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The in-plane behaviour of tetrachiral lattices should be
characterized by bi-dimensional orthotropic material
owing to the existence of two orthogonal axes of
rotational symmetry. Moreover, the constitutive
model must also represent the chirality inherent
in the lattices. To this end, a bi-dimensional
orthotropic chiral micropolar model is developed
based on the theory of irreducible orthogonal tensor
decomposition. The obtained constitutive tensors
display a hierarchy structure depending on the
symmetry of the underlying microstructure. Eight
additional material constants, in addition to five for
the hemitropic case, are introduced to characterize
the anisotropy under Z2 invariance. The developed
continuum model is then applied to a tetrachiral
lattice, and the material constants of the continuum
model are analytically derived by a homogenization
process. By comparing with numerical simulations
for the discrete lattice, it is found that the proposed
continuum model can correctly characterize the static
and wave properties of the tetrachiral lattice.

1. Introduction
Lightweight lattices are usually homogenized as a
micropolar medium either to explain the physical
foundation of micropolar continuum [1] or to reduce the
computational cost of lattice structures [2]. More recently,

2014 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2013.0734&domain=pdf&date_stamp=2014-03-12
mailto:liuxn@bit.edu.cn
mailto:hugeng@bit.edu.cn


2

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130734

...................................................

representations of lattices with various topologies as micropolar media [3–8] or couple-stress
media [9,10] are investigated to characterize size effects or non-local behaviours owing to the
discrete microstructure. The presence of chirality in lattice structures, as first proposed by Prall &
Lakes [11] for a trichiral lattice, couples internal rotation and tension in the materials and leads to
many interesting in-plane properties, such as the negative Poisson’s ratio [11], negative dynamic
bulk modulus [12], etc. The static and dynamic properties of trichiral, hexachiral and tetrachiral
lattices are analysed by many authors with targeted applications [13–16]. However, in these
studies the lattices are modelled with classical Cauchy material or achiral micropolar material,
hence the chiral nature of the lattice cannot be taken into account [17]. This is probably owing
to the fact that no explicit bi-dimensional chiral micropolar constitutive model is available,
although the necessary rationale already exists implicitly in theories of group representation
of tensors. Recently, Liu et al. [18] proposed a micropolar model for bi-dimensional isotropic
chiral (bi-dimensional hemitropic) solids, which can be applied to trichiral or hexachiral lattices
possessing Z3 and Z6 invariance. For a tetrachiral lattice with Z2 (or Z4 if properties along
the two symmetrical axes are the same) invariance, the continuum model for its in-plane
behaviour should be bi-dimensional orthotropic. To characterize such lattices, the corresponding
bi-dimensional orthotropic chiral micropolar model is necessary.

To include chiral effects, generalized continuum models are usually used, as the classical
Cauchy theory cannot admit chirality [17]. In general, there are two types of generalized theories,
namely the high-order theory and the high-gradient theory, can admit chirality. The high-
order theory [19] endows extra degrees of freedom (DOFs) to material particles and can be
classified as micropolar, microstretch and micromorphic theories with regard to the complexity
of micro-DOFs introduced. To describe the chirality, the micropolar theory [20] is mostly used
owing to its simplicity. Compared to the achiral micropolar theory, three additional material
constants are introduced for a tri-dimensional isotropic chiral material, and these constants
alternate their signs according to the handedness of the microstructure [17]. The developed
theory provides an efficient tool for modelling chiral effects presented in materials and structures,
e.g. nanotubes and chiral rods [21,22], wave propagation in chiral solids [23,24], etc. However, a
straightforward reasoning [16] shows that, for bi-dimensional hemitropic solids, the constitutive
relation cannot be directly obtained from the reduction in the tri-dimensional counterpart. From
the viewpoint of symmetry group of tensors, the reason is that a bi-dimensional hemitropic tensor
is SO(2) invariant, whereas a tensor of tri-dimensional hemitropic material is SO(3) invariant
[25]. Therefore, a bi-dimensional hemitropic micropolar model should be reduced from the
corresponding tri-dimensional version with SO(2) invariance, i.e. transverse hemitropic model,
which, however, is not readily found in the literature. High-gradient elasticity [26] can also
describe chirality. Papanicolopulos [27] investigated the chiral effect by a tri-dimensional isotropic
strain gradient theory. Auffray et al. [28,29] examined the elastic tensors of strain gradient
theory in bi- and tri-dimensional context for all material symmetry groups, including chiral
ones. However, as in the following, the most pronounced feature of bi-dimensional chiral lattices
investigated in this paper is the coupling between the bulk deformation and independent rotation
of material particles, which is actually the reason for many unusual behaviours, such as auxetics,
high compressibility, etc. To this end, the micropolar theory can provide a simpler and clear
physical picture of such media, therefore it is adopted in our following analysis.

