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Water repellency of hairy surfaces depends on the
geometric arrangement of these hairs and enables
different applications in both nature and engineering.
We investigate the mechanism and optimization of a
hairy surface floating on water to obtain its maximum
load-carrying capacity by the free energy and force
analyses. It is demonstrated that there is an optimum
cylinder spacing, as a result of the compromise
between the vertical capillary force and the gravity,
so that the hairy surface has both high load-carrying
capacity and mechanical stability. Our analysis makes
it clear that the setae on water striders’ legs or some
insects’ wings are in such an optimized geometry.
Moreover, it is shown that surface hydrophobicity can
further increase the capacity of a hairy surface with
thick cylinders, while the influence is negligible when
the cylinders are thin.

1. Introduction
Superior water-repellency of hydrophobic rough/hairy
surfaces can be used for applications of lowering the
adhesive force of water droplets on solid surfaces,
reducing drag for microfluidic devices and marine
vessels and so on [1,2]. Valuable inspirations for
designing such surfaces have been provided by nature
[3–7]. For example, the lotus leaf with two-level
hierarchical pillar structures exhibits ultra-low adhesive
force to water [8]. Water striders can move effortlessly on
water because of the special setae structures on their legs
[9,10]. Hairy layers on the surfaces of the legs and wings
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help some flying insects living in a humid environment to avoid being wetted by rain and other
water surfaces they may encounter [11,12]. Some insects and fish spiders living in marine habitats
are able to stay underwater for a long time with a thin layer of air along their hairy body surface,
which enables their respiration underwater [13–15]. Research interest has been paid to achieve
high load-carrying capacity of porous/hairy surfaces by rendering them superhydrophobic as
inspired by nature. Marmur & Ras [16] pointed out that the load-carrying capacity of porous
rafts can be improved by the micro/nano-scaled inner pores at the raft bottoms. Miniature boats
fabricated from copper meshes rendered superhydrophobic have shown remarkable loading
capacity [17,18]. Hydrophobic powders enable liquid marbles to float on water surfaces [19].
Superhydrophobic carbon fibre fabrics and nanocellulose aerogel membranes have also proved
to be good cargo-carriers on water, even on oil for the latter [20,21].

Water-repellent properties of rough surfaces with pillars or pores have been much
investigated. Special attention is being paid to the water-repellent property of surface structures
made from thin hairs or fibres [22,23]. Schematics of a water strider’s leg and a fly’s wing
covered by setae/hairs are shown in figure 1a,b, respectively. The setae/hairs provide resistance
for the surface to getting wetted by water. Many researchers have tried to understand how
the hairy structures render legs or wings of some insects water repellent from the point of
view of surface physics and chemistry. Gao & Jiang [9] have carried out sessile water-drop
measurements and shown that the water strider’s legs are superhydrophobic (i.e. the wetting
contact angle of water droplet approx. 168◦). Experiments have found that the wings of the
cranefly also exhibit superhydrophobicity [12]. It is pointed out that the superhydrophobicity of
water striders’ legs is due to the conjunction of the nano-grooved oriented setae and the wax on
the leg surface [24]. While theoretical calculations [25,26] have shown that the maximum buoyant
force of a thin rod does not change much with the increase in the surface hydrophobicity, Lee &
Kim [27] and Su et al. [28] have clarified that superhydrophobicity plays more important roles in
lowering the adhesion and energy dissipation during the locomotion of water striders on water.
Moreover, it is argued that the flexibility of the water striders’ legs also contributes to their super
water-repellency [29–31].

In general, the existing studies are mainly focused on the apparent effects of hairy structures on
surface hydrophobicity, floating or adhesion property. In fact, water-repellency of hairy surfaces
depends on the size, spacing and orientation of the hairs [32,33]. When those hairs/setae are
brought into contact with water, a large number of micro-menisci are formed, which render
insects’ legs or wings water repellent for particular functions (e.g. maximum load-carrying
capacity, low adhesion, drag reduction, plastron respiration, etc.). The morphology of the menisci
depends on the interaction between nearby hairs. The supporting force given by these menisci
resists the penetration of water [13–15]. To keep the water-repellency, the spacing between those
hairs should be small so that the liquid–air interfaces can stand the highest impact they may
experience in their living environment, according to the Young–Laplace equation. On the other
hand, densely packed hairs near the surface decrease the area fraction of the air–water interface,
which hinders hairy surfaces in their particular functions. Therefore, a structural optimization of
those hairy surfaces is needed. For example, the higher the supporting force can be provided
by those hairs per unit area, the smaller part of a water striders’ leg or a fly’s wing will be
wetted during a stroke on water or impact by a droplet (figure 1a,b). However, to the best of
authors’ knowledge, till now the mechanism of the hair interaction and the influence on the
water-repellency have hardly been discussed, nor has the optimization design of a hairy surface
to achieve the maximum supporting force per unit area.

In this paper, by adapting a simplified model of a hairy surface made from parallel cylinders
floating on water, we investigate the mechanism and optimization of its water-repellency by
applying both free energy and force analyses, with the aim to achieve the maximum load-carrying
capacity and mechanical stability. This paper is organized as follows. In §2, we describe the
variation of the meniscus shape when quasi-statically changing the vertical position of the hairy
surface. In §3, we calculate the free energy change with respect to a reference state. The applied
force needed to balance the cylinders is derived by differentiating the total free energy change
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Figure 1. Schematics of the cross sections of (a) a water strider’s leg surrounded by uniformly distributed setae and pressed
against water by a load F, and (b) a fly’s wing with hairs impacted by a droplet with a velocity ν . (Online version in colour.)
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Figure 2. Schematic of a hairy surface made of N thin parallel cylinders floating on water under load: (a) current state,
(b) reference state and (c) neutral position. (Online version in colour.)

with respect to the displacement. Respective free energy and force contributions by the inside
and outside cylinders are compared. In §4, for a hairy surface of a given size, we investigate
its optimization design to obtain the maximum load capacity and mechanical stability. In §5,
concluding remarks are given.

