

As g0(0)/g(0) is a positive constant, equation (3.3) is still valid

for any such probability function g(x); see appendix A.
3.2. Linear public goods game
Public goods games emerge when groups of players engage in

the sustenance of common goods. Cooperators A pay

an individual cost in the form of a contribution c that is

pooled into the common pot. Defectors B do not contribute.

The pot is then multiplied by a characteristic multiplication

factor r and shared equally among all individuals in the

group, irrespective of contribution. If the multiplication

factor is smaller than the size of the group d, each cooperator

recovers only a fraction of the initial investment. Switching to

defection would always be beneficial in a pairwise comparison

of the two strategies. The pay-off matrix thus reads

d� 1 � � � k � � � 1 0

A rc� c � � � k þ 1

d
rc� c � � � 2

d
rc� c

rc
d
� c

B
d� 1

2
rc � � � k

d
rc � � � rc

d
0,

(3:6)

where 1 , r , d is typically assumed. As ak � bk ¼ c(r/d� 1)

is a negative constant for any number of cooperators in the

group, we find that

Xd�1

k¼0

Ck
d�1 ( ak � bk ) ¼ 2d�1 c

r
d
� 1

� �
(3:7)

is always negative. Cooperation cannot be the more abundant

strategy in the well-mixed population (figure 2). However, if

the self-learning dynamics are driven by a sufficiently high

aspiration level, then individuals are constantly dissatisfied

and switch strategy frequently, even as defectors, such that

cooperation can break even if selection is strong enough,

namely lim a!1kXAl ¼ 1/2 for all values v. On the other

hand, if the aspiration level is low, then cooperators switch

more often than defectors such that the average abundance of

A assumes a value closer to the evolutionary stable state of full

defection, which depends on v. In the extreme case of very

low a and strong selection, defectors fully dominate, and thus

the stationary measure retracts to the all defection state.
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3.3. Threshold public goods game
Here, we consider the following public goods game with a

threshold in the sense that the good becomes strictly unavail-

able when the number of cooperators in a group is below a

critical threshold, m. This threshold becomes a new strategic

variable. Here, c is an initial endowment given to each

player, which is invested in full by cooperators. Whatever

the cooperators manage to invest is multiplied by r and redis-

tributed among all players in the group irrespective of

strategy, if the threshold investment mc is met. Defectors do

not make any investment and thus have an additional pay-

off of c, as long as the threshold is met. Once the number

of cooperators is below m, all pay-offs are zero, which com-

pares to the highest risk possible (loss of endowment and

investment with certainty) in what is called the collective-

risk dilemma [50,52]. The pay-off matrix for the two

strategies, cooperation A and defection B, reads

d� 1 � � � m m� 1 m� 2 � � � 0

A rc � � � mþ 1

d
rc

m
d

rc 0 � � � 0

B
d� 1

d
rcþ c � � � m

d
rcþ c 0 0 � � � 0:

(3:8)

We can examine when the self-learning process favours

cooperation. We can also seek to make a statement about

whether under self-learning dynamics cooperation performs

better than under pairwise comparison process. For self-

learning dynamics, we find
Pd�1

k¼0 Ck
d�1(ak � bk) ¼

Pd�1
k¼m Ck

d�1

(r c/d� c)þ Cm�1
d�1 (m r c/d), while the equivalent statement

for pairwise comparison processes based on the same

pay-off matrix would be
Pd�1

k¼0 (ak � bk) ¼ c(rþm� d):

Thus, the criterion of self-learning dynamics can be writ-

ten as r . (d
Pd�1

k¼m Ck
d�1)/(

Pd�1
k¼m Ck

d�1 þm Cm�1
d�1 ), whereasPd�1

k¼0 (ak � bk) . 0 simply leads to r . d 2 m. Comparing

the two conditions, we find

(d�m)� d
Pd�1

k¼m Ck
d�1Pd�1

k¼m Ck
d�1 þm Cm�1

d�1

¼ mPd�1
k¼m Ck

d�1 þm Cm�1
d�1

Gd,m: (3:9)