In this work, we will develop a bi-dimensional orthotropic chiral micropolar constitutive
model, and will apply it to a tetrachiral lattice to derive material constants from its microstructure.
The study on general forms of elastic tensor under all possible symmetry groups has a long
history and attracts interest of many researchers from mechanics, material science, physics
and mathematics communities [30–33]. The technique of irreducible decomposition [25,34,35]
separates a tensor into isotropic and various anisotropic parts and determines the rotationally
invariant quantities individually according to different symmetry groups, thus it provides more
intuitive understanding of the considered tensor. Although most of the studies focus on the
traditional elasticity, the mathematical rationale in the group representation and irreducible
decomposition can also offer an efficient tool for the analysis of elastic tensors of micropolar
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media. Here in this paper, the form of decomposition for a general bi-dimensional tensor given
by Zou et al. [35] will be employed as a basis for our derivation.

This paper is organized as follows. In §2, a general constitutive relation for a bi-dimensional
orthotropic chiral micropolar solid is presented. In §3, a tetrachiral lattice is homogenized in
context of the proposed theory and the effective material constants are derived. In §4, the theory
is illustrated by examining the dependence of the effective material constants and plane wave
propagation on the lattice microstructure. The main result of this work is concluded in §5.

2. Bi-dimensional orthotropic chiral micropolar elasticity
Micropolar theory endows every material point three rotational DOFs φi in addition to
displacements ui. As a consequence, higher order strain and stress measures, say the
curvature kji = φi,j and the couple stress mji, are introduced in addition to the ordinary strain
εkl = ul,k + elkmφm and stress σkl, and all of them are asymmetric. In our following analysis, body
forces and body couples are neglected, and the momentum conservations are given by

σji,j = ρ∂2ui

∂t2 (2.1a)

and

mji,j + eiklσkl = J∂2φi

∂t2 , (2.1b)

where eikl is the Levi-Civita tensor, ρ and J are the density and micro-inertia, respectively. Here and
henceforth, the Einstein’s summation convention and the comma in subscript denoting partial
differentiation with respect to spatial coordinates are understood. Moreover, subscripts of Latin
letters range over 1–3, and subscripts of Greek letters range over 1–2. A micropolar elastic medium
is characterized by the following constitutive equations:

σij = Cijklεkl + Hijklφl,k (2.2a)

and
mij = Hkljiεkl + Dijklφl,k, (2.2b)

where C, D and H are elastic tensors of rank four. Note that a medium is called non-
centrosymmetric when H �= 0, and for a tri-dimensional hemitropic material the H tensor contains
the information of chirality.

As we are interested in characterizing the in-plane anisotropy of tetrachiral lattices, a planar
micropolar problem in the x1 − x2 plane defined by u3 = φ1 = φ2 = ∂/∂x3 = 0 will be considered,
and the non-zero in-plane quantities are uα , φ3, φ3,α , εαβ , σαβ and mα3, respectively. The geometric,
momentum balance and constitutive equations are therefore reduced to

εαβ = uβ,α + eβαφ, kα = φ,α , (2.3a)

σβα,β = ρ∂2uα

∂t2 , mα,α + eαβσαβ = J∂2φ

∂t2 (2.3b)

and σαβ = Cαβγρεγρ + Hαβρκρ , mρ = Hαβρεαβ + Dργ κγ , (2.3c)

where φ3 ≡ φ, κα3 ≡ κα , mα3 ≡ mα are used for brevity, and eαβ ≡ e3αβ can be considered as
a bi-dimensional Levi-Civita tensor. Note that the elastic tensors H and D are reduced to the third
and second order, respectively, in the considered planar micropolar elasticity. For the tensors C
and D, the major symmetry requires that

Cαβγρ = Cγραβ and Dαβ = Dβα . (2.4)

The strain energy reads

W = 1
2 Cαβγρεαβεγρ + 1

2 Dαβκακβ + εαβHαβγ κγ . (2.5)
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Now we will determine the form of elastic tensors corresponding to the Z2 or Z4 invariance for a
tetrachiral lattice by employing the irreducible orthogonal decomposition [35] of bi-dimensional
general micropolar tensors. The main ingredients of the decomposition necessary to understand
the derivation are summarized in appendix A. In general, starting from equation (A 2), and
applying the major symmetry requirement equation (2.4), the bi-dimensional micropolar elastic
tensors in equation (2.3c) can be decomposed as

Cαβγρ = [a1δαβδγρ + a2(eαβδγρ + eγρδαβ ) + a3eαβeγρ + a4Lβγρα]

+ [(δαβD1
γρ + δγρD1

αβ ) + (eαβD2
γρ + eγρD2

αβ )] + Dαβγρ , (2.6a)

Hαβγ = (δβγ v1
α + eβγ v2

α + Lαβγρv3
ρ ) + Dαβγ (2.6b)

and Dαβ = a5δαβ + D3
αβ , (2.6c)

where ai, vi
α , Di

αβ , Dαβγ and Dαβγρ are the zeroth-, first-, second-, third- and fourth-order
independent deviatoric tensors, respectively, and Lαβγρ = δαβδγρ + εαβεγρ . Note that for the
tensors of even order (Cαβγρ and Dαβ ) the entries containing scalar variables constitute the
in-plane hemitropic parts possessing the SO(2) invariance, while the anisotropy is represented
by the parts with deviatoric tensors of orders greater than zero. For the tensors of odd order,
e.g. Hαβγ , there is no hemitropic part, hence they have to vanish for a bi-dimensional hemitropic
micropolar material. Note that this is only true for bi-dimensional tensors because the chiral-
sensitive Levi-Civita tensor eαβ is of rank two, and no longer correct for tri-dimensional tensors.
As a consequence, the elastic tensors for a bi-dimensional hemitropic micropolar medium
simply read