2. Meniscus shapes
The buoyant force of an object floating on water is usually estimated by Archimedes’ principle.
When the size of the object is comparable to or much smaller than the capillary length a (=√

γ /ρg,
where γ is surface tension, ρ density and g gravity acceleration), the effect of surface tension
needs to be considered [34]. Although the hairs on water striders’ legs are circularly distributed
(figure 1a), for brevity but without losing the main physical picture, we consider a simple two-
dimensional model in which a hairy surface made from N thin cylinders lying straightly parallel
to each other is pressed against water, as shown in figure 2. Those cylinders are assumed to be
rigid and hydrophobic.

A possible equilibrium state of the hairy surface under load is shown in figure 2a, in which
the menisci formed along the boundary and inside cylinders protrude upward to resist sinking.
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The equilibrium state is available when the load is smaller than the load-carrying capacity of
the hairy surface. The radius, length and spacing of those cylinders are denoted by R, L and 2δ,
respectively. The width of the hairy surface is W (figure 2a). We assume L � R so that a three-
dimensional effect of the menisci is negligible. Here, θY is the Young contact angle, and θ1 and θ2
denote the half sector angles of the wetted outside and inside cylinders, respectively. Here and in
the following, subscripts 1 and 2 refer to the outside and inside menisci/cylinders, respectively.
We use Z to denote the displacement of the cylinders, and hi (i = 1, 2) the position of the menisci
with respect to a reference state, as shown in figure 2b, that is, the stationary state just before the
bottom of the cylinders touches the water surface. We define a neutral position, where the menisci
along the cylinders are horizontal (as shown in figure 2c).

Under the Cartesian coordinate system (o–xz) as shown in figure 2a, the balance between
the Laplace pressure difference and the gravity potential gives the governing equations of the
meniscus [35]:

d
dx

sinψ = −a−2z and
dz
dx

= − tanψ . (2.1)

Here, ψ is introduced as a geometric parameter. To present a general analysis, we introduce non-
dimensional parameters

x̃ = x
a

, z̃ = z
a

, L̃ = L
a

, W̃ = W
a

, δ̃= δ

a
, Z̃ = Z

a
and Bo =

(
R
a

)2
, (2.2)

where Bo is the Bond number [27]. With boundary conditions z̃ = h̃2 = η
√

2
√

c2 + cos(θY + θ2),
x̃ = √

Bo sin θ2 at the contact line, i.e. ψ =ψ2 (where ψi = θi + θY − π , i = 1 and 2) and x̃ = δ̃ at
ψ = 0, we derive the expression for the inside meniscus

z̃(ψ) = η
√

2
√

c2 − cosψ

and x̃(ψ) = η

√
2√

c2 − 1

[
(c2 − 1)EE

(
ψ

2
,

2
1 − c2

)
− c2EF

(
ψ

2
,

2
1 − c2

)]
+ δ̃,

⎫⎪⎪⎬
⎪⎪⎭ (2.3)

where EF(φ, m) = ∫φ
0 (1 − m sin2 θ )−1/2dθ and EE(φ, m) = ∫φ

0 (1 − m sin2 θ )1/2dθ , representing the
incomplete elliptic integrals of the first and the second kinds, respectively. At the neutral position,
we have ψi = 0, i.e. θi = π − θY (i = 1, 2). In equation (2.3), η is equal to 1 or −1. Here, η= 1
represents the state of sinking, that is, the cylinders are pressed against water and the menisci
protrude upward, i.e. ψi > 0. On the other hand, η= −1 represents the state of lifting, that is, the
cylinders are lifted up from water and the menisci sag downward, i.e. ψi < 0 (figure 2c). Note that
h̃2 is related to h̃1 by Z̃, that is,

h̃2 +
√

Bo(1 − cos θ2) = h̃1 +
√

Bo(1 − cos θ1) = Z̃. (2.4)

The parameter c2 is determined by

η

√
2√

c2 − 1

[
(c2 − 1) · EE

(
ψ2

2
,

2
1 − c2

)
− c2 · EF

(
ψ2

2
,

2
1 − c2

)]
+ δ̃=

√
Bo sin θ2. (2.5)

For a given hairy surface, equation (2.4) expresses the dependence of θ2 on Z̃ or θ1. When
combined with equation (2.4), equation (2.5) can be easily solved numerically to get θ2 and c2
for a given displacement Z̃ of the raft. Then, the profile of the inside meniscus can be investigated
based on equation (2.3).

With the assumption of small spacing between cylinders (i.e. δ̃� 1), or small curvature
variation along the meniscus, the expression for the inside meniscus (i.e. equation (2.3)) can be
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reduced and simply given by the Laplace equation that neglects the effects of gravity [13,15,16,36],
that is,

�P = γ

r
, (2.6)

where �P (= ρgh2) is the Laplace pressure difference across the meniscus and r is the constant
curvature radius of the meniscus

r = δ − R sin θ2

sinψ2
. (2.7)

In the case of a small spacing, r and ψ2 determine the shape and position of the inside meniscus
and can be resolved by equations (2.6) and (2.7).