As the first factor on the right-hand side of equation (3.9) is

always positive, the factor

Gd,m ¼ (d�m)Cm�1
d�1 �

Xd�1

k¼m

Ck
d�1 (3:10)

determines the relationship between self-learning dynamics

and pairwise comparison processes: for sufficiently large

threshold m, expression (3.10) is positive. In conclusion, the

aspiration-level-driven self-learning dynamics can afford to

be less strict than the pairwise comparison process. Namely,

it requires less reward for cooperators’ contribution to the

common pool (lower levels of r) in order to promote the coop-

erative strategy. The amount of cooperative strategy depends

on the threshold: higher thresholds support cooperation,

even for lower multiplication factors r (figure 3). For fixed r,

our self-learning dynamics are more likely to promote

cooperation in a threshold public goods game, if the threshold

for the number of cooperators needed to support the public

goods is large enough, i.e. not too different from the total

size of the group. For small thresholds, and thus higher
temptation to defect in groups with less cooperators, we

approach the regular public goods games, and the conclusion

may be reversed. Under such small m cases, imitation-driven

(pairwise comparison) dynamics are more likely to lead to

cooperation than aspiration dynamics.

3.4. d-player snowdrift game
Evolutionary games between two strategies can have mixed

evolutionary stable states [6,36]. Strategy A can invade B
and B can invade A; a stable coexistence of the two strategies

typically evolves. In the replicator dynamics of the snowdrift

game, cooperators can be invaded by defectors as the temp-

tation to defect is still larger than the reward of mutual

cooperation [54,58]. In contrast to the public goods game,

cooperation with a group of defectors now yields a pay-off

greater than exclusive defection. The act of cooperation pro-

vides a benefit to all members of the group, and the cost of

cooperation is equally shared among the number of cooperators

[59]. Hence, the pay-off matrix reads

d� 1 � � � k � � � 1 0

A b� c
d
� � � b� c

k þ 1
� � � b� c

2
b� c

B b � � � b � � � b 0:

(3:11)

If cooperation can maintain a minimal positive pay-off

from the cooperative act, then cooperation and defection can

coexist. The snowdrift game is a social dilemma, as selection

does not favour the social optimum of exclusive cooperation.

The level of coexistence depends on the amount of cost that

a particular cooperator has to contribute in a certain group.

Evaluating weak selection condition (3.3) in the case of the

d-player snowdrift game leads to the condition

Xd�1

k¼0

Ck
d�1

k þ 1
,

b
c

, (3:12)

in order to observe kXAl . 1/2 in aspiration dynamics under

weak selection. For imitation processes, on the other hand,

we find
Pd�1

k¼0 1/(k þ 1) , b/c: Note that, except for a0 2

b0 ¼ b 2 c . 0, ak 2 bk , 0 holds for any other k. Because of

this, the different nature of these two conditions, given by

the positive coefficients Ck
d�1 . 1 for any d . k . 0, reveals

that self-learning dynamics narrow down the parameter

range for which cooperation can be favoured by selection. In

the snowdrift game, self-learning dynamics are less likely to

favour cooperation than pairwise comparison processes.

Larger group size d hinders cooperation: the larger the

group, the higher the benefit of cooperation, b, has to be in

order to support cooperation (figure 4).
4. Summary and conclusion
Previous studies on self-learning mechanism have typically been

investigated on graphs via simulations, which often use stochas-

tic aspiration-driven update rules [23,25,60–62]. Although

results based on the mean field approximations are insightful

[24,25], further analytical insights have been lacking so far.

Thus, it is constructive to introduce and discuss a

reference case of stochastic aspiration-driven dynamics of

self-learning in well-mixed populations. To this end, here

we introduce and discuss such an evolutionary process.

Our weak selection analysis is based on a simplified scenario
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that implements a non-adaptive self-learning process with

global aspiration level.