Chemi
αβγρ =λδαβδγρ + A(eαβδγρ + eγρδαβ ) + (μ + κ)δαγ δβρ + (μ − κ)δαρδβγ

and Dhemi
αβ =γ δαβ ,

⎫⎬
⎭ (2.7)

where the material constants λ, μ and κ (a1 = λ + μ, a4 = μ, a3 = κ) are used in line with the
traditional micropolar theory, and a2 = A is a chiral parameter reversing its sign according to the
handedness of material. Equation (2.7) is exactly the same as that in Ref. [18] derived by a different
method. For clarity, the hemitropic parts of the constitutive equation given by equation (2.7) are
written in a matrix form as⎛

⎜⎜⎜⎝
σ11
σ22
σ12
σ21

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

λ + 2μ λ A −A
λ λ + 2μ A −A
A A μ + κ μ − κ

−A −A μ − κ μ + κ

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

ε11
ε22
ε12
ε21

⎞
⎟⎟⎟⎠ or σ = Chemiε (2.8a)

and (
m1
m2

)
=
(

γ 0
0 γ

)(
φ,1
φ,2

)
or m = Chemiκ . (2.8b)

Now consider a medium with Z4 invariance, i.e. the elastic tensors are invariant under nπ/2
rotation of coordinate. An example of such material is a square tetrachiral lattice. By examining
the general expression in equations (2.6) and (A 3)–(A 6), it is easy to verify that the item

CZ4
αβγρ =Dαβγρ (2.9)

should be considered in addition to Chemi
αβγρ , while Hαβγ = 0 still holds and no extra item

will be applied to Dhemi
αβ . With the help of equation (A 3), a fourth-order deviatoric tensor is

constructed through

Dαβγρ = αPαβγρ + BQαβγρ , (2.10)

where two independent material constants α and B are introduced additionally owing to the
anisotropy of Z4 invariance, and the fourth-order bi-dimensional deviatoric tensor basis Pαβγρ



5

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130734

...................................................

and Qαβγρ are calculated from equation (A 4). Both α and B depend on the considered direction
and vary with the coordinate rotation of θ by(

α′
B′

)
=
(

cos 4θ sin 4θ

− sin 4θ cos 4θ

)(
α

B

)
. (2.11)

Although B alternates sign under mirror reflection, it is relevant to the anisotropy but not chirality,
since from equation (2.11), we can always find a direction angle θ = arctan(B/α)/4 making B′ = 0.
Note that even B can be zero at some special directions for materials with Z4 invariance, the
number of independent parameters is two, because this special direction is not known a priori.
If the chirality vanishes, i.e. the material possesses D4 invariance, the privileged axes of mirror
symmetry can be found, which, according to equation (A 7), leads to zero value of the parameter B
in a reference frame aligned with the symmetric axes, thus the number of independent parameters
can be reduced to one. In short, unlike the chiral parameter A, the parameters α and B characterize
the anisotropy of the deviatoric part of a fourth-order bi-dimensional tensor whether they are zero
or not is not able to indicate the chirality in a material. However, the relationship between these
two parameters is indeed related to the chirality. In a matrix form, equation (2.10) can be written as

CZ4 =

⎛
⎜⎜⎜⎝

α −α B B
−α α −B −B
B −B −α −α

B −B −α −α

⎞
⎟⎟⎟⎠. (2.12)

If a material possesses Z2 invariance, i.e. the elastic tensors are invariant under nπ rotation of
coordinate (taking a rectangular tetrachiral lattice as an example), the terms including the second-
order deviatoric tensors in equation (2.6),

CZ2
αβγρ = (δαβD1

γρ + δγρD1
αβ ) + (eαβD2

γρ + eγρD2
αβ ) (2.13)

and

DZ2
αβ =D3

αβ , (2.14)

should be taken into account in addition to the hemitropic and Z4 invariant parts. With the help
of equation (A 3), the three second-order deviatoric tensors can be constructed by

D1
αβ =β1 + β2

2
Pαβ + C1 + C2

2
Qαβ ,

D2
αβ =C1 − C2

2
Pαβ + β1 − β2

2
Qαβ

and D3
αβ =γ1Pαβ + γ2Qαβ ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.15)

where six independent material constants β1, β2, C1, C2, γ1 and γ2 characterizing the anisotropy
are additionally introduced owing to the presence of Z2 invariance. If the chirality is not present
and the material possesses D2 invariance, C1, C2 and γ2 will be zero under the reference frame of
the mirror symmetry, thus the number of independent constants reduces to three. These material
constants of Z2 invariance vary under the coordinate rotation as(