When the spacing between nearby cylinders is much larger than the capillary length, i.e.
δ̃� 1, the interaction between nearby cylinders becomes very weak and the inside and outside
menisci exhibit a similar profile. Thus, the expression for the outside menisci can be obtained by
equation (2.3) with δ̃→ ∞, which leads to

x̃ = ln

(
2 +

√
2 − z̃2

ηz̃

)
−
√

4 − z̃2 + c1, (2.8)

where

c1 =
√

Bo sin θ1 − ln

⎛
⎝2 +

√
2 − h̃2

1

ηh̃1

⎞
⎠+

√
4 − h̃2

1, (2.9)

and h̃1 = η
√

2
√

1 − cosψ1. The analytical solution (2.8) has been obtained by Liu et al. [26]. The
shape of the outside meniscus has been well investigated [26,35]. In the following, we focus on
how the hair interaction influences the profile of the inside meniscus.

For most biological materials covered with smooth wax, θY has a value approximately 105◦ [9].
The Bond number of water striders’ legs is approximately 1 × 10−3 and that of the setae on those
legs is approximately 1 × 10−7 [9,37]. Here, we use an intermediate value of Bo = 1 × 10−4 and
θY = 105◦ to illustrate the variation of the profile of the inside meniscus when the position of
the raft is quasi-statically changed. Plots of θ2 as a function of δ̃ with respect to different θ1
are shown in figure 3. According to equation (2.4), θ1 uniquely represents the position of the
raft: sinking when θ1 > 75◦ and lifting when θ1 < 75◦. For the chosen values of θ1, the variation
of θ2 shows a similar trend with the increase of δ̃: initially slight change around the neutral
position (i.e. θ2 = 75◦) when δ̃ < 0.1 and then dramatic change until approaching a value close
to θ1 when δ̃ > 0.1. A value of θ2 close to θ1 means that the interaction between the nearby
cylinders becomes weak. At δ̃ = 0.1, we plot the profiles of the inside menisci for different
positions during the sinking (e.g. θ1 = 100◦, 130◦ and 160◦) and lifting (e.g. θ1 = 60◦, 30◦ and
0◦) processes in figure 4. When sinking, the inside meniscus protrudes upward to balance the
increased hydrostatic pressure; when lifting, the meniscus sags downward to resist lifting. With
the profiles of the outside and inside menisci known, we will investigate the free energy and
buoyant force of a hairy surface floating on water in §3.

3. Free energy and buoyant force
The method of free energy analysis has been widely used to study the wetting phenomenon of
liquid on solid surfaces [38–41]. For example, Rapacchiettta et al. [38] applied free energy analysis
to study the interaction between a single cylinder and water surface. They compared the energy
method with the force analysis method and demonstrated that the former is more comprehensive
in displaying subtle characteristics of the systems. Lee & Kim [26] proposed a criterion for lifting a
cylinder from water based on free energy analysis. Su et al. [28] calculated the energy dissipation
of a cylinder by integrating the buoyant force with respect to the displacement. In this section,
based on the meniscus profiles calculated in §2, we will calculate the free energy change of the
system when quasi-statically changing the mechanically enforced stationary positions of the hairy
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Figure 3. Plots of θ2 as a function of δ̃ with respect to different θ1 for Bo= 1 × 10−4 and θY = 105◦. Sinking positions: θ1 =
100◦, 130◦ and 160◦ and lifting positions: θ1 = 60◦, 30◦ and 0◦. The black dashed line shows the neutral position (i.e. θ2 =
75◦). (Online version in colour.)
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Figure 4. The profiles of the inside menisci at different positions: sinking (θ1 = 100◦, 130◦ and 160◦) and lifting (θ1 = 60◦,
30◦ and 0◦) for Bo= 1× 10−4, δ̃= 0.1 and θY = 105◦.

surface, with respect to a reference state as shown in figure 2b. The free energy change is the
energy barrier that the load needs to conquer before the surface reaches a certain position, or
the negative work done by the buoyant force. A higher free energy change represents higher
mechanical stability. Therefore, the buoyant force can be derived by differentiating the free energy
change with respect to the displacement.

The total free energy of the system includes two parts: the surface free energy and gravitational
potential energy. The energy E is non-dimensionalized by aLγ , i.e. Ẽ = E/(aLγ ). The surface free
energy associated with the outside menisci is expressed as

ẼS1 = −2
√

Bo(θ1 cos θY + sin θ1) + 4 − 2
√

2
√

1 + cosψ1. (3.1)
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The surface free energy associated with each inside meniscus is expressed as

ẼS2 = −2
√

Boθ2 cos θY − 2δ̃ + η
2
√

2√
c2 − 1

EF
(
ψ2

2
,

2
1 − c2

)
. (3.2)

The changes of the gravitational potential energy per cylinder, and the outside and inside
menisci are denoted by ẼGs, ẼG1 and ẼG2, respectively,

ẼGs = −πBoDeZ̃, (3.3)

ẼG1 = Bo3/2

[
−θ1 cos θ1 − h̃1√

Bo
(−θ1 + sin θ1 cos θ1) + sin θ1 − 1

3
sin3 θ1

]

