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Abstract
Developmental models that account for the metabolic effect of temperature variability on
poikilotherms, such as degree-day models, have been widely used to study organism emergence,
range and development, particularly in agricultural and vector-borne disease contexts. Though
simple and easy to use, structural and parametric issues can influence the outputs of such models,
often substantially. Because the underlying assumptions and limitations of these models have
rarely been considered, this paper reviews the structural, parametric, and experimental issues that
arise when using degree-day models, including the implications of particular structural or
parametric choices, as well as assumptions that underlie commonly used models. Linear and
nonlinear developmental functions are compared, as are common methods used to incorporate
temperature thresholds and calculate daily degree-days. Substantial differences in predicted
emergence time arose when using linear vs. non-linear developmental functions to model the
emergence time in a model organism. The optimal method for calculating degree-days depends
upon where key temperature threshold parameters fall relative to the daily minimum and
maximum temperatures, as well as the shape of the daily temperature curve. No method is shown
to be universally superior, though one commonly used method, the daily average method,
consistently provides accurate results. The sensitivity of model projections to these
methodological issues highlights the need to make structural and parametric selections based on a
careful consideration of the specific biological response of the organism under study, and the
specific temperature conditions of the geographic regions of interest. When degree-day model
limitations are considered and model assumptions met, the models can be a powerful tool for
studying temperature-dependent development.
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1 Introduction
Developmental models, such as degree-day models, simulate the temperature dependence of
developmental processes in order to estimate the timing or range of an ecological process,
such as the emergence of a pest, or the establishment of a species in a particular climatic
zone. Rather than express development as a progression through time, these models
typically describe development as a composite of time and temperature. Degree-day models
account for the cumulative sum of degree-time products, with daily time steps resulting in
units of “degree-days”. Degree-day models are parsimonious, requiring in their simplest
form the estimation of only two parameters; their simplicity and ease of use has led to their
broad application across a range of organisms.

Degree-day models were initially developed for agricultural applications and have been used
since the 1730s (Reaumur 1735) to estimate optimal timing of fertilization and harvest
(Sharratt et al. 1989), to assess the suitability of a given region for specific crops (Ren et al.
2007), to predict the timing and intensity of pest infestation (Dahlsten et al. 1994; Elliott et
al. 2009; Nahrung et al. 2008), to anticipate the spread of invasive species (Hartley et al.
2010; Hemerik et al. 2004), and to investigate the impact of biological control (Gutierrez et
al. 2011). Because of their widespread use in agriculture, many local agencies make freely
available yearly estimates of accumulated degree-days for local crops and pests (University
of Illinois 2011; University of California 2011; University of Wisconsin 2011).

One increasingly popular application of degree-day models is in the study of the effects of
climate change on populations of organisms whose distribution and development are highly
dependent upon temperature, particularly organisms involved in the maintenance of
important human diseases. A common method involves determining the annual degree-days
that are required to support current populations, and then, using projected temperatures,
generating estimates of the spatial distribution of locations where annual degree-day
requirements are met under future conditions. Statements are then made regarding the future
risk or potential for disease transmission. Some examples include the use of degree-day
models to study the effects of climate change on the malarial parasite and malarial mosquito
vectors (Lindsay et al. 2010; Yang et al. 2010), the tick vector of Lyme disease (Ogden et al.
2005, 2006), and the intermediate snail host and water-borne life stages of human
schistosomes (Yang et al. 2006; Zhou et al. 2008). Many of these studies consider not only
the degree-day requirements of the host organism, but also the degree-day requirements of
the infectious agent within the host. Analogous analyses have estimated the change in the
number of insect generations per year under climate change scenarios (Yamamura and
Kiritani 1998).

Though applications of degree-day models are numerous and diverse, the limitations and
underlying assumptions of degree-day models are rarely considered or discussed, despite the
fact that model output is sensitive to choices regarding model structure, and to uncertainties
in model parameters. Previous work has examined degree-day model assumptions and their
limitations (Allen 1976; Pruess 1983; Higley et al. 1986; Roltsch et al. 1999; Bonhomme
2000; Bergant and Trdan 2006; Moore et al. 2012), and it is well established that the degree-
day model is a simplistic representation of a potentially complex developmental process.
Bonhomme (2000) discusses various limits to the degree-day approach in an agricultural
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context, including the influence of linearizing non-linear development. We extend this line
of thought, providing an example of how the linear degree-day model provides substantially
different results than non-linear developmental models. Allen (1976), Pruess (1983), and
Higley et al. (1986) compare various methods used to estimate accumulated degree-days
from temperature data - also in an agricultural context - yet do not examine the various ways
upper temperature thresholds are included in such models. We expand on these analyses by
comparing the most common methods used to estimate accumulated degree-days, and
assessing the dominant ways upper temperature thresholds are incorporated. This analysis is
similar to that of Roltsch et al. (1999), but on a shorter time scale and across a broader
geographic range.