β ′
2

C′
1

)
=
(

cos 2θ sin 2θ

− sin 2θ cos 2θ

)(
β2
C1

)
,

(
β ′

1
C′

2

)
=
(

cos 2θ sin 2θ

− sin 2θ cos 2θ

)(
β1
C2

)

and

(
γ ′

1
γ ′

2

)
=
(

cos 2θ sin 2θ

− sin 2θ cos 2θ

)(
γ1
γ2

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.16)
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Table 1. Summary of material constants for bi-dimensional orthotropic chiral micropolar materials.

ordinary higher order
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hemitropic λ,μ, κ , A γ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z4 α, B
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z2 β1,β2, C1, C2 γ1, γ2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In a matrix form, equations (2.13) and (2.14) can be written as

CZ2 =

⎛
⎜⎜⎜⎝

β1 + β2 0 C1 C2
0 −(β1 + β2) C2 C1

C1 C2 β1 − β2 0
C2 C1 0 −(β1 − β2)

⎞
⎟⎟⎟⎠ and DZ2 =

(
γ1 γ2
γ2 −γ1

)
. (2.17)

In summary, for a general bi-dimensional orthotropic chiral micropolar medium, the elastic
tensors have the following form

C = Chemi + CZ4 + CZ2 ,

H = 0

and D = Dhemi + DZ2 .

⎫⎪⎪⎬
⎪⎪⎭ (2.18)

where totally 13 independent material constants are introduced and listed in table 1. Note that if
the chirality is absent we have A = B = C1 = C2 = γ2 = 0 in the principal axes, then bi-dimensional
achiral orthotropic micropolar elastic tensors are recovered and the number of constants reduces
to eight. For simplicity, the elastodynamic equations for material of Z4 invariance are listed below
by using equations (2.3), (2.8) and (2.12)

ρ
∂2u
∂t2 =(λ + 2μ + α)u,xx + 2(−A + B)u,xy + (μ + κ − α)u,yy + (A + B)v,xx

+ (λ + μ − κ − 2α)v,xy − (A + B)v,yy − 2Aφ,x + 2κφ,y,

ρ
∂2v

∂t2 =(λ + 2μ + α)v,yy + 2(A − B)v,xy + (μ + κ − α)v,xx + (A + B)u,xx

+ (λ + μ − κ − 2α)u,xy − (A + B)u,yy − 2Aφ,y − 2κφ,x

and J
∂2φ

∂t2 =γ (φ,xx + φ,yy) − 4κφ − 2κ(v,x − u,y) + 2A(u,x + v,y).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.19)

To gain some physical insights on the new material constants owing to anisotropy, it is helpful to
decompose the second-order asymmetric strain tensor based on equation (A 2a)

εαβ = ε̄δαβ + ε̂eαβ + ε′Pαβ + ε′′Qαβ , (2.20)

or more clearly in a matrix form

(
ε11 ε12
ε21 ε22

)
= ε̄

(
1 0
0 1

)
+ ε̂

(
0 1

−1 0

)
+ ε′

(
1 0
0 −1

)
+ ε′′

(
0 1
1 0

)
, (2.21)

where ε̄ = (ε11 + ε22)/2 is the in-plane hydrostatic strain, and ε̂ = (ε12 − ε21)/2 = φ − eαβuβ,α

represents a pure rotation of a material particle, ε′ = (ε11 − ε22)/2 and ε′′ = (ε12 + ε21)/2 are the
symmetric part of the strain. Applying equations (2.20) and (2.18) to equation (2.5), the density of
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e1

e2

r

ta

tb

a/2
L/2

p+1, q

p, q + 1 p+1, q+1

[u,v,f]
p, q

(a)  (b) –bb  

Figure 1. Geometry of a tetrachiral lattice, shown with (a)β > 0 and (b) its reversionβ < 0. (Online version in colour.)

strain energy can be expressed as

W = 2(λ + μ)ε̄2 + 4Aε̄ε̂ + 2κε̂2 + 2(μ + α)ε′2 + 2(μ − α)ε′′2 + 4Bε′ε′′ + γφ,kφ,k

2
. (2.22)

It is seen from equation (2.22) that the chiral parameter A is responsible for the coupling between
bulk strain and pure rotation, while the parameter B is responsible for the coupling between the
two orthogonal parts of deviatoric strains (Pαβ and Qαβ ), respectively. It is also straightforward
from equation (2.22) to give the thermodynamic constraint on the effective material constants

μ2 − α2 − B2 ≥ 0, (2.23)

while the other conditions are consistent with those given in Ref. [18]. For a material with Z2
invariance, a similar procedure can also be employed but the relations are more lengthy and not
presented here.

3. Application to tetrachiral lattices
In this section, we will apply the proposed model to a tetrachiral lattice and derive analytically
the new material constants proposed in §2 by a homogenization method.