+ 1
3

(
√

4 − h̃2
1 + 3h̃2

1

√
Bo sin θ1 − 4) (3.4)

and ẼG2 = Bo3/2

[
−θ2 cos θ2 − h̃2√

Bo
(−θ2 + sin θ2 cos θ2) + sin θ2 − 1

3
sin3 θ2

]

+ 2
√

2η
3

√
c2 − 1

[
(c2 + 1) · EF

(
ψ2

2
,

2
1 − c2

)
− c2 · EE

(
ψ2

2
,

2
1 − c2

)]

+ 2
√

2η
3

√
c2 − cosψ2 sinψ2 +

√
Bo sin θ2h̃2

2, (3.5)

where De is the ratio of the cylinder density ρs and the water density ρl. When the Bond number
is small (e.g. Bo< 0.01), the effect of cylinder’s gravity is negligible. We choose De = 1.2, which
corresponds to the density of most biomaterials. Note that all the inside menisci are the same. The
total free energy change of a hairy surface is given by

Ẽ = Ẽ1 + (N − 1)Ẽ2, (3.6)

where Ẽ1 (= ẼS1 + ẼG1 + ẼGs) and Ẽ2 (= ẼS2 + ẼG2 + ẼGs) are the free energies contributed by
each outside and inside cylinders, respectively.

Figure 5 illustrates the diagrams of the free energy changes Ẽ1 and Ẽ2 at different stationary
positions represented by θ1. Similar behaviour is found for both Ẽ1 and Ẽ2. At the neutral position,
the free energy change is the lowest. Both the sinking and lifting of those cylinders increase the
free energy change. The free energy difference with respect to the neutral position denoted by
�Ẽ (= Ẽ − Ẽn.p., where Ẽn.p. is the free energy at the neutral position as shown in figure 2c)
is the energy needed to sink or lift those cylinders to a certain position with respect to the
neutral one. From figure 5, we can see that, as the surface hydrophobicity increases, while the
sinking energy increases slightly, the lifting energy decays more pronouncedly. This means that a
superhydrophonic cylinder can be lifted up from water much easier than a normally hydrophobic
one. Our finding here is consistent with known concepts about the roles of surface hydrophobicity
on the floating of a single cylinder on water [25–28].

For a given hairy surface, the total sinking or lifting energy needed to put it at a certain position
is equal to the negative work done by the buoyant force. With equations (2.4) and (3.6), we have

F̃i = ∂�Ẽi

∂Z̃
= ∂�Ẽi

∂θi

/
∂Z̃
∂θi

. (3.7)

Combination of equations (3.1)–(3.5) and (3.7) yields

F̃i = Bo

[
θi − sin θi cos θi − 2

Bo
sin(θi + θY) + 2

h̃i√
Bo

sin θi − πDe

]
, (3.8)
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outside and inside menisci with respect to the neutral position, respectively. (Online version in colour.)

which is consistent with the results obtained from direct force analysis [16,25,26]. The detailed
procedure to obtain equation (3.8) can be found in appendix A. Then, the total buoyant force is
given by

F̃ = F̃1 + (N − 1)F̃2. (3.9)

It is interesting to see how the inside menisci contribute to the total free energy change
and buoyant force during a sinking or lifting process of a hairy surface. This analysis in the
following will be focused on the sinking process and the analysis of the lifting process can
be obtained by following a similar procedure. During sinking, there is a position where the
buoyant force generated by the outside menisci has a maximum value, i.e. F̃1,max, which can be
obtained by letting ∂F̃1/∂θ1 = 0 according to equation (3.8). This maximum value corresponds
to the load-carrying capacity of the outside menisci. When the outside meniscus reaches the
maximum load-carrying position, the inside meniscus is still quite stable, that is, the pressure
difference across the meniscus is still much smaller than the maximum Laplace pressure that
can be provided (i.e. equation (2.6)). As shown in figure 3, θ2 only approaches θ1 in the case
of δ̃� 1. Thus, it is reasonable to assume that the submersion of the whole hairy surface is
generally induced by the collapse of the outside menisci. Therefore, we refer to the maximum
load-carrying position of the outside cylinders as the maximum load-carrying position of the
whole hairy surface, and the load-carrying capacity F̃cpc is a sum of F̃1,max and corresponding F̃2
at this position, that is,

F̃cpc = F̃1,max + (N − 1)F̃2. (3.10)

For Bo = 1 × 10−4 and θY = 105◦, the maximum value of F̃1 is obtained at θ1 ∼ 165◦. At this
maximum load-carrying position, variations of �Ẽ2 and F̃2 with δ̃ are plotted in figure 6a,b,
respectively. The values of �Ẽ1 and F̃1 are also included for comparison. It is seen that both �Ẽ2
and F̃2 increase with δ̃, and especially that the behaviours of both �Ẽ2 and F̃2 are approximately
linear for small δ̃. When δ̃ is small (e.g. δ̃ < 0.1), �Ẽ1 and F̃1 are one or even two orders of
magnitude higher than �Ẽ2 and F̃2, respectively. When δ̃ is comparable with or even higher
than 1, the interaction between the nearby cylinders becomes very weak and the contributions
from the inside and outside cylinders are comparable. When δ̃ < 0.1, though the free energy and
buoyant force contributions from each inside meniscus is much smaller than that of each outside
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θY = 105◦). The dotted lines show the positions of δ̃= 0.1. (Online version in colour.)

meniscus, it can improve the total contribution of the inside menisci by increasing the cylinder
numbers. For example, at δ̃ = 0.1, the values of �Ẽ2 and F̃2 are 0.20 and 0.28, respectively, and
the values of �Ẽ1 and F̃1 are 1.73 and 2.01, respectively. With the number of the inside cylinder
increased to 10, the contribution of the insider cylinders is already higher than that of the outside
cylinder.