Probabilistic evolutionary game dynamics driven by

aspiration are inherently innovative and do not have absorb-

ing boundaries even in the absence of mutation or random

strategy exploration. We study the equilibrium strategy distri-

bution in a finite population and make a weak selection

approximation for the average strategy abundance for any

multi-player game with two strategies, which turns out to

be independent of the level of aspiration. This is different

from the aspiration dynamics in infinitely large populations,

where the evolutionary outcome crucially depends on the

aspiration level [37]. Thus, it highlights the intrinsic differ-

ences arising from finite stochastic dynamics of multi-player

games between two strategies. Based on this we derive a con-

dition for one strategy to be favoured over the other. This

condition then allows a comparison of a strategy’s perform-

ance to other prominent game dynamics based on pairwise

comparison between two strategies.

Most of the complex strategic interactions in natural popula-

tions, ranging from competition and cooperation in microbial

communities to social dilemmas in humans, take place in

groups rather than pairs. Thus multi-player games have

attracted increasing interest in different areas [36,63–68]. The

most straightforward form of multi-player games makes use

of the generalization of the pay-off matrix concept [63]. Such

multi-player games are more complex and show intrinsic differ-

ence from 2 � 2 games. Hence, as examples here we have

studied the dynamics of one of the most widely studied multi-

player games—the linear public goods game [64], a simplified

version of a threshold public goods game that requires a group

of players to coordinate contributions to a public good [17,50–

52,69,70] as well as a multi-player version of the snowdrift

game [66] where coexistence is possible. Our analytical finding

allows a characterization of the evolutionary success under the

stochastic aspiration-driven update rules introduced here, as

well as a comparison to the well-known results of pairwise

comparison processes. While in coordination games, such as

the threshold public goods game, the self-learning dynamics

support cooperation on a larger set in parameter space, the

opposite is true for coexistence games, where the condition for

cooperation to be more abundant becomes more strict.

It will be interesting to derive analytical results that either

hold for any intensity of selection or at least for the limiting

case of strong selection [13,71] in finite populations. On the

other hand, the update rule presented here does not seem to

allow a proper continuous limit in the transition to infinitely
large populations [20], which might give rise to interesting rescal-

ing requirements of the demographic noise in the continuous

approximation [72] in self-learning dynamics.

Our simple model illustrates that aspiration-driven self-

learning dynamics in well-mixed populations alone may be

sufficient to alter the expected strategy abundance. In pre-

vious studies of such processes in structured populations

[25,60–62], this effect might have been overshadowed by

the properties of the network dynamics studied in silico.

Our analytical results hold for weak selection, which might

be a useful framework in the study of human interactions

[18], where it is still unclear to what role model individuals

compare their pay-offs and with what strength players

update their strategies [18,30,44]. Although weak selection

approximations are widely applied in the study of fre-

quency-dependent selection [27,29,35,45], it is not clear

whether the successful spread of behavioural traits operates

in this parameter regime. Thus, by numerical evaluation

and simulations we show that our weak selection predictions

also hold for strong selection. Models similar to the one pre-

sented here may be used in attempts to predict human

strategic dynamics [73,74]. Such predictions, likely to be falsi-

fied in their simplicity [75], are essential to our fundamental

understanding of complex economic and social behaviour

and may guide statistical insights to the effective functioning

of the human mind.

Acknowledgement. We thank four anonymous referees for their construc-
tive and insightful comments.

Funding statement. This work is supported by the National Natural
Science Foundation of China (NSFC) under grant no. 61020106005
and no. 61375120. B.W. gratefully acknowledges generous sponsor-
ship from the Max Planck Society. P.M.A. gratefully acknowledges
support from the Deutsche Akademie der Naturforscher Leopoldina,
grant no. LPDS 2012-12.
Appendix A
In this appendix, we detail the deducing process of the criterion

of kXAl(v) . 1/2 for a general d-player game. We consider the

first-order approximation of stationary distribution, cj(v), and

get the criterion condition (shown in §3), as follows:

XN

j¼0

j
N

@

@v
cj(v)

� �
v¼0

v . 0: (A 1)

Inserting equation (2.8), we have
@

@v
cj(v)¼

Qj�1
i¼0 Tþi =

Qj
i¼1 T�i

� �0
1þ

PN�1
k¼0

Qk
i¼0 Tþi =

Qkþ1
i¼1 T�i

� �h i� �
�
Qj�1

i¼0 Tþi =
Qj

i¼1 T�i
� �

1þ
PN�1

k¼0

Qk
i¼0 Tþi =

Qkþ1
i¼1 T�i

� �h i� �0
1þ

PN�1
k¼0

Qk
i¼0 Tþi =

Qkþ1
i¼1 T�i

� �h i� �2
:

(A 2)
Denoting cj(v) ¼ cN/cD, the above equation can be

simplified as

@

@v
cj(v) ¼ c 0N cD � cN c 0D

c 2
D

, (A 3)

where



9
Qj�1 þ
 !0 Qj�1 þ 0 Qj �
rsif.royalsocietypublis
c 0N ¼ i¼0 TiQj
i¼1 T�i

¼
( i¼0 Ti ) ( i¼1 Ti )� (

Qj�1
i¼0 Tþi )(

Qj
i¼1 T�i )0

(
Qj

i¼1 T�i )
2

¼
�Pj�1

i¼0ðTþi )0
�Qj�1

k¼0,k=i Tþk
�	�Qj

i¼1 T�i
�
�
�Qj�1

i¼0 Tþi
��Pj

i¼1 (T�i )0
�Qj

k¼1,k=i T�k
�	

�Qj
i¼1 T�i

�2
(A 4)
hing.o
and
rg
J.R.Soc.Interface

1

c 0D ¼ 1þ
XN�1

k¼0

Qk
i¼0 TþiQkþ1
i¼1 T�i

 !0
¼
XN�1

k¼0

�Qk
i¼0 Tþi

�0�Qkþ1
i¼1 T�i

�
�
�Qk

i¼0 Tþi
��Qkþ1

i¼1 T�i
�0

�Qkþ1
i¼1 T�i

�2

¼
XN�1

k¼0

�Pk
i¼0 (Tþi )0

�Qk
s¼0,s=i Tþs

�	�Qkþ1
i¼1 T�i

�
�
�Qk

i¼0 Tþi
��Pkþ1

i¼1 (T�i )0
�Qkþ1

s¼1,s=i T�s
�	

�Qkþ1
i¼1 T�i

�2
: (A 5)

� i
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We have

(Tþi )0 ¼ N � i
N

1

1þ e�v [a�pB(i)]


 �0

¼ N � i
N

{e�v [a�pB(i)]} [a� pB(i)]

{1þ e�v [a�pB(i)]}
2

(A 6)

and

(T�i )0 ¼ i
N

1

1þ e�v [a�pA(i)]


 �0

¼ i
N

{e�v [a�pA(i)]} [a� pA(i)]

{1þ e�v [a�pA(i)]}
2

: (A 7)

As v! 0,

(Tþi )0
��
v¼0
¼ N � i

4N
[a� pB(i)], (A 8)
(T�i )0�
v¼0
¼

4N
[a� pA(i)], (A 9)

Yj�1

i¼0

Tþi

 !�����
v¼0

¼
Yj�1

i¼0

N � i
2N

¼ N!

(N � j)!(2N)j , (A 10)

Yj

i¼1

T�i

 !�����
v¼0

¼
Yj

i¼1

i
2N
¼ j!

(2N)j , (A 11)

Xj�1

i¼0

(Tþi )0
Yj�1

k¼0,k=i

Tþk

 !" #�����
v¼0

¼ N!
P j�1

i¼0 [a� pB(i)]

2 (N � j)!(2N)j (A 12)

and

Xj

i¼1

(T�i )0
Yj

k¼1,k=i

T�k

 !" �����
v¼0

¼ j!
Pj

i¼1 [a� pA(i)]

2 (2N)j : (A 13)

Then, inserting equations (A 10)–(A 13) into equation (A 4)
c 0N jv¼0 ¼
[N!/(2(N � j)!(2N)j)]

Pj�1
i¼0 [a� pB(i)]

n o
(j!=(2N)j)� (N!=(N � j)!(2N)j)(j!=2(2N)j)

Pj
i¼1 [a� pA(i)]

[j!=(2N)j]
2

¼ N!