(a) Geometry of a tetrachiral lattice
The geometry of a tetrachiral lattice is shown in figure 1. It consists of circles of radius r linked by
straight ligaments of equal length L, and the ligaments are required to be tangential to the circles.
The circles are arranged into a square lattice with a lattice constant a, a unit cell with the area
Acell = a2 is highlighted by the dashed lines in figure 1. The angle between the line connecting
the circle centres and the ligament is defined as β. The geometry parameters are connected by the
following relations:

cos β = L
a

and sin β = 2r
a

. (3.1)

The topology parameter β ∈ [−π/2, π/2] plays an important role on the layout and the mechanical
behaviour of the lattice [11,16]. When β → 0, the circles shrink to dots and a traditional square
lattice can be obtained. When β → ±π/2, the ligaments vanish and a lattice of packed circles will
be recovered. It should be noted that chirality disappears in these two extreme cases. As shown in
figure 1, we adopt a sign convention of β according to relative orientation between the ligament
and the link of circle centres. When β reverses its sign, the handedness of the lattice is reversed.

To make the lattice as a general bi-dimensional orthotropic material and at the same time to
keep the formulation as simple as possible, the thicknesses of the ligaments along the horizontal
and vertical directions, say ta and tb, respectively, are assumed to be different instead of using
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ui

uj

ũj

ũi

Qi

Qj

ex

ey

es

en

b

q

Figure 2. Geometry and symbol definitions for the analysis of a single ligament.

a more general rectangular lattice. Young’s modulus of the ligament material is denoted in the
following by Es.

(b) Determination of effective material constants
To formulate the problem in an analytical manner, the circles are assumed to be rigid with
mass and rotational inertia being m and J̄, respectively. Furthermore, the ligament is assumed
to be massless.

Let vector ui = {ui vi φi}T denote the displacement and rotation DOFs at the centre of the
rigid circle i. Motion of the rigid circle is constrained by the ends of deformable ligaments on
its circumference ũi = {ũi ṽi φ̃i}T, which is related to ui by ũi = T(Θi)ui. The transformation
matrix is defined by

T(Θi) =

⎛
⎜⎝1 0 −r sin Θi

0 1 r cos Θi
0 0 1

⎞
⎟⎠, (3.2)

where Θi is the azimuthal angle of the beam end on the circle i (figure 2). Giving the topological
parameter β and the direction angle θ of the circles i and j linked by the beam, the relations
Θi = π/2 + θ − β and Θj = 3π/2 + θ − β are implied. DOFs of the beam ends ũ′ in the local system
(es − en in figure 2) are then linked to that u = {ui uj}T at the circle centres as

ũ′ = R(θ )T(Θi, Θj)u, (3.3)

where

T(Θi, Θj) =
(

T(Θi) 0
0 T(Θj)

)
, (3.4)

R(θ ) =
(

R3×3(θ ) 0
0 R3×3(θ )

)
(3.5)

and R3×3(θ ) =

⎛
⎜⎝ cos(θ − β) sin(θ − β) 0

− sin(θ − β) cos(θ − β) 0
0 0 1

⎞
⎟⎠. (3.6)
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With the help of Euler–Bernoulli beam theory, the stiffness of the ligament in its local system is
expressed as

K′ = Est
6L

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0
6t2/L2 3t2/L 0 −6t2/L2 3t2/L

2t2 0 −3t2/L t2

1 0 0
sym 6t2/L2 −3t2/L

2t2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.7)

where t = ta or tb. In the global system (ex − ey in figure 2), the stiffness matrix relating the general
displacement and force vectors to the centres of the circles can be obtained as

K = TT(Θi, Θj) RT(θ ) K′ R(θ ) T(Θi, Θj). (3.8)

Referring to figure 1a, the strain energies of the two ligaments in a unit cell are written as

W1 = 1
2

{
up,q up+1,q

}T
K|θ=0, t=ta

{
up,q up+1,q

}
(3.9a)

and W2 = 1
2

{
up,q up,q+1

}T
K|θ=π/2, t=tb

{
up,q up,q+1

}
, (3.9b)

respectively, and therefore the density of deformation energy of the lattice reads

w = W1 + W2

Acell
. (3.10)

In order to express the energy density in terms of the macroscopic strain and curvature, the
following expansions are made based on Taylor’s expansion

up+1,q = up,q + ε11�x, up,q+1 = up,q + (ε21 − φ)�y,

vp+1,q = vp,q + (ε12 + φ)�x, vp,q+1 = vp,q + ε22�y

and φp+1,q = φp,q + k1�x, φp,q+1 = φp,q + k2�y,

⎫⎪⎪⎬
⎪⎪⎭ (3.11)

where �x = �y = a, and the terms of the order O(�x2, �y2) are neglected. The micropolar elastic
tensors are then obtained by

Cαβγρ = ∂2w
∂εαβ∂εγρ

and Dαβ = ∂2w
∂kα∂kβ

. (3.12)

Finally, the homogenized material constants of the tetrachiral lattice, corresponding to different
parts of symmetry groups in equation (2.18), are obtained in the principal direction as

Hemitropic :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ = Es

16
(η1 + η2)[1 − 2(η2

1 − η1η2 + η2
2) + cos 2β] cos 2β sec3 β,

μ = Es

16
(η1 + η2)[1 + 2(η2

1 − η1η2 + η2
2) + cos 2β] sec3 β,

κ = Es

8
(η1 + η2)[1 + 2(η2

1 − η1η2 + η2
2) − cos 2β] sec β,

A = −Es

8
(η1 + η2)[1 − 2(η2

1 − η1η2 + η2
2) + cos 2β] sec β tan β,

γ = Esa2

48
(η1 + η2)[3 + 8(η2

1 − η1η2 + η2
2) − 3 cos 2β].