From the above analysis, it is shown that there are two ways to enhance the load-carrying
capacity of a hairy surface: one by increasing the spacing between the cylinders of a constant
number, as seen in figure 6, and the other by increasing the cylinder numbers while the cylinder
spacing is kept constant. The former increases the vertical capillary force given by each inside
meniscus, owing to the enhanced protrusion with a large spacing; the latter increases the total
number of these menisci. However, both ways are limited by the overall size of the hairy surface.
In §4, we will discuss how to obtain an optimum design for a hairy surface floating on water by
adjusting the cylinder spacing.

4. Optimum design of hairy surfaces
As pointed out in §3, the maximum load-carrying position of a hairy surface is determined by
the outside meniscus. Thus, for a given width and Bond number, the buoyant force produced
by the outside menisci is fixed and the optimum design of a hairy surface can be obtained by
adjusting the number and/or spacing of the cylinders. For the legs and wings of some insects
(e.g. water striders, figure 1), it is meaningful to optimize the spacing between their setae so
as to generate the maximum supporting force per unit area. Therefore, a smaller part of the
legs will be wetted during a stroke when a water strider flees away and similarly, the contact
area will also be smaller when the wing surface is impacted by a droplet (figure 1a,b). This
will undoubtedly reduce the adhesion and energy dissipation during the movement of insects
on water or flying in a very humid environment. On the other hand, for the design of a mini-
raft of given width W̃, it is important to optimize the cylinder number for maximizing the
load-carrying capacity of the raft. Note that W̃ = 2δ̃ · (N − 1) (figure 2a). The total maximum load-
carrying capacity given by the raft in equation (3.10) is obtained by an optimum design of the
inside cylinders,

F̃cpc,max = F̃1,max + W̃
2

·
(

F̃2

δ̃

)
max

. (4.1)

From equation (4.1), we can see that the two optima, i.e. the optimum of the force per unit width
and the optimum in the total force are consistent with each other. The optimum of the force
per unit width generally leads to the optimum of the total force over a given width. Therefore,
the study in the following sections is focused on the former optimum, i.e. maximizing F̃2/δ̃. As
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illustrated by equations (2.3) and (3.8), F̃2 depends on the parameters δ̃, Bo and θY. Therefore, the
optimum design of a hairy surface can be obtained by adjusting these parameters, as will now
be discussed.

(a) Influence of hair spacing
We first investigate the dependence of �Ẽ2 and F̃2 per unit spacing (i.e. �Ẽ2/δ̃ and F̃2/δ̃) on δ̃ at
the maximum load-carrying position (e.g. for θY = 105◦, θ1 ∼ 165◦), which is plotted in figure 7
for three chosen Bond numbers (e.g. Bo = 2.5 × 10−7, Bo = 1.0 × 10−4 and Bo = 1.0 × 10−2). As
shown in figure 7a,b, �Ẽ2/δ̃ and F̃2/δ̃ show consistent results with each other: they both increase
dramatically with the decrease of δ̃ when δ̃ is large (e.g. δ̃ > 0.1), reach a maximum and then
decrease slightly with further decrease of δ̃ when δ̃ is very small (e.g. δ̃ < 0.1). It is seen that, for
a large cylinder spacing, the inside meniscus protrudes upward significantly (see the inset 2 in
figure 7a) and generates a vertical supporting force comparable with that of the outside meniscus
(figure 6). For a small spacing, owing to the much smaller pressure difference across the meniscus
than the maximum Laplace pressure that can be provided (see equations (2.6) and (2.7)), the
meniscus is almost planar (see the inset 1 in figure 7a). Thus, the vertical supporting force given
by each inside meniscus is negligible when compared with the outside meniscus (figure 6).

According to the generalized Archimedes’ principle [34], the total buoyant force provided by
the cylinders is proportional to the total volume of the liquid replaced by the cylinders and the
menisci. Estimating F̃2/δ̃ at the maximum load-carrying position from the volume of the replaced
liquid gives

F̃2

δ̃
∝ ZmaxL − Vm

δ
− DeVc

δ
, (4.2)

where Zmax is the displacement at the maximum load-carrying position, Vm and Vc are the
volumes of the protruded meniscus and the cylinder, respectively (see the insets in figure 7a).
Equation (4.2) gives a good approximation to the buoyant force per unit width, especially for the
thin cylinders.

As indicated by the insets in figure 7a and Laplace equation (2.6), the larger the spacing is,
the smaller the Laplace pressure that can be provided, and the higher the inside meniscus that
will protrude upward. Thus, Vm/δ decreases with the spacing δ and approaches zero as δ→ 0. In
fact, for a large spacing, the protruded meniscus between cylinders actually reduces the replaced
liquid volume per unit width and, therefore, reduces F̃2/δ̃, as shown in figure 7b. Note that,
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although the cylinder material is heavier than water (De = 1.2), DeVc is generally much smaller
than the liquid volume replaced by the meniscus. When the spacing is very small, the vertical
capillary force given by the meniscus per unit width tends to be constant and proportional to
ZmaxL (see equation (4.2)). On the other hand, the gravity of the cylinder becomes relatively more
significant, which results in slight decreases of�Ẽ2/δ̃ and F̃2/δ̃. The thicker the cylinder, the more
pronounced the drops of �Ẽ2/δ̃ and F̃2/δ̃, as seen in figure 7a,b, respectively.