2j!(N � j)!
�
Xj�1

i¼0

pB(i)þ
Xj

i¼1

pA(i)

" #

¼ Cj
N

2

Xj

i¼1

[pA(i)� pB(i� 1)]: (A 14)
Similarly, we can get
c0Djv¼0¼
XN�1

k¼0

(N!/(2(N�k�1)!(2N)kþ1))
Pk

i¼0[a�pB(i)]((kþ1)!=(2N)kþ1)

(kþ1)!

(2N)kþ1

h i2
�(N!=((N�k�1)!(2N)kþ1))((kþ1)!=2(2N)kþ1)

Pkþ1
i¼1 [a�pA(i)]

[(kþ1)!=(2N)kþ1]
2

8><
>:

9>=
>;

¼
XN

k¼1

Ck
N

2

Xk

i¼1

[pA(i)�pB(i�1)]: (A 15)
In addition

cDjv¼0¼ 1þ
XN�1

k¼0

Qk
i¼0 ((N� i)/2N)Qkþ1

i¼1 (i/2N)
¼ 1þ

XN�1

k¼0

Ckþ1
N ¼ 2N (A16)

and cN jv¼0 ¼
Qj�1

i¼0 ((N � i)/2N)Qj
i¼1 (i/2N)

¼ Cj
N : (A 17)
Therefore, inserting equations (A 14)–(A 17) into equation

(A 3),

@

@v
cj(v)

� �
v¼0

¼ Cj
Nf
Pj

i¼1 [pA(i)� pB(i� 1)]g 2N

2(2N)2

� Cj
N
PN�1

k¼0 {Ckþ1
N
Pkþ1

i¼1 [pA(i)� pB(i� 1)]}

2(2N)2
: (A 18)



Table 1. Simulation results for linear public goods game. The parameters are: d ¼ 10, a ¼ 1, r ¼ 2 and c ¼ 1. Under such setting, the criterion equation
(3.3) we analytically deduced reads as

Pd�1
k¼0 Ck

d�1(ak � bk ) , 0, which means that the fraction of cooperators kXAl , 0:5:

v 5 0.01 v 5 0.1 v 5 1 v 5 5 v 5 10

N ¼ 50 0.49924 0.4909 0.43151 0.42745 0.45081

N ¼ 100 0.49885 0.49071 0.43133 0.42905 0.45519

N ¼ 200 0.4994 0.48993 0.43192 0.42999 0.45694

N ¼ 1000 0.49804 0.49037 0.43188 0.43076 0.45875

Table 2. Simulation results for threshold public goods game. The parameters are: d ¼ 10, a ¼ 1, c ¼ 1 and m ¼ 7. Under such setting, criterion equation
(3.3) reads as

Pd�1
k¼0 Ck

d�1(ak � bk ) . 0, which means that the average fraction of cooperators kXAl . 0:5:

v 5 0.01 v 5 0.1 v 5 1 v 5 5 v 5 10

N ¼ 50 0.5003 0.50466 0.56262 0.77205 0.71618

N ¼ 100 0.50079 0.50451 0.56173 0.7626 0.71218

N ¼ 200 0.50087 0.50467 0.56206 0.76144 0.71154

N ¼ 1000 0.50017 0.50472 0.56054 0.75942 0.71162

Table 3. Simulation results for multiple snowdrift game. The parameters are: d ¼ 10, a ¼ 1, b ¼ 1.5, and c ¼ 1. Under such setting, criterion equation
(3.3) reads as

Pd�1
k¼0 Ck

d�1(ak � bk ) , 0, which means that the average fraction of cooperators kXAl , 0:5:

v 5 0.01 v 5 0.1 v 5 1 v 5 5 v 5 10

N ¼ 50 0.49999 0.49758 0.469955 0.262065 0.164099

N ¼ 100 0.499545 0.497307 0.470687 0.261983 0.167228

N ¼ 200 0.499789 0.497168 0.469876 0.261832 0.168782

N ¼ 1000 0.49978 0.49765 0.46985 0.26296 0.16973
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Combined with equation (A 1), the criterion is rewritten

as

XN

j¼1

jv
N

Cj
Nf
Pj

i¼1 [pA(i)� pB(i� 1)]g2N

2(2N)2

 

� Cj
N
PN�1

k¼0 {Ckþ1
N
Pkþ1

i¼1 [pA(i)� pB(i� 1)]}

2(2N)2

!
. 0,

(A 19)

where pA(i) and pB(i 2 1) refer to equations (2.2) and (2.3).