(3.13a)
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Z4 :

{
α = λ,

B = A,
(3.13b)

Z2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = Es

8
(η1 − η2)η[1 + 2(η2

1 + η1η2 + η2
2) + cos 2β] sec3 β,

β2 = Es

8
(η1 − η2)η[1 − 2(η2

1 + η1η2 + η2
2) + cos 2β] cos 2β sec3 β,

C1 = Es

4
(η2 − η1)η[1 − 2(η2

1 + η1η2 + η2
2) + cos 2β] sec β tan β,

C2 = 0,

γ1 = Esa2

48
(η1 − η2)[3 + 8(η2

1 + η1η2 + η2
2) − 3 cos 2β],

γ2 = 0.

(3.13c)

where two dimensionless parameters

η1 = ta

a
and η2 = tb

a
(3.14)

are defined. It can be verified that the chiral parameter A as well as the non-zero anisotropic
parameters B and C1 are odd functions of β, which implies the fact that, in the principal
coordinates, reverse of the handedness directly leads to the mirror reflection of the material with
respect to a certain axis, as illustrated in figure 1. However, in the non-principal coordinates, the
hemitropic parameters are fixed while the Z4 and Z2 ones transform according to equations (2.11)
and (2.16), thus the mirror reflection cannot be achieved by changing the sign of β. This will be
clarified in §4. In the case of η1 = η2, all the constants of the Z2 invariance vanish accordingly and
the results of a square tetrachiral lattice will be recovered. Finally, when β = 0, the lattice reduces
to an achiral rectangular lattice with the same results found in the literature [3,7].

4. Numerical examples and discussions
Numerical examples are provided in this section to examine the properties of the tetrachiral lattice
with the proposed model. Only the case of Z4 invariance (η1 = η2 = η) is considered here.

(a) Properties of effective micropolar constants
From equation (3.13), it is found that although more material constants are introduced owing to
the anisotropy, the dependence of the effective constants on the microstructure in the principal
system as well as corresponding discussions are similar to those of the trichiral lattice [18]. In
figure 3, the hemitropic and Z4 invariant elastic constants, i.e. λ = α, A = B, μ and κ normalized
by Es, are plotted versus β, where two ligament slenderness ratios η = 1/20 and η = 1/50 are used
for comparison. It is seen that A and B are odd functions of β and increase with the increase in |β|
in the region of roughly |β| < 75◦. Lattice with thicker ligaments is observed to give greater A, B,
μ and κ , while for λ this dependence is not monotonic.

Note that in a coordinate system other than the principal one, equation (2.11) should be applied
to equation (3.13a) to evaluate α’ and B′ in the new coordinate system. However, as B alternates
its sign according to β while α does not, α’ and B′ have no longer a simple sign dependence
on the topological parameter β. This seems contrary to the conclusion in §2, stating that if the
material is mirror reflected with respect to the coordinate axis, B′ should reverse its sign while α’
remains unchanged, no matter which coordinate system is used. This issue is clarified in figure 4.
In a coordinate system different from the principal one by a rotation θ , consider that the material
pattern is mirror reflected with respect to y′−axis. However, as shown in figure 4a, the sign change
of β would not induce the mirror image of the material in this case. The correct operation to
circumvent this problem is illustrated in figure 4b, a compensatory negative θ should by applied
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Figure 4. Schematic of the transformation of material constants under inversion of non-principal coordinate system: (a) sign
reversion ofβ and (b) sign reversion ofβ plus a compensatory rotation.

before the sign change of β, that is(
α′′
B′′

)
=
(

cos 4θ − sin 4θ

sin 4θ cos 4θ

)(
α(−β)
B(−β)

)
,

which, together with equations (2.11) and (3.13), maintains the correct sign rule under inversion
of an arbitrary coordinate system.

An interesting property of a bi-dimensional chiral lattice is the negative Poisson’s ratio.
Young’s modulus and Poisson’s ratio should be redefined in the framework of the new
constitutive equations and they are for a material with Z4 invariance

E = 4(B2 + α2 − μ2)(−A2 + κ(λ + μ))
A2(−α + μ) + κ(B2 + (α − μ)(α + λ + 2μ))

(4.1a)
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and

ν = − κ(B2 + (α − λ)(α − μ)) + A2(α − μ)
A2(−α + μ) + κ(B2 + (α − μ)(α + λ + 2μ))

. (4.1b)