If the width of the hairy surface is fixed (e.g. when designing a cylinder raft), then the
spacing between cylinders determines the number of the cylinders that can be used. To see
the optimized design more clearly, we plot the load-carrying capacity and the corresponding
free energy change F̃cpc and �Ẽcpc in figure 8 for a cylinder raft of width W̃ = 10 with three
different Bond numbers (e.g. Bo = 2.5 × 10−7, Bo = 1.0 × 10−4 and Bo = 1.0 × 10−2). As shown
in figure 8, we find consistent results between F̃cpc and �Ẽcpc again. When the cylinder number
is low, they first increase quickly with the cylinder number until a maximum value is reached,
and then decrease slightly with further increase of N. Both figures 7 and 8 prove that there exists
an optimized design for the hairy surface. Note that at the maximum load-carrying position, the
contributions from the outside menisci to the free energy change and force are fixed. The above
two optima (figures 7 and 8) are consistent with each other and they both lead to an optimized
spacing of the cylinders, as shown in equation (4.1).

This optimized spacing between cylinders can be obtained by letting the derivatives of �Ẽ2/δ̃

and F̃2/δ̃ with respect to δ̃ be 0. These maximum values are denoted by (�Ẽ2/δ̃)max and (F̃2/δ̃)max,
respectively.

∂

∂δ̃

(
�Ẽ2

δ̃

)
= −�Ẽ2

δ̃2
+ 1

δ̃

∂�Ẽ2

∂θ2

/
∂δ̃

∂θ2
= 0 (4.3)

and
∂

∂δ̃

(
F̃2

δ̃

)
= − F̃2

δ̃2
+ 1

δ̃

∂F̃2

∂θ2

/
∂δ̃

∂θ2
= 0. (4.4)

Solutions to equations (4.3) and (4.4) give the critical values of δ̃, or δ̃cri, which correspond to
the optimized spacing of the inside cylinders. The detailed procedure to solve equations (4.3)
and (4.4) can be found in appendix B. Then, the maximum values of �Ẽ2/δ̃ and F̃2/δ̃ can be
calculated by substituting δ̃cri into equations (3.6) and (3.8), respectively. Note that the values
of δ̃cri given by equations (4.3) and (4.4) are not necessarily the same but should be close with
each other based the concept that both free energy and force analyses give consistent results. The
range between those two values represents an optimized design by which both maximum load-
carrying capacity and high mechanical stability can be obtained. We plot δ̃cri as a function of the
Bond number for three different Young contact angles θY in figure 9. For all θY, both values of
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δ̃cri obtained by equations (4.3) and (4.4) are plotted. The region between these two lines can be
a guide for designing hairy surfaces with both high load-carrying capacity and floating stability.
It is surprising to find that the optimized spacing δ̃cri follows a simple power law with the Bond
number with the fitted exponent equal to 1/3, that is,

δ̃cri ∝ Bo1/3. (4.5)

The scaling law (4.5) is valid over an enormous range of Bond numbers and contact angles,
because of the same mechanism, i.e. the compromise between the vertical capillary force and the
gravity, as indicated by equation (4.2). The data points of the cone-shaped setae/hairs on the legs
of water striders and on a cranefly wing and leg are also included in figure 9. Those data agree
closely with our theoretical optimization prediction. Therefore, for the first time, we show that
the setae on the legs of water striders are arranged in such an optimized way that those setae can
give both high support and floating stability for water striders’ legs. The spacing of the hairs on
the wings of a fly is optimized so that water droplets will not be penetrated easily by those hairs
during an impact and more importantly, will be repelled away easily owing to a reduced base
contact area with the wing surface. Though the load-carrying capacity only decreases slightly
when further decreasing the seta spacing, more densely packed setae will definitely cost more
biological energy, and increase the adhesion and energy dissipation during the movement of
water striders on water.

(b) Influences of contact angle and Bond number
From §4a, we have learned that, for cylinders with a given Bond number Bo and contact angle
θY, the optimized spacing of these cylinders can be obtained by equations (4.3) and (4.4). At
the optimized cylinder spacing, i.e. δ̃cri, the hairy surface exhibits the maximum load-carrying
capacity per unit width, i.e. (F̃2/δ̃)max. In the following, we will investigate the influences of θY
and Bo on (�Ẽ2/δ̃)max and (F̃2/δ̃)max at the optimized spacing, which are obtained by substituting
δ̃cri into equations (3.6) and (3.8). Plots of (�Ẽ2/δ̃)max and (F̃2/δ̃)max as functions of θY are shown
in figure 10. It is seen that, for very thin cylinders (e.g. Bo = 2.5 × 10−7), both (�Ẽ2/δ̃)max and
(F̃2/δ̃)max change very slightly with the increase of θY. The improvement of those maximum
values owing to the increase of θY becomes more pronounced for thick cylinders (e.g. Bo =
1.0 × 10−2). It is consistent with the previous results reported about a single cylinder floating on
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water [26,28]. Plots of (�Ẽ2/δ̃)max and (F̃2/δ̃)max as functions of Bo are shown in figure 11. For low
hydrophobicity (e.g. θY = 105◦), the maximum values of �Ẽ2/δ̃ and F̃2/δ̃ first decrease slightly
as the increase in the Bond number and decrease quickly when Bo is higher than 1.0 × 10−4.
If the cylinders are superhydrophobic (e.g. θY = 165◦), then the maximum values of �Ẽ2/δ̃ and
F̃2/δ̃ reach a maximum at Bo ∼ 0.1. In other words, it is not necessary for hairy surfaces made
of very thin cylinders (e.g. Bo< 1.0 × 10−4) to be superhydrophobic. If the cylinders are thick
(e.g. Bo> 1.0 × 10−4), then superhydrophobicity can further increase the load-carrying capacity
of hairy surfaces.