We begin with a generalized definition of degree-day models, and a description of methods
used for estimating model parameters and accumulated degree-days. We next examine the
implications of assuming linearity in the developmental response to temperature, and
provide an example comparing results from various methods used to calculate degree-days.
We conclude with a brief discussion of other important factors that should be considered
when applying degree-day models to ecological studies.

2 Methods
2.1 Generalized model of temperature-dependent development

Temperature-dependent development models describe progress towards a developmental
target, such as the completion of an instar stage or the onset of reproductive maturation. Let
ρ be the rate of development (in units of day−1), where ρ is a function of temperature, T. The
gain in development, D, is given by

(1)

The total development that occurs in the interval from time t1 to t2 is given by the integral of
Eqn 1 (Logan and Powell 2001; Powell and Logan 2005). Thus,

(2)

where D is normalized such that D = 0 at the start of development, and D = 1 when the
developmental target is reached. Since temperature dependence is not uniform over the full
range of environmental temperatures, the rate of development can further be written as

(3)

where ρ is expressed as a functional response, f, to temperature given three threshold
parameters: δmin, δmax, and δopt. Development is limited (i.e. goes to zero) below a lower
temperature threshold, δmin, and above an upper temperature threshold, δmax. Development
rate is maximized at an optimum temperature, δopt.

Mechanistically, the relationship between temperature and development rate is based on the
change in biochemical and enzymatic activity as temperature changes (per “Metabolic
Theory (Brown et al. 2004; Molnar et al. 2013)). While there are many structural forms
available to represent the functional response, degree-day models generally assume a linear
f. The performance of linear versus non-linear functional responses varies depending upon
the specific shape of the diurnal temperature curve - and thus on regional climate
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characteristics - in addition to the modeled organism’s specific threshold requirements, as
described next.

2.2 Degree-day model theory
2.2.1 Developmental functional response—Typical degree-day models express the
linear rate function as

(4)

and thus

(5)

where the optimal threshold, δopt, is excluded (Fig. 1), and parameter K is a species- and
developmental target-specific parameter that is interpreted biologically as the total number
of degree-day units necessary for development to complete. To see how this interpretation is
reached, the linear model can be scaled by multiplying through by K, leading to

(6)

for all T where δmin < T < δmax. In this expression, k represents the number of degree-day
units that are accumulated in the interval from t1 to t2, and the developmental target is
reached once D = 1, or when k = K. Rescaling the linear model in this way provides a simple
expression that relates the degrees above the minimum threshold to the development that
results.

The linear model provides a straightforward, accessible method of estimating development
rates. However, for many organisms temperature-dependent development is non-linear
(Beck 1983), and treating the response as linear leads to an underestimation of development
rates at low temperatures, and an overestimation of development rates at high temperatures
(Hilbert and Logan 1983) (Fig. 1). The linear model is thus best applied when environmental
temperatures fall within intermediate temperature ranges for which the linear approximation
is valid (Bonhomme 2000; Bergant and Trdan 2006). Since organisms routinely experience
temperature extremes well outside these intermediate ranges, several non-linear models have
been developed as alternative functional forms of f (Kontodimas et al. 2004).

2.2.2 Temperature thresholds—Two thresholds, δmin and δmax, bound the temperature
range in which development occurs in degree-day models. Below δmin or above δmax
development ceases, while the third threshold, δopt, represents the temperature at which the
organism has the highest rate of development. Though δmin and δmax can easily be specified
in the linear model, δopt is defined only in non-linear models since linear models have no
temperature associated with peak development (except as T → δmax). To account for the fact
that development exhibits diverse behaviors at high temperatures, linear models have been
modified with several threshold cutoff methods (Roltsch et al. 1999). One method, the
vertical cutoff (Fig. 2a), treats the maximum threshold as previously described, where above
δmax development ceases. In this method, the optimum temperature threshold is undefined.
A second method, the horizontal cutoff (Fig. 2b), sets the daily temperature to δmax when the
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temperature exceeds the upper threshold. This allows development to continue at a constant
rate at all temperatures exceeding the maximum threshold. Finally, using the intermediate
cutoff method (Fig. 2c), development proceeds at a decreasing rate as the temperature
increases above δmax, and thus δopt = δmax. Generally, the development that occurs when T
> δmax is set equal to (T ) −2[ρ(T ) − ρ(δmax)], which is equivalent to subtracting twice the
development that occurs above the maximum threshold from the development that would
occur if no upper threshold was considered (Roltsch et al. 1999). Other formulations can be
used for intermediate cutoffs to incorporate a steeper or more gradual decline in
development rates above δmax, and, though not often done, an additional threshold can be
included above which development ceases entirely. Many degree-day applications do not
substantiate the choice of thresholds, and thus fail to address conclusions that might have
been supported on the basis of alternative threshold types and values. Indeed, including
different thresholds can lead to widely differing projections (see Results) and thus the
method chosen should most closely mimic the behavior of the studied organism at high
temperatures.

