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Some respiratory tract infections remain unexplained despite extensive testing for common

pathogens. Nasopharyngeal aspirates (NPAs) from 120 Chilean infants from Santiago with acute

lower respiratory tract infections were analysed by viral metagenomics, revealing the presence of

nucleic acids from anelloviruses, adenovirus-associated virus and 12 known respiratory viral

pathogens. A single sequence read showed translated protein similarity to cycloviruses. We used

inverse PCR to amplify the complete circular ssDNA genome of a novel cyclovirus we named

CyCV-ChileNPA1. Closely related variants were detected using PCR in the NPAs of three other

affected children that also contained anelloviruses. This report increases the current knowledge of

the genetic diversity of cycloviruses whose detection in multiple NPAs may reflect a tropism for

human respiratory tissues.

Cycloviruses, members of a proposed genus within the family
Circoviridae, have a circular ssDNA genome of approximately
2 kb (Li et al., 2010). Genetically highly diverse cycloviruses
were initially found in the faeces of Pakistani children with
and without acute flaccid paralysis (Victoria et al., 2009), in
wild chimpanzees (Li et al., 2010) and in tissues of farm
animals including cows, goats, bats and chickens (Ge et al.,
2011; Li et al., 2010, 2011). Unexpectedly, other cyclovirus
species have also been detected in insects, namely dragonflies
and cockroaches (Dayaram et al., 2013; Padilla-Rodriguez
et al., 2013; Rosario et al., 2011). In 2013, a cyclovirus species
(CyCV-CN) was found initially using viral metagenomics
and then by PCR in 4 % of cerebrospinal fluid (CSF)
specimens from Vietnamese children with unexplained
central nervous system disorder, but not in CSF from
patients with non-neurological problems, as well as in 4.2 %
of faeces from healthy Vietnamese children (Tan et al.,
2013). CyCV-CN DNA was also detected in a throat swab
(Tan et al., 2013). In this study, 58 % of faecal specimens
from pigs and poultry in Vietnam were also positive for the
same cyclovirus, suggesting possible sources of human
infection (Tan et al., 2013). A related cyclovirus was also
detected in 10 % of CSF samples and 15 % of serum samples
from adult patients with paraplegia (leg paralysis) from
Malawi (Smits et al., 2013).

Nasopharyngeal aspirates (NPAs) from Chilean children
less than 2 years old with acute lower respiratory infections
were tested for respiratory syncytial virus (RSV), adeno-
virus, parainfluenza virus 1–3 and influenza A and B viruses
by indirect immunofluorescence assays and virus isolation
(Avendaño et al., 2003). From 1998 to 2000, a mean of 29 %
of acute lower respiratory infections samples were positive
for RSV (Avendaño et al., 2003). To initiate the character-
ization of the viruses in non-reactive NPA samples, viral
particles were enriched by filtration, and unprotected DNA
and RNA were digested using a combination of nuclease
enzymes (Victoria et al., 2009). The remaining nucleic acids
were then extracted using a MagMAX Viral RNA Isolation
kit (Life Technologies), which recovers both RNA and DNA.
A DNA library was constructed using a ScriptSeq v2 RNA-
Seq Library Preparation kit (Epicentre), which amplifies
both RNA and DNA, and sequenced using the Illumina
MiSeq platform. Viral sequences were identified using
translated protein sequence similarity searches to annotated
viral proteins available in GenBank (using BLASTX) and
results were mapped using the NCBI Virus Taxonomy
browser (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/
wwwtax.cgi?name=Viruses). The study was approved by
the University of California at San Francisco committee on
human research.

A total of 120 respiratory specimens from Chilean infants
were analysed in 12 pools of 10 specimens using one
Illumina MiSeq run of 250 base paired-ends. Viral sequence
reads were identified with amino acid similarity .95 % to