5. Concluding remarks
We have investigated the mechanism and optimization of hairy surfaces made from parallel
cylinders floating on water to obtain the maximum load-carrying capacity and mechanical
stability. It has been shown that the optimum design is achieved by adjusting the parameters, i.e.
the spacing, the Bond number and the Young contact angle of the cylinders. For a hairy surface
of a given width and Bond number, there exists an optimum cylinder spacing at which both high
load-carrying capacity and strong floating stability can be obtained. The optimization arises from
a compromise between the vertical capillary force given by the menisci and the gravity of the
cylinders. The decrease in the cylinder spacing contributes to the increase in the vertical capillary
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force of the meniscus per unit width, but the increased gravity will reduce the increase in the total
buoyant force. Moreover, for thin cylinders (e.g. Bo< 1.0 × 10−4), surface hydrophobicity plays
a negligible role in the increase of the load-carrying capacity. Otherwise, if Bo> 1.0 × 10−4, then
superhydrophobicity can be used to further improve the performance of hairy surfaces floating
on water. We clarify that the setae/hairs on some insects’ legs or wings follow the optimization
principle we find here. Though the decrease in the buoyant force given by the inside meniscus per
unit width is slight owing to the gravity for the setae, it is not necessary for them to grow more
densely, or otherwise, it will cost more biological energy and may even harm the flexibility of the
legs or wings.

In this work, the optimization design of a hairy surface is obtained and analysed at the
position where the supporting force given by the outside menisci reaches a maximum. The
choice of this position is based on the fact that the collapse of the outside meniscus generally
leads to the failure of the whole cylinder raft. This does not exclude the possibility that locally
wetting transition may happen as a result of, e.g. condensation [42], or an extremely strong
impact and, then, induce the submersion of the whole surface. However, this is out of the
range of the present topic. Note that we investigate a hairy surface model made from parallel
cylinders and that both three-dimensional and hydrodynamic effects are neglected. The same
optimization principle can also be applied to the design of rafts made from cylinders with
arbitrary orientations and/or cross-sectional shapes, which requires a compromise of the vertical
capillary force and the gravity per unit area. However, more integrated numerical methods are
needed to characterize the pore structures and quantify the capillary and gravity forces generated
by arbitrary cylinder geometries. This is because both the orientations and the cross-sectional
shapes of the cylinders/fibres affect the capillary force [32,33]. Therefore, our theory can be a
practical guide for designing micro-cylinder rafts with high load-carrying capacity.

The theory developed in this work can also be used for analysing the lifting process of hairy
surfaces, which can be regarded as an antisymmetrical process to the sinking one with respect
to the neutral position (figures 3 and 4). Thus, the optimization design of hairy surfaces for
a maximum load-carrying capacity, on the other hand, increases the force and energy needed
to lift a hairy surface from water. It is generally seen that though most insects’ wings are
superhydrophobic, it is not easy to lift the wing up once it is fully contacted with water surface.
However, for insects living on water, low energy dissipation is needed for them to lift their legs
from water so that they can quickly move and flee away from possible threats [10]. To meet
such requirement, the setae on their legs need to be arranged in a special way, e.g. on a convex
contour or circle (figure 1), rather than on a flat surface. During a lifting process, the convex
contour enables the detaching of the contact menisci to happen gradually from both sides of
a hairy surface instead of the simultaneous detachment of all the menisci, which will greatly
reduce the force and energy needed to lift a hairy surface from water. From another point of view,
those setae, together with sub-scale groove structures and wax surface, render water striders’
legs superhydrophobic [24]. The superhydrophobicity decreases the adhesive force between the
convex contour and water surface [27]. However, how the convex contour constructed by parallel
cylinders influences the lifting process of the wetting contact lines needs further investigation.

Funding statement. We acknowledge Major State Basic Research Development Program of China (grant no.
2011CB013101), National Natural Science Foundation of China (NSFC) under grant nos. 11225208, 10872003
and 11172001, The Alexander von Humboldt (AvH) foundation in Germany to support this work through
project ‘Mechanics theory of materials with complex surfaces and its applications’ in the frame of the AvH
program for funding a research group linkage.

Appendix A. Buoyant force
In appendix A, we give the detailed procedure to obtain equation (3.8) by a combination of
equations (3.1)–(3.5) and (3.7). According to equations (3.1)–(3.5), differentiating the free energy
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changes with respect to θi (i = 1, 2) yields

∂ẼS1

∂θ1
= −2

√
Bo(cos θY + cos θ1) +

√
2 sinψ1√

1 + cosψ1
, (A 1)

∂ẼG1

∂θ1
= h̃1

∂ h̃1

∂θ1

⎛
⎝ 2 − h̃2

1√
4 − h̃2

1

+ 2
√

Bo sin θ1

⎞
⎠+ Bo3/2(θ1 sin θ1 − sin2 θ1 cos θ1)