In addition to selecting appropriate temperature threshold types, accurate organism-specific
parameter values for δmin, δmax, and δopt are crucial. The most common method used to
determine δmin is to first experimentally derive the temperature-development rate
relationship by determining the number of days, d, required for an organism to develop at a
range of constant temperatures. Then the development rate, 1/d, is regressed on temperature
and the intercept is estimated by solving for the temperature at which the rate is equal to
zero (e.g. Campbell et al. (1974); Lardeux and Cheffort (1997); Nahrung et al. (2008);
Naves and de Sousa (2009)). Importantly, due to the high mortality or dormancy commonly
experienced at low temperatures (Campbell et al. 1974), the intercept always falls outside
the range of experimental temperatures, and thus represents an extrapolation of the linear fit
(Bergant and Trdan 2006). Additionally, as described above (Fig. 1), the non-linearity of
most developmental response functions at low temperatures results in an overestimation of
δmin using linear regression. Extrapolation error and error associated with linearly
approximating a non-linear process can lead to significant uncertainties in the estimation of
δmin (Yang et al. 1995; Bergant and Trdan 2006), yet these uncertainties are often
disregarded. Importantly, there are also indications that development at constant
temperatures differs from development at fluctuating temperatures, and thus care should be
taken when applying laboratory-derived estimates to field conditions (Campbell et al. 1974;
Beck 1983; Brakefield and Mazzotta 1995).

To estimate δmax and δopt, non-linear developmental models are generally used (Roy et al.
2002; Kontodimas et al. 2004). For many non-linear models, these thresholds appear
explicitly within the model equation, and thus can be estimated using non-linear regression
(e.g. Briere et al. (1999); Sanchez-Ramos and Castanera (2001); Tobin et al. (2001)) With
non-linear models in which one or both of these thresholds cannot be directly estimated,
δmax or δopt can often be calculated from other model parameters (Roy et al. 2002).

2.2.3 Degree-days, K and k—Only linear models can provide a direct estimate of K, the
total degree-days required for developmental completion. One approach, similar to the
intercept method used to estimate δmin, is to estimate K as the inverse of the slope of the
regression of development rates and temperature (e.g. Campbell et al. (1974); Trudgill et al.
(2005); Bergant and Trdan (2006)). Another approach to estimating K, assuming δmin is
known, involves a laboratory experiment in which the organism is reared at a constant
temperature, T, and the total degree-days required for development is estimated as K = d(T
−δmin), where d is the number of days required for development (Naves and de Sousa 2009).
Values of K estimated using this method have been shown to be similar to estimates using
the linear regression approach (Naves and de Sousa 2009).
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If experimental data are unavailable, K can be calculated from field data - again assuming a
known δmin - using observed development times and daily temperature data (Lopez et al.
2001). Since daily temperature is not constant, the degree-days accumulated per day, k, are
calculated using one of the methods presented next, and the summation of k over the
observed development period can provide an estimate of K.

The daily degree-days accumulated, k, is generally calculated using daily minimum and
maximum temperatures, although temperature fluctuations that occur within the diurnal
cycle can strongly influence organism development (Paaijmans et al. 2009). Common
methods used include the daily average method, the triangle and double triangle methods,
and the sine and double sine methods (Fig. 3), all of which assume a linear functional
response.

The daily average method (Fig. 3a) uses daily minimum, Tmin, and maximum, Tmax,
temperatures to estimate accumulated degree-days by applying one of two common
calculations (McMaster and Wilhelm 1997). The first method finds the average, Tavg, of
Tmin and Tmax and then compares Tavg to the lower threshold. The accumulated degree-days
is then calculated as k = Tavg −δmin if Tavg > δmin. The second method compares the daily
minimum temperature to the lower temperature threshold before calculating Tavg, with Tmin
set equal to δmin if Tmax > δmin and Tmin ≤ δmin. This ensures that so long as the maximum
temperature exceeds δmin, some degree-days will accumulate.

Another approach, the triangle method (Fig. 3b, c), estimates the accumulated degree-days
by calculating the area under a triangle, with the base of the triangle spanning the daily
minimum temperatures and the peak occurring at the daily maximum (Higley et al. 1986).
As implied by the name, the single triangle method forms a single triangle for each diurnal
cycle, while the double triangle method fits two triangles to each diurnal cycle. With the
double triangle method, the base of the first triangle is set at the minimum temperature of the
first half of the day, and the base of the second triangle is set at the minimum of the second
half of the day. Given the minor difference between the two triangle methods, it is perhaps
not surprising that they produce similar results (Roltsch et al. 1999). In the simplest case,
both the single and double triangle methods assume a twelve hour difference between the
daily minimum and maximum temperatures (Wilson and Barnett 1983; Allsopp and Butler
1987). This assumption is often modified to better account for the shape of the daily
temperature curve by incorporating information on sunrise and sunset, or solar radiation
(Reicosky et al. 1989).