Substituting equation (3.13) into equation (4.1) yields E = (Esη
3 sec3 β)/(sin2 β + η2) and ν = 0 in

the principal direction. Note that Poisson’s ratio in the principal direction vanishes independent
of β and this is different from that of trichiral lattices which gives ν = −1 in any direction. Actually,
E and ν vary in accordance with equation (2.11) in other directions. The variations of E and ν as
the function of the direction angle θ ∈ [−45◦, 45◦] are illustrated in figure 5a, b, respectively, where
η1 = η2 = 1/20 and two topological parameters β = 15◦ and β = 30◦ are examined. It is found that
there are extreme values for both E and ν at the directions of θ = 7.5◦ for β = 15◦ and θ = 15◦
for β = 30◦, respectively. In fact, this special direction of θ = β/2 can be strictly anticipated from
equations (4.1), (3.13) and (2.11). Along this direction, Young’s modulus of the lattice is much
larger than that in other directions, and Poisson’s ratio approaches −1. Larger β induces a weaker
peak of Young’s modulus but a wider range of negative Poisson’s ratio. However, in contrast with
a trichiral lattice, Poisson’s ratio of a tetrachiral lattice is positive along most directions.

(b) Plane wave propagation
Consider an infinite planar orthotropic chiral micropolar medium under a plane wave in the
principal (+x) direction, the displacement and micro-rotation are assumed to be of the following
form:

(u, v, φ) = (û, v̂, φ̂) exp(iqx − iωt), (4.2)

where q and ω denote the wavenumber and circular frequency, respectively, (û, v̂, φ̂) are the
(complex) amplitudes and i = √−1. Substituting equation (4.2) into equation (2.9) yields the
secular equation⎛

⎜⎝(λ + 2μ + α)q2 − ρω2 (A + B)q2 2iAq
(A + B)q2 (μ + κ − α)q2 − ρω2 2iκq

−2iAq −2iκq γ q2 + 4κ − Jω2

⎞
⎟⎠
⎛
⎜⎝û

v̂

φ̂

⎞
⎟⎠= 0, (4.3)

where the effective density ρ = m/Acell and the micro-rotational inertia J = J̄/Acell is assumed.
With the help of equation (2.11), the wave propagation along a predefined direction different
from the principal one by an angle θ (see the inset in figure 6a) can be readily obtained by
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replacing α and B with α′ and B′. In the following, equation (4.3) is numerically solved to obtain
the dispersion relation and wave mode information. Tetrachiral lattices of the parameters a = 1,
η1 = η2 = 1/20, m = J̄ = 1 with various values of β are examined in numerical examples. The exact
solutions using the corresponding discrete lattice model are also calculated for comparison.

Figure 6a shows the dispersion curves of the first two branches (in black and red, respectively)
of the lattice with the topological parameter β = 30◦, whose wave modes are displacement
dominated. The third-rotation-dominated branch is not shown here, as it is similar to that of a
traditional micropolar medium. The wave propagating along the θ = 0◦ (principal), θ = −15◦ and
θ = 30◦ directions are calculated and shown in the figure with different line types, respectively.
The wave frequency is normalized by Ω = 2

√
(Est3)/(ma3). The results obtained from the

homogenized model agree well with those of the discrete lattice model (shown by dots) in the
long wave approximation. Similar to the case of trichiral lattices, all branches are coupled together
and dispersive, and there are in general no longer pure longitudinal (P) and transverse (S) waves.
However, there is a large difference between the wave speeds of the first two branches. This
is different from that of trichiral lattices, where dispersion curves of the first two branches are
almost superposed at the long wave limit.

As the wave is always linearly polarized, a polarization angle Λ measured with respect to the
wave propagating direction, tan Λ = |v̂/û|, is defined to characterize the wave mode shape. In
figure 6b, the polarization angles corresponding to each dispersive branch in figure 6a are plotted
as functions of the wavenumber, where the same line types are used for a one-to-one matching.
It is seen that the polarization angle depends on the wavenumber (as well as the frequency and
wave speed). When the wave propagates in the principal direction, S-dominated (Λ ∼ 60◦) and
P-dominated (Λ ∼ 30◦) waves are observed for the first and second branches, respectively. In the
direction of θ = −15◦, almost pure S- and P-waves exist, while in the direction of θ = 30◦, the two
branches are exchanged, i.e. the wave with a lower phase speed is P-dominated and the wave with
a higher phase speed is S-dominated. This feature is not found in a traditional achiral medium.

To give a full view of wave directionality, we plot in figure 7 the polarization angle of the
first branch as the function of the wave propagation direction θ , where a certain wavenumber
q = 0.1 is fixed. In the figure, three lattice topologies (β = 0, β = 5◦ and β = 30◦) are compared.
For the achiral case (β = 0), the polarization also deviates from a pure S-wave owing to the
anisotropy, however, there is no P–S exchange when the propagation direction varies. Note that
a pure S-wave is recovered along θ = ±45◦ because the lattice is symmetric in this direction for
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β = 0. If the chirality is present, as shown in the figure, the variation of the polarization angle
covers the full 0◦–90◦ range, implying the existence of P–S-wave exchange. Moreover, it is found
that the variation of the polarization angle with respect to the propagation direction is almost
linear. Again, the results based on the homogenized model agree well with those of the accurate
discrete lattice model. Interestingly, it is also found from the figure that the wave is of pure S-type
just along the direction θ = −β/2, and of pure P-type along the direction θ = −β/2 + 45◦. Further
numerical examinations show that this relation holds for all β values.