Hence,

pA(i)� pB(i� 1) ¼
Xd�1

k¼0

Ck
i�1Cd�1�k

N�i

Cd�1
N�1

(ak � bk): (A 20)

Therefore, the criterion can be written as

XN

j¼1

jvCi
N

2N(2N)2

Xj

i¼1

Xd�1

k¼0

Ck
i�1Cd�1�k

N�i

Cd�1
N�1

(ak � bk)2N

"

�
XN�1

m¼0

Cmþ1
N

Xmþ1

i¼1

Xd�1

k¼0

Ck
i�1Cd�1�k

N�i

Cd�1
N�1

(ak � bk)

#
. 0
, v

2N(2N)2

XN

j¼1

jCj
N

Xj

i¼1

Xd�1

k¼0

Ck
i�1Cd�1�k

N�i

Cd�1
N�1

(ak � bk)2N

2
4

�
XN

j¼1

jCj
N

XN

m¼1

Cm
N

Xm

i¼1

Xd�1

k¼0

Ck
i�1Cd�1�k

N�i

Cd�1
N�1

(ak � bk)

3
5 . 0

, v

4N(2N)

XN

j¼1

2jCj
N

Xj

i¼1

Xd�1

k¼0

Ck
i�1Cd�1�k

N�i

Cd�1
N�1

(ak � bk)

2
4

3
5

� vN2N�1

2N(2N)2

XN

m¼1

Cm
N

Xm

i¼1

Xd�1

k¼0

Ck
i�1Cd�1�k

N�i

Cd�1
N�1

(ak � bk)

" #
. 0

, v

4N(2N)

XN

j¼1

(2j�N)Cj
N

Xj

i¼1

Xd�1

k¼0

Ck
i�1Cd�1�k

N�i

Cd�1
N�1

(ak � bk)

2
4

3
5 . 0:

(A 21)

We can prove that the above inequality leads to a general

criterion as follows:

v

4(2d)

Xd�1

k¼0

[Ck
d�1(ak � bk)] . 0: (A 22)

This is the result we want to show. For this, we only need to



rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140077

11
demonstrate

v

4N(2N)

XN

j¼1

(2j�N)Cj
N

Xj

i¼1

Xd�1

k¼0

Ck
i�1 Cd�1�k

N�i

Cd�1
N�1

(ak � bk)

2
4

3
5

¼ v

4(2d)

Xd�1

k¼0

Ck
d�1(ak � bk)

" #
: (A 23)

This is equal to

XN

j¼1

(2j�N)Cj
N

Xj

i¼1

Xd�1

k¼0

Ck
i�1Cd�1�k

N�i

Cd�1
N�1

(ak � bk)

¼ 2N�dN
Xd�1

k¼0

Ck
d�1(ak � bk): (A 24)

As such an equation should hold for any choice of (ak 2 bk),

then

XN

j¼1

(2j�N)Cj
N

Xj

i¼1

Ck
i�1 Cd�1�k

N�i

Cd�1
N�1

¼ 2N�dNCk
d�1: (A 25)
Using the identity
PN

j¼1

Pj
i¼1 ¼

PN
i¼1

PN
j¼i , we can sim-

plify the equivalent condition as

XN

i¼1

Ck
i�1Cd�1�k

N�i

XN

j¼i

(2j�N)Cj
N ¼ 2N�dNCd�1

N�1Ck
d�1: (A 26)

This can be easily proved through mathematical induction.

Thus, we get the criterion of kXAl(v) . 1/2 for general multi-

player games as equation (A 22). We rewrite this as follows:

Xd�1

k¼0

Ck
d�1(ak � bk) . 0: (A 27)

Appendix B
In tables 1–3, we demonstrate how selection intensity v and

the population size N influence the evolutionary results (the

average fraction of cooperators) through simulation.