Finally, the sine method (Fig. 3d, e) fits a sinusoid to the interval between the minimum and
maximum temperatures (Higley et al. 1986). Similar to the triangle methods, the single sine
method fits a single sinusoid to the diurnal cycle, while the double sine method forms one
sinusoid between the morning minimum temperature and the daily maximum, and a second
sinusoid between the daily maximum temperature and the overnight minimum (Allen 1976).
Again, similar to the triangle methods, both the single and the double sine waves produce
similar results (Wilson and Barnett 1983; Roltsch et al. 1999). The sine methods typically
assume a twelve hour difference between the daily minimum and maximum temperatures,
though this has been corrected for in several models (Reicosky et al. 1989).

The above methods represent the most common approaches used to estimate degree-days,
though no single method has been shown to be superior in all circumstances (Allsopp and
Butler 1987; Roltsch et al. 1999). Variations on these approaches have been developed to
more accurately estimate k, such as Reicosky et al. (1989), who used a combination of linear
equations, sine waves, and exponential decays, and Cesaraccio et al. (2001), who
incorporated a square-root function into the double sine method for estimation of early

Moore and Remais Page 6

Acta Biotheor. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



morning temperatures. Though these methods can potentially produce more accurate
estimates of k, over the course of several days the results are generally not significantly
different from the simpler methods described above (Reicosky et al. 1989; Roltsch et al.
1999).

2.3 Application of degree-day models
Given the many possible degree-day model variants with respect to the form of the
developmental functional response, the type of temperature threshold cutoffs and the
specific method used to estimate thresholds and accumulated degree-days, we next examine
in detail how these factors affect model outcomes.

2.3.1 Linear vs. non-linear development—To examine how differences in choice of f
influence predictions of development, the linear degree-day model, as well as four common
non-linear functional response models (the Sharpe (Sharpe and DeMichele 1977), Logan
(Logan et al. 1976), Holling (Hilbert and Logan 1983), and Lactin (Lactin et al. 1995)
models, see Online Resource 1), were used to investigate the emergence times of Nephus
bisignatus, a predatory Coleopteran in the Coccinellidae family, widely distributed across a
range of climates throughout Europe. The purpose of this analysis was to demonstrate the
degree to which emergence times differ between the five models for a well-studied organism
for which parameter estimates are available across model diverse types. Thus, despite the
fact that limited field emergence time data exist with which to interpret model predictions,
we chose N. bisignatus because its developmental response to temperature has been
characterized in great detail through laboratory experiments. Model parameters were drawn
from previous experimental work (Kontodimas et al. 2004) that fit linear and non-linear
models to developmental data from laboratory studies in which N. bisignatus were reared at
various constant temperatures. Where previously fit models could not provide estimates of
δmin or δmax, the lower and upper rearing temperatures at which no development occurred
(10 ºC and 35 ºC, respectively) were used. Temperature data were obtained from the
European Climate Assessment and Dataset (ECAD 2011) at hourly increments (from 1
January 2003 – 31 December 2003) for 16 weather stations in Europe (Online Resource 2).
Stations were chosen to provide a range of yearly temperature profiles, and included two
stations each from Finland, Germany, Greece, Italy, Netherlands, Sweden, France, and
Denmark.

2.3.2 Temperature cutoff and daily degree-day calculations—Though calculating
accumulated degree-days, k, is generally straightforward, the estimate of k will vary
considerably depending on the shape of the daily temperature curve (Allsopp and Butler
1987; Roltsch et al. 1999), the type of upper threshold cutoff used (Roltsch et al. 1999), and,
due to the linear assumption of the degree-day model, where the maximum and minimum
temperatures fall relative to the upper and lower thresholds (Wilson and Barnett 1983;
Allsopp and Butler 1987; Roltsch et al. 1999). Thus, it is particularly important to consider
how these factors can impact model output when studying ecological responses in regions
where differences in the range and distribution of daily temperatures are anticipated. To
demonstrate the sensitivity of the daily accumulated degree-days to these factors, a daily
estimate, denoted k̂, was estimated across a range of climate zones in the United States by
using hourly temperature data (from 1 January 2007 to 31 December 2010) obtained from
three US Climate Reference Network (NOAA 2011) weather stations in the eastern United
States (Online Resource 3). These stations were chosen to provide a diverse set of diurnal
temperature shapes, and included stations in northern Maine, western North Carolina, and
southwestern Florida.
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At every station, k̂ for each day across the three year period was calculated from daily
minimum and maximum temperatures using the daily average method (calculating Tavg prior
to comparison with δmin), the single triangle method, and the single sine method, as well as
the horizontal, vertical, and intermediate upper threshold cutoffs. For each day, k̂ was
calculated using multiple values for δmin and δmax in order to examine how the relative
difference between daily temperature extremes and the threshold values affected the
estimated degree-days. These estimates were then compared to a benchmark, kh, estimated
using hourly temperatures.