5. Conclusion
We propose a micropolar constitutive model for bi-dimensional orthotropic chiral solids. The
form of micropolar elastic tensor is derived based on the theory of group representation and
irreducible decomposition of tensors. For a general bi-dimensional orthotropic chiral material,
totally 13 independent material constants are necessary to represent the normal and higher order
elastic tensors, which possess a hierarchy structure, i.e. can be grouped into a hemitropic part,
Z4 invariant part and Z2 invariant part, respectively. The developed theory is then assessed by a
homogenization procedure for a tetrachiral lattice material, and the effective material constants
are derived analytically. Compared to trichiral lattices, the auxetic behaviour of square lattices
displays strong directionality, i.e. its Poisson’s ratio approaches to –1 only at a special orientation
of loading. For the plane wave propagation, continuous transition of the P- and S-wave modes for
the first two branches is observed depending on the wave propagating direction. The proposed
theory provides a valuable tool for the modelling and analysis of structures made of such
orthotropic chiral materials.

Funding statement. This work was supported in part by National Natural Science Foundation of China (grant
nos. 11221202, 11290153, 11072031, 11128204 and 11372035) and National Basic Research Program of China
(grant no. 2011CB610302).

Appendix A. Orthogonal irreducible decomposition
Some main ingredients of the orthogonal irreducible decomposition of tensors critical to
understand this paper are summarized here, the details can be found in [35].

In general, a generic tensor of order n can be decomposed into a sum of deviatoric tensors of
orders not higher than n and such a decomposition is irreducible and orthogonal. A tensor Di1i2...in
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is deviatoric if it is completely symmetric and traceless, i.e. if it satisfies

Di1i2i3...in =Di2i1i3...in =Di3i2i1...in = · · · =Dini2i3...i1 , Dkki3...in = 0. (A 1)

By definition, scalars and vectors can be considered as the zeroth- and first-order deviatoric
tensors. In comparison with the generic one, a deviatoric tensor is easier to understand and
use. It is proved that the nth-order deviatoric tensor has always two independent variables in
the bi-dimensional case and 2n + 1 independent variables in the tri-dimensional case. For the
second-, third- and fourth-order bi-dimensional tensors involved in this paper, the corresponding
decompositions are

Tαβ = a1δαβ + a2eαβ + Dαβ , (A 2a)

Tαβγ = (δβγ v1
α + eβγ v2

α + Lαβγρv3
ρ ) + Dαβγ (A 2b)

and Tαβγρ = [a1δαβδγρ + a2εαβδγρ + a3εγρδαβ + a4εαβεγρ + Lβγρζ (a5δζα + a6εζα)]

+ (δγρD1
αβ + εγρD2

αβ + LβγρζD3
ζα + LβγρζD4

ζα) + Dαβγρ , (A 2c)

respectively, where Lαβγρ = δαβδγρ + εαβεγρ , a′ and v′
α are independent scalar and vector

variables, Dαβ , Dαβγ and Dαβγρ are the second-, third- and fourth-order deviatoric tensors,
respectively, which all have two independent variables.

A bi-dimensional generic nth-order deviatoric tensor can be expressed by

D(n) = c1P(n) + c2Q(n), (A 3)

where c1 and c2 are the two independent parameters, and (P(n), Q(n)) are the bases of D(n),
which can be constructed as the following. Denoting (e1, e2) as the orthonormal basis of the
bi-dimensional Euclidean space and defining complex vector ω = e1 + ie2, the two bases of an
nth-order deviatoric tensor can be defined as

P(n) = Re[ω⊗n] and Q(n) = Im[ω⊗n], (A 4)

where
ω⊗n = ωω . . . ω︸ ︷︷ ︸

n

(A 5)

represents tensor multiplication of n times. Now consider a new coordinate frame, which is
rotated by θ , characterized by

e′
1 = cos θe1 + sin θe2

and e′
2 = − sin θe1 + cos θe2.

From equations (A 4) and (A 5), we have

P(n) + iQ(n) = (e1 + ie2)⊗n = einθ (e′
1 + ie′

2)⊗n = einθ (P′(n) + iQ′(n)),

which turns out that
P′(n) = cos nθP(n) + sin nθQ(n)

and Q′(n) = − sin nθP(n) + cos nθQ(n).

⎫⎬
⎭ (A 6)

It is clear that P(n) and Q(n) are invariant under the coordinate rotation of θ = 2π/n, and so
does D(n). It is helpful to check out the appropriate form of material tensor possessing a certain
rotational symmetry. If the coordinate frame is mirror reflected, e.g. (e′

1, e′
2) = (−e1, e2), similarly

we have
P′(n) = (−1)nP(n)

and Q′(n) = (−1)n−1Q(n),

⎫⎬
⎭, (A 7)

which can be used to get rid of some material parameters if there exist axes of mirror symmetry.
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