The GenBank accession numbers for CyCV-ChileNPA1–4 are
KF726984–KF726987, respectively.
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known viruses. Most numerous sequences were from
anelloviruses, followed by enterovirus C, betacoronavirus,
bocavirus 1, RSV, human adenovirus 3, enterovirus B,
human rhinoviruses A and C, human parainfluenza 3,
adeno-associated virus, human pneumovirus, human rhi-
novirus B and human parechovirus sequences (Table 1).
Anelloviruses were identified in all but one pool (Table 1).
Anelloviruses have been reported previously in human
respiratory secretions (Burián et al., 2011; Jartti et al., 2012).
Anelloviruses are usually considered commensal viruses
(Okamoto, 2009a), although increased prevalence was found
in bronchoalveolar lavage of children with acute exacer-
bation idiopathic pulmonary fibrosis (Wootton et al., 2011)
and acute respiratory diseases (Maggi et al., 2003), and in
lung tissues of pigs infected with known respiratory
pathogens (Rammohan et al., 2012). Anellovirus plasma
load is also ncreased in advanced AIDS (Li et al., 2013)
and in immunosuppressed patients following organ
transplantation (De Vlaminck et al., 2013). Increased
anellovirus loads may reflect increased replication in
immune cells stimulated by chronic inflammation, rather
than indicating a direct pathogenic role (De Vlaminck
et al., 2013). Detection of RSV, parainfluenza 3 and
adenovirus in four, two and one pools, respectively, was
probably the result of viral loads being too low for
detection by immunofluorescence assays and cell culture
(Avendaño et al., 2003). Except for anelloviruses and
adeno-associated virus, all other viruses found have been
associated with respiratory symptoms.

One sequence from one sample pool showed significant
similarity to cyclovirus proteins (BLASTX E-score of 261027

to dragonfly cyclovirus, GenBank accession no. KC512919).
The full circular cyclovirus genome, referred to as CyCV-
ChileNPA1, was then amplified using inverse PCR with
specific primers designed from the Illumina-derived short
sequence and directly Sanger sequenced by primer walking.
Putative ORFs in the cyclovirus genome were predicted
using the NCBI ORF Finder (http://www.ncbi.nlm.nih.gov/
gorf/) requiring an initiation Met codon.

The complete circular genome of CyCV-ChileNPA1 was
1790 bases, with a G+C content of 43 mol%. This genome
consisted of two major ORFs encoding replication-associated
protein (Rep) and capsid protein (Cap). The intergenic
region was 247 bases and encoded a putative stem–loop
structure with a stem length of 13 bases, predicted by the
Mfold program (Zuker, 2003). Similarly to other cyclo-
viruses, the highly conserved nonamer (TAGTATTAC) was
found in the loop (Fig. 1a).

The International Committee on the Taxonomy of Viruses
has also proposed a threshold of 75 % nucleotide identity
over the entire genome and 70 % amino acid identity
for the capsid protein. Rep showed the closest match
(65 %) to that of dragonfly CyV-8, whilst Cap shared a
lower identity of 30 % with that of the same virus. The
higher level of nucleotide divergence of cap relative to
rep was also observed with sequence alignments of

CyCV-ChileNPA1 with its closest relatives (Fig. 1b).
Such a high level of sequence divergence indicated that
CyCV-ChileNPA1 may be considered a new species within
the genus Cyclovirus.

CyCV-ChileNPA1 shared conserved Rep motifs (Dayaram
et al., 2013; Rosario et al., 2012). Analysis of the deduced
amino acid Rep sequences of CyCV-ChileNPA1 revealed
three rolling-circle replication motifs I–III: FTxNN
(FTWHD), YCSKxGX (YCSKSGE) and HLQGxxNL
(HLQGFCSL), respectively (Fig. 2). In the N terminus of
cyclovirus Rep, two consensus high-affinity DNA-binding
specificity determinants (SPDs), TxR for SPD-region 1
and PxR for SPD-region 2, were present (Dayaram et al.,
2013; Londoño et al., 2010). CyCV-ChileNPA1 showed
a mutated VxR for SPD-region 1 of unknown functional
consequence (Fig. 2). The C-terminal region of the CyCV-
ChileNPA1 Rep protein possessed ATP-dependent helicase
motifs Walker A, B and C, or GxxGTGKS (GPPGTGKS),
VIIDDFYGW and ITSN, respectively (Fig. 2).

Sequence alignment was performed using CLUSTAL_X (Saitou
& Nei, 1987). A phylogenetic tree with 100 bootstrap re-
samples of the alignment datasets was generated using
MEGA5 and the neighbour-joining method (Tamura et al.,
2011). Bootstrap values (based on 100 replicates) for each
node are given for values .70 % (Fig. 1c). Phylogenetic
analysis confirmed the presence of a highly diverse cyclo-
virus species.