3 Results
3.1 Linear vs non-linear development

Results across all weather stations were consistent, with the exception that stations in
warmer, more southern latitudes, yielded an earlier emergence time than those in cooler,
more northern latitudes, as expected (Online Resource 2). A representative plot of
development rates for each of the five models from the Finland1 weather station (location:
60.17 ºN, 24.95 ºE) is given in Online Resource 2. When temperatures are near the lower
threshold, the predicted rate of development is greatest for the Holling, Sharpe, and Logan
models, and lowest for the linear and Lactin models. This is expected given the shape of the
developmental curves at low temperatures (Online Resource 1). At high temperatures, the
Sharpe, Lactin, and Logan models are essentially equivalent, with all predicting the highest
rates of development. At temperatures close to the upper threshold (not shown at this
station), the linear model predicts the highest rate of development, while the Holling model
decreases drastically. Again, this is expected given the absence of an optimal temperature
threshold in the linear model, and the shape of the non-linear models above their optimal
thresholds. At intermediate temperatures, all models are approximately equivalent. Over the
course of the season, the Holling model predicts emergence on average 8.38 days sooner
than predicted by the linear model across all sixteen weather stations (95% CI: (5.71, 11.04);
Fig. 4). The Sharpe, Lactin, and Logan models also predict an emergence time significantly
different than the linear model, with emergence dates across all weather stations on average
3.88 days (95% CI: (3.05, 4.70)), 3.13 days (95% CI: (2.58, 3.67)), and 6.75 days (95% CI:
(4.54, 8.96)) earlier, respectively.

3.2 Temperature cutoff and daily degree-day calculations
Fig. 5a shows the results using the horizontal cutoff method and assuming a twelve hour
difference between the daily minimum and maximum temperatures. The color indicates the
difference between k̂ and kh, with a positive value (reds) indicating an overestimation of the
particular method, and a negative value (blues) indicating an underestimation. Each of the
four quadrants (Q1–Q4) represents different positions of the thresholds relative to the daily
minimum and maximum (Fig. 5b). Cases in which no upper threshold is used are equivalent
to the two upper quadrants. Table 1 summarizes the performance of the various methods and
indicates the method(s) that agree best with hourly estimates given the relative positions of
the thresholds.

There are distinct differences between the three methods used to calculate k, and these
differences are sensitive to the relationship between threshold values and daily temperatures.
Both the daily average and the triangle method do well when the daily temperature range
falls between the upper and lower thresholds (Q2). The sine method, in contrast, tends to
overestimate the degree-days in this region, particularly when δmin is close to the daily
minimum temperature. If a similar plot is made that corrects for the time between the daily
minimum and maximum temperatures, rather than assuming a twelve hour difference, this
overestimation is greatly reduced (data not shown), indicating that the estimate is sensitive
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to the shape of the temperature curve. Overestimation when using the sine method also
occurs (and can be corrected for) when δmin is greater than, though still close to, the daily
minimum temperature (Q1). Both the daily average and the triangle methods produce an
underestimation in this region, with the exception of the triangle method in Maine, which
produces overestimations when there are large differences between δmin and the daily
minimum. This underestimation of the daily average method is a result of averaging the
daily minimum and maximum temperatures before comparison with δmin.

When both δmin and δmax fall within the daily temperature range (Q4), the sine and daily
average method behave similarly, producing slight underestimations in the number of
degree-days. The triangle method, in contrast, more severely underestimates the degree-days
when δmin and δmax are both near the daily minimum and daily maximum temperatures,
respectively. However, as the difference between δmin and δmax decreases, the triangle
method begins to overestimate the degree-days.

Finally, when δmin is less than the daily minimum temperature and δmax is less than the daily
maximum temperature (Q3), the average method overestimates the degree-days when δmax
is near the maximum temperature. The sine method produces underestimates in this region,
while the triangle method produces underestimates when δmax is near the daily maximum
and overestimates as δmax drops far below the daily maximum. Again, this overestimation
with the triangle method is significantly reduced when the time between the daily minimum
and maximum temperatures is corrected for, indicating that this overestimation is especially
sensitive to the shape of the diurnal temperature cycle.