It is found that for the examples we discussed, namely the

linear public goods game, the threshold collective risk dilemma

and a multi-player snowdrift game, our result under weak

selection can be generalized for a wide range of parameters

(higher values of v, small and large populations).
References
1. Sigmund K. 2010 The calculus of selfishness, 1st
edn. Princeton, NJ: Princeton University Press.

2. von Neumann J, Morgenstern O. 1944 Theory of
games and economic behavior. Princeton, NJ:
Princeton University Press.

3. Nash JF. 1950 Equilibrium points in n-person
games. Proc. Natl Acad. Sci. USA 36, 48 – 49.
(doi:10.1073/pnas.36.1.48)

4. Maynard Smith J, Price GR. 1973 The logic of animal
conflict. Nature 246, 15 – 18. (doi:10.1038/246015a0)

5. Weibull JW. 1995 Evolutionary game theory.
Cambridge, MA: The MIT Press.

6. Hofbauer J, Sigmund K. 1998 Evolutionary games
and population dynamics. Cambridge, UK:
Cambridge University Press.

7. Gintis H. 2009 Game theory evolving: a problem-
centered introduction to modeling strategic
interaction, 2nd edn. Princeton, NJ: Princeton
University Press.

8. Nowak MA. 2006 Evolutionary dynamics: exploring
the equations of life. Cambridge, MA: Harvard
University Press.

9. Nowak MA, Sigmund K. 2004 Evolutionary dynamics
of biological games. Science 303, 793 – 799. (doi:10.
1126/science.1093411)

10. Imhof LA, Nowak MA. 2006 Evolutionary game
dynamics in a Wright-Fisher process. J. Math. Biol.
52, 667 – 681. (doi:10.1007/s00285-005-0369-8)

11. Kimura M. 1983 The neutral theory of molecular
evolution. Cambridge, UK: Cambridge University Press.

12. Taylor C, Fudenberg D, Sasaki A, Nowak MA. 2004
Evolutionary game dynamics in finite populations.
Bull. Math. Biol. 66, 1621 – 1644. (doi:10.1016/j.
bulm.2004.03.004)

13. Altrock PM, Traulsen A. 2009 Deterministic evolutionary
game dynamics in finite populations. Phys. Rev. E 80,
011909. (doi:10.1103/PhysRevE.80.011909)
14. Hilbe C. 2011 Local replicator dynamics: a simple
link between deterministic and stochastic models of
evolutionary game theory. Bull. Math. Biol. 73,
2068 – 2087. (doi:10.1007/s11538-010-9608-2)

15. Arnoldt H, Timme M, Grosskinsky S. 2012
Frequency-dependent fitness induces multistability
in coevolutionary dynamics. J. R. Soc. Interface 9,
3387 – 3396. (doi:10.1098/rsif.2012.0464)

16. Bendor J, Swistak P. 1995 Types of evolutionary
stability and the problem of cooperation. Proc. Natl
Acad. Sci. USA 92, 3596 – 3600. (doi:10.1073/pnas.
92.8.3596)

17. Milinski M, Semmann D, Krambeck H-J, Marotzke J.
2006 Stabilizing the Earth’s climate is not a losing
game: supporting evidence from public goods
experiments. Proc. Natl Acad. Sci. USA 103,
3994 – 3998. (doi:10.1073/pnas.0504902103)

18. Traulsen A, Semmann D, Sommerfeld RD, Krambeck
H-J, Milinski M. 2010 Human strategy updating in
evolutionary games. Proc. Natl Acad. Sci. USA 107,
2962 – 2966. (doi:10.1073/pnas.0912515107)

19. Traulsen A, Pacheco JM, Nowak MA. 2007 Pairwise
comparison and selection temperature in
evolutionary game dynamics. J. Theor. Biol. 246,
522 – 529. (doi:10.1016/j.jtbi.2007.01.002)

20. Traulsen A, Claussen JC, Hauert C. 2005
Coevolutionary dynamics: from finite to infinite
populations. Phys. Rev. Lett. 95, 238701. (doi:10.
1103/PhysRevLett.95.238701)

21. Wu B, Altrock PM, Wang L, Traulsen A. 2010
Universality of weak selection. Phys. Rev. E 82,
046106. (doi:10.1103/PhysRevE.82.046106)
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