+ h̃2
1

√
Bo cos θ1 − Bo

[
∂ h̃1

∂θ1
(−θ1 + sin θ1 cos θ1) − 2h̃1 sin2 θ1

]
, (A 2)

∂ẼGs

∂θi
= −πBoDe

∂Z̃
∂θi

(i = 1, 2), (A 3)

∂ẼS2

∂θ2
= −2

√
Bo cos θY −

√
2η

{
sinψ2

(c2
2 − 1)

√
c2 − cosψ2

c2

θ2

+ EE(ψ2/2, 2/(1 − c2))
(c2 + 1)

√
c2 − 1

c2

θ2
− 1√

c2 − cosψ2

}
(A 4)

and
∂ẼG2

∂θ2
=

√
Bo cos θ2h̃2

2 +
√

Bo sin θ2h̃2
∂ h̃2

∂θ2
+ Bo(θ2 − cos θ2 sin θ2)

∂Z̃
∂θ2

+
√

2η
[√

c2 − cosψ2 cosψ2

+ (1 − c2)EE(ψ2/2, 2/(1 − c2)) + c2EF(ψ2/2, 2(1 − c2))√
c2 − 1

∂c2

∂θ2

]
. (A 5)

According to equation (2.4), differentiating the displacement with respect to θi (i = 1, 2) yields

∂Z̃
∂θi

= ∂ h̃i

∂θi
+

√
Bo sin θi (i = 1, 2). (A 6)

With h̃2 = η
√

2
√

c2 + cos(θY + θ2) and equation (2.5), we have

∂c2

∂θ2
= h̃2

∂ h̃2

∂θ2
+ sin(θY + θ2) (A 7)

and
√

2
√

Bo cos θ2 = η

{
− cosψ2√

c2 − cosψ2
+ c2 sinψ2

(c2
2 − 1)

√
c2 − cosψ2

∂c2

∂θ2
+

+ c2EE(ψ2/2, 2/(1 − c2)) − (1 + c2)EF(ψ2/2, 2/(1 − c2))
(c2 + 1)

√
c2 − 1

∂c2

∂θ2

}
. (A 8)

By substituting equations (A 1)–(A 6) into equation (3.7) and combining equations (A 6) and (A 7),
we get equation (3.8) after certain algebraic calculations.

Appendix B. Critical spacing
In appendix B, we give the detailed procedure to obtain δ̃cri by solving equations (4.3) and (4.4).
For a given Bond number Bo and Young contact angle θY, we calculate the optimized cylinder
spacings for maximum buoyant force and free energy change per unit width at the maximum
load-carrying position, respectively. We rewrite equation (2.5) as

δ̃ =
√

Bo cos θ2 − η

√
2

c2 − 1

[
(c2 − 1)EE

(
ψ2

2
,

2
c2 − 1

)
− c2EF

(
ψ2

2
,

2
c2 − 1

)]
. (B 1)
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At the maximum load-carrying position, θ1 and Z̃ are constant and only depends on the Bond
number Bo and Young contact angle θY. Thus, by equation (2.4), we have

∂ h̃2

∂θ2
= −

√
Bo sin θ2. (B 2)

Substituting equation (B 2) into equation (A 7) yields

∂c2

∂θ2
= −

√
Boh̃2 sin θ2 + sin(θY + θ2). (B 3)

With equation (B 3), differentiating equation (B 1) with respect to θ2 yields

∂δ̃

∂θ2
=

√
Bo cos θ2 + η

{
cosψ2√

2(c2 − cosψ2)
− ∂c2

∂θ2

· c2 sinψ2 +√
(c2 − 1)(c2 − cosψ2)[c2EE(ψ2/2, 2/(1 − c2)) − (1 + c2)EF(ψ2/2, 2/(1 − c2))]

(c2
2 − 1)

√
2(c2 − cosψ2)

}
.

(B 4)

Equation (4.3) is rewritten as

∂

∂δ̃

(
�Ẽ2

δ̃

)
= −�ẼS2 +�ẼG2 +�ẼGs

δ̃2
+ 1

δ̃

(
∂ẼS2

∂θ2
+ ∂ẼG2

∂θ2
+ ∂ẼGs

∂θ2

)/
∂δ̃

∂θ2
= 0, (B 5)

where

∂ẼS2

∂θ2
= −2

√
Bo cos θY − 2

∂δ̃

∂θ2
+ 2η

{
1√

2(c2 − cosψ2)
− ∂c2

∂θ2

·
√

(c2 − 1)(c2 − cosψ2)EE(ψ2/2, 2/(1 − c2)) + sinψ2

(c2
2 − 1)

√
2(c2 − cosψ2)

}
, (B 6)

∂ẼG2

∂θ2
=

√
Bo cos θ2h̃2

2 + η
√

2
{√

c2 − cosψ2 cosψ2

+ ∂c2

∂θ2
· (1 − c2)EE(ψ2/2, 2/(1 − c2)) + c2EF(ψ2/2, 2/(1 − c2))√

c2 − 1

}
(B 7)

and
∂ẼGs

∂θ2
= 0. (B 8)

By combining equations (B 3)–(B 8), we can get the critical cylinder spacing satisfying
equation (4.3) after simple numerical calculation. Differentiating equation (3.8) with respect to
θ2 yields

∂F̃2

∂θ2
= −2 cos(θ2 + θY) + 2

√
Bo cos θ2h̃2. (B 9)

By substituting equations (B 4) and (B 9) into equation (4.4), we get the critical cylinder spacing
satisfying equation (4.4) after a simple numerical calculation.
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