In summary, the most commonly used method in the literature, the daily average method,
generally provides accurate estimates of daily degree-days, with the exception of
overestimation when δmax and δmin drop below the daily maximum and minimum
temperatures, respectively, and underestimation when δmax and δmin fall above the daily
maximum and minimum temperatures, respectively. The triangle method performs well
when the daily temperature range falls within both threshold values. In the other regions, the
triangle method tends to either over or underestimate the daily degree-days. Lastly, the sine
method tends to underestimate the daily degree-days with the exception of regions where
δmax exceeds the daily maximum temperature and δmin is close to the daily minimum
temperature.

Comparing the different geographic regions indicates that the shape of the diurnal
temperature curve, which changes with latitude and elevation, has a pronounced influence
on the accuracy of the estimation methods. For instance, when the minimum and maximum
thresholds are less than the daily minimum and maximum temperatures, respectively (Q3),
the triangle method tends to overestimate the degree-days in Florida, while tending to
underestimate the degree-days in Maine. This result is also observed with the sine method
when the temperature range falls within both thresholds (Q2). Since in this analysis the
relative difference between the daily temperature extremes and the threshold values was
held constant between the regions, the shape of the diurnal temperature cycle is clearly
responsible for this effect.

If a vertical threshold cutoff is used rather than a horizontal cutoff, the results are similar
with only a few differences (data not shown). First, the vertical cutoff improves performance
of the triangle and sine methods when both thresholds fall within the daily temperature
range (Q4), whereas the daily average method tends to overestimate the degree-days in this
region. When δmin and δmax are both less than daily minimum and maximum temperatures,
respectively (Q3), the performance of the sine method improves, while the triangle method
now significantly overestimates the degree-days. Importantly, where the daily average
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method produced overestimates in Q4 using the horizontal cutoff, the vertical cutoff
exacerbates this overestimation. When δmax exceeds the daily maximum temperature (Q1
and Q2), there is no change in the performance of the methods, as the cutoff is never
applied. Similar results are observed using the intermediate threshold cutoff, with the effects
of the underestimation more pronounced.

It is apparent that several factors affect the accurate estimation of daily degree-days, and
each that degree-day estimation is sensitive to where thresholds fall relative to the daily
minimum and maximum temperatures, the type of cutoff used, as well as the shape of the
daily temperature curve (as implied by differences between regional zones). Though the
results presented here indicate that no one method is universally superior to another, in
general the average method produces more accurate estimates over a greater range of
temperate profiles. Importantly, this analysis only considers differences on a daily basis;
these differences may be amplified or cancelled out over the course of an entire season or
year, depending on the frequency with which daily temperature profiles fall in each of the
quadrants.

4 Discussion
By assuming a linear response to temperature and relying on a minimal number of
parameters that can be estimated through simple growth experiments, degree-day models are
straightforward to apply to a diversity of organisms and are accessible to a wide variety of
researchers. Although degree-day models have a long history of customized applications to
agricultural systems, their increasing use in a variety of contexts has come without a critical
examination of degree-day model assumptions, parametric issues, and the interaction of
particular model specifications with a range of climatic conditions.

Of obvious importance is the use of a linear function to approximate a non-linear
developmental response to temperature. Often, linear degree-day models can generate
results that are equivalent to more complicated models. In other cases, the use of a non-
linear model is likely to be more appropriate. In short, model choice matters. Our results
indicate that, for the prediction of Nephus bisignatus emergence, the difference between
linear and non-linear predictions can be up to a week. Such differences between model
predictions are not trivial, and have important implications for the use of degree-day models
in ecological applications.

One such application is the use of degree-day models to aid in biological control measures.
As mentioned, N. bisignatus is a predatory Coccinellidae species. Many species within this
family, including N. bisignatus, are used extensively in the biological control of mealybugs,
aphids, mites, and other insect pests (Obrycki and Kring 1998). With biological control
measures, the synchrony of developmental timing between the control agent and the pest is
known to be important (Corley and Bruzzone 2009). For instance, adult Coleoptera are often
released seasonally to augment existing populations, and the timing of this release must be
matched to pest populations (Obrycki and Kring 1998). Additionally, for the initial selection
of biocontrol species, organisms are chosen that are climatically adapted to particular
regions, such that the timing of predator emergence coincides with the target life stage of the
pest (Samways 1989). Thus, the potential success of a biological control measure depends in
part on the accurate prediction of developmental time for both the predator and the pest.
This emphasizes the importance of a full exploration of models, and ultimately a careful
selection of a final model, for application to a particular system.

Another example of the importance of model choice is found in the infectious disease
context. The transmission of malaria is dependent upon the successful development of the
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parasite within the mosquito host, a temperature-sensitive developmental process (Beier
1998), as well as on the probability of the mosquito surviving long enough for parasite
development to complete (Killeen et al. 2000). Thus, one measure of the potential for
malaria transmission in a particular region can be estimated by determining the development
time of the parasite and seeing if this falls within the survival time of the mosquito
(Paaijmans et al. 2009). As parasite development times can fall within days of the average
survival of the vector (Charlwood et al. 1997), clearly models producing estimates of
development time that differ by several days can strongly determine the outcome of such an
analysis. Therefore, the model chosen should be suitable for both the organism and the
climatic conditions under study.

Particular attention should be paid to the approach to modeling the organism’s response to
high temperatures, as well as to the specific methods used to estimate accumulated degree-
days, which can both lead to markedly divergent model projections. This result highlights
the need for developmental models that are tailored to the specific system, region, and time
scale under study, rather than relying on generic model specifications. One major obstacle to
improving degree-day model applications is obtaining suitable temperature data (Higley et
al. 1986). Often, mean monthly temperatures are used to calculate degree-days (e.g. Craig et
al. (1999); Yang et al. (2006)), despite the fact that even within-day temperature fluctuations
can have significant effects on organism development, as well as on disease transmission
(Paaijmans et al. 2009, 2010a). Daily, or when possible hourly, temperature data should be
used, and careful consideration should be given to the location at which the temperature is
measured (Wang 1960; Higley et al. 1986). In some cases, micro-environmental
temperature, such as soil temperature (Zhang et al. 2008), or water temperature (Paaijmans
et al. 2010b), rather than ambient air temperature, might better represent the conditions
experienced by the organism of interest. Finally, the distance between the weather station
and the ecological population under study should also be considered (Dabbs 2010). These
issues add to other important constraints, such as the limited availability of high spatial and
temporal resolution temperature data in developing countries, and the inherent challenges in
downscaling projected temperatures to appropriate scales (Bergant and Trdan 2006). These
remain major obstacles to effective application of degree-day models to study ecological
responses.

Additionally, whether using a linear or a non-linear functional response, establishing that the
necessary temperature requirements for development are met may be necessary but not
sufficient to establish the viability of an organism in a particular region or climate.
Temperature is unquestionably important in governing the development of many organisms,
but both linear and nonlinear models generally cannot represent the complete effects of
temperature on an organism. Though organisms may continue to develop at the extremes of
their temperature range, stress sustained at these temperatures can have important life
history implications not captured by these simple models. For example, temperature can
influence a multitude of traits, including survival, fecundity, vector biting rate, vector
competence, or host immunity (Mordecai et al. 2013; Bensadia et al. 2006; Kilpatrick et al.
2010; Mols and Diederik 1996; Hemerik and van Nes 2008). Additionally, temperature is
not the only factor that influences development, as organisms also depend on the availability
of sufficient resources (Campbell et al. 1974; Hagstrum and Milliken 1988; Logan et al.
2007), are affected by numerous environmental conditions (e.g. humidity, precipitation)
(Wang 1960; Hagstrum and Milliken 1988), and interact in various ways with their
surrounding biotic and abiotic environment (Logan et al. 2007). To account for these various
factors, many studies incorporate the degree-day framework into detailed population
dynamics models (e.g. Hartley et al. (2010); Ogden et al. (2005); Liang et al. (2005); Remais
et al. (2007)). Because they account for the interplay of development, mortality,
reproduction and other temperature-sensitive processes, such population dynamics models
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can generate predictions about population viability that differ from models based solely on
the degree-day model framework (Moore et al. 2012).

Another important factor to consider is the effect of intra-population developmental
variability on degree-day model projections (Hardman 1976; Bolnick et al. 2011). Though
there is no question that phenotypic diversity exists, most applications of degree-day models
rely on mean estimates of the developmental response to temperature, assuming that all
individuals within a population respond equivalently. However, variability within a
population can have important consequences for risk analyses. For example, Gould et al.
(2005) showed that when intra-population variability was incorporated into a degree-day
based risk analysis of an agriculturally important pest, model output changed from a
prediction of no risk, to a prediction of limited risk. The incorporation of variability within
populations has been formalized in various models of temperature-dependent development
(Wagner et al. 1984, 1991) and several population dynamics models (Gilbert et al. 2004;
Powell and Bentz 2009). Such approaches increase model complexity considerably, but are
important to consider in light of the evidence that relying on mean values can mask
important effects.

Finally, as noted in the Introduction, there is an increasing use of linear degree-day models
to study species distributions under changing climates, specifically species that are
important for infectious disease transmission. It is anticipated that climate change will lead
to shifts in regional temperature profiles and differences in the range and distribution of
daily temperatures (Lobell et al. 2007; Solomon et al. 2007). Thus, even if model
assumptions are met and results validated under current conditions, these same assumptions
might not hold when applied to future conditions. This is especially important to consider
when degree-day models are used to make projections far into the future, where
uncertainties in degree-day model parameter estimates (Bonhomme 2000; Bergant and
Trdan 2006; Moore et al. 2012) are compounded with those inherent in climate forecasting
(Hawkins and Sutton 2009).

Importantly, degree-day models assume constant threshold values, even when applied to
questions posed over broad spatial scales or long time scales inherent in studies of future
changes to the global climate system. It is well established, however, that populations can
adapt to local conditions, as evidenced by species in more temperate regions, for example,
having a lower temperature threshold than those in the tropics (Trudgill et al. 2005).
Evolution in traits can occur surprisingly fast, and feedbacks between ecological and
evolutionary processes can potentially lead to significant changes in population dynamics
(Schoener 2011). Minimum, maximum, and optimum temperatures determined for
organismal development today may not be valid under future conditions or when applied to
localities different from those in which the data was collected. This is especially important
when studying coupled organisms, such as consumer-resource pairs (Logan et al. 2007).
Parasites, for instance, often have a higher temperature threshold than their hosts, ensuring
that host development is completed before the parasite becomes viable (Campbell et al.
1974). If the temperature thresholds, or the shape of the temperature-development response
for either organism changes, it is possible that this synchrony might be disrupted. This has
important implications, not only for disease systems, but also for the persistence and
distribution of other coupled organisms, such as plants and their pollinators, predators and
their prey, and herbivores and their resources (Bale et al. 2002; Visser and Both 2005).

Degree-day models provide a simple and effective means of describing and estimating
temperature-dependent development of a diverse set of organisms. Caution, however, is
needed when applying degree-day models to questions regarding ecological responses to
environmental variation as many of the assumptions of the basic degree-day model
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framework may not always hold. Attention paid to meeting these assumptions, along with
explicit assessment of model limitations such as through detailed sensitivity analyses, can
yield models that provide considerable insight.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Relationship between organismal rate of development and temperature. A linear (dashed
line) and non-linear (solid line) approximation of the relationship between the rate of
development and temperature, and the locations of the three key temperature thresholds,
δmin, δopt, and δmax.
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Fig. 2.
Temperature threshold cutoff methods. Three common cutoff methods used when
calculating daily degree-days. a) vertical cutoff; b) horizontal cutoff; c) intermediate cutoff.
Each curve represents the temperature over the course of a single day, while the shaded area
indicates the timing and degree of development.
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Fig. 3.
Five common methods used to estimate daily degree-days. a) daily average; b) single
triangle; c) double triangle; d) single sine; e) double sine. Each curve represents the
temperature cycle over two days, while the area of the shaded region indicates the degree-
days that are accumulated (an approximation to the area under the temperature curve).
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Fig. 4.
Comparison of linear and non-linear functional responses. Comparison of the cumulative
developmental rates for the linear functional response and the Sharpe, Logan, Holling, and
Lactin non-linear models, using the Finland1 weather station data (Online Resource 2).
Inset: differences in predicted emergence time (when the cumulative rate reaches one) for
each model.
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Fig. 5.
Comparison of daily degree-day estimation methods. a) Difference between daily degree-
days calculated using hourly data, and daily degree-days estimated from the daily average
(first column), single triangle (middle column) and single sine (last column) methods, with
red colors indicating an overestimation of the particular method, and blue colors indicating
an underestimation. For each plot, the color at every point represents the average difference
in degree-days for each day of the time series that meets the specified distance between the
minimum and maximum daily temperature (Tmin and Tmax ) and the lower and upper
thresholds, respectively, with distances from the lower threshold given along the x-axis, and
distances from the upper threshold given along the y-axis. b) Relative positions of the daily
minimum and maximum temperatures to the lower and upper thresholds. Each curve
represents the temperature cycle for a single day.
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Table 1

Summary of degree-day calculation methods. A summary of the performance of the daily average, single
triangle, and single sine methods used to calculate degree-days, given different relative positions of the
thresholds and the daily temperature extremes (with table quadrants corresponding to quadrants Q1–Q4 in
Figure 5b). Methods shown in bold indicate the best method for the given quadrant.

 δmax > Tmaxδmin < Tmin (Q2)  δmax > Tmaxδmin > Tmin(Q1)

Average: generally accurate Average: slight underestimates

Triangle: generally accurate Triangle: strong underestimates, strong overestimates

Sine: strong underestimates, strong overestimates Sine: slight underestimates, (strong δmin close to Tmin)

 δmax < Tmaxδmin < Tmin (Q3)  δmax < Tmaxδmin > Tmin (Q4)

Average: generally accurate, (slight δmax close to Tmax) Average: slight underestimates, slight overestimates

Triangle: strong underestimates, strong overestimates Triangle: strong underestimates, strong overestimates

Sine: strong underestimates Sine: slight underestimates
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