To determine the prevalence of this virus, a nested PCR
assay was designed and used to test all 120 NPA samples.
Primers ChileNPA-F1 (59-TGGGTCAGGCTATTACTGG-
GAG-39) and ChileNPA-R1 (59-ACTGAATGTCCGTCC-
GTTGTCC-39) were used for the first round of PCR, and
primers ChileNPA-F2 (59-CAGTGCCATAGTACAGAGT-
GCCCA-39) and ChileNPA-R2 (59-CTCCCCTACTCAAA-
GAACTCGCCT-39) for the second round of PCR, resulting
in an expected amplicon of ~310 bp. The PCR conditions
were as follows: denaturation at 95 uC for 5 min, 35 cycles
of 95 uC for 30 s, 53 or 55 uC (for the first or second
round, respectively) for 30 s and 72 uC for 1 min, a final
extension at 72 uC for 10 min, and then held at 4 uC.
Amplicons were then sequenced directly for identification.
Three additional cases (CyCV-ChileNPA2–4) were positive
for the new cyclovirus, yielding a prevalence of 3.3 % in
the studied population (4/120). The full genomes of these
three viruses were then acquired by overlapping PCR.
The genomic sequences of CyCV-ChileNPA2–4 shared
a high nucleotide identity of .99 %, showing two, five
and six nucleotide mutations compared with the CyCV-
ChileNPA1 genome, respectively. All of these point muta-
tions were synonymous except R25S and K93E in the ORF
of CyCV-ChileNPA4 Rep.

The four CyCV-ChileNPA PCR-positive samples were
then reanalysed using the same metagenomics approach
but individually tagged to identify other viruses in these
four samples. A total of 2697 unique sequence reads were
generated. Three unique CyCV-ChileNPA1 reads were

Human respiratory cyclovirus

http://vir.sgmjournals.org 923



Table 1. Distribution of sequence reads to different viral types/species in 12 NPA pools from Chile

Virus NPA pool no. and no. of reads Total

reads

1 2 3 4 5 6 7 8 9 10 11 12

1 246 305 1 381 713 1 561 246 1 775 509 1 136 293 1 383 673 1 327 383 1 139 854 664 165 621 987 1 033 709 1 462 032

Anelloviruses 247 1115 605 43 81 907 950 575 58 123 645 5347

Enterovirus C 1759 772 2531

Beta coronavirus 1198 1198

Bocavirus 1 326 12 116 454

Respiratory syncytial

virus

10 13 13 119 4 159

Human adenovirus 3 93 93

Enterovirus B 85 85

Human rhinovirus A 5 10 11 11 37

Human rhinovirus C 8 2 2 12

Human parainfluenza 3 2 8 10

Adeno-associated virus 10 10

Human

metapneumovirus

6 2 8

Human rhinovirus B 4 4

Human parechovirus 2 2 4

Cyclovirus 1 1
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generated from the NPA sample in which it was originally
detected. No other viral sequences were detected. A total of
6362 unique reads were also generated from the other three
samples positive only by PCR for the cyclovirus. All three

samples contained anellovirus sequences (a total of 456
reads) and no other close matches to mammalian viruses.
Anelloviruses are highly prevalent viruses present in many
anatomical sites of different mammals (Okamoto, 2009b)
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Fig. 1. Details of the novel cyclovirus CyCV-ChileNPA1. (a) Genome organization and its stem–loop structure. The locations of
the putative rep and cap genes are indicated by arrows. (b) Pairwise sequence alignments of CyCV-ChileNPA1 with its closest
relatives. The sequence nucleotide similarity (%) is indicated by the height of each point along the y-axis. The x-axis shows the
nucleotide positions in the complete genome. (c) Phylogenetic trees generated with Rep and Cap proteins (concatenated) of
cycloviruses. Bars, amino acid substitutions per position.
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and are generally considered commensal infections. Anello-
viruses have also been found in a significant minority of
cases of idiopathic pulmonary fibrosis and in cases of acute
lung injury (Wootton et al., 2011), are at higher prevalence in
plasma and nasopharyngeal samples of febrile versus non-
febrile cases (McElvania TeKippe et al., 2012) and are
generally increased in the plasma of immunosuppressed
individuals such as advanced AIDS patients (Li et al., 2013) or
transplant recipients (De Vlaminck et al., 2013). A porcine
anellovirus (torque teno sus virus species 1) has also been
associated with porcine respiratory disease complex where it
might exacerbate infections caused by porcine circovirus 2
and the arterivirus porcine reproductive and respiratory
disease symptom virus (Rammohan et al., 2012).

The detection of cyclovirus DNA in different human
samples, including faeces, blood and CSF, and in the
muscle tissues of farm animals suggests that cycloviruses
may cause systemic infections in mammals (Li et al., 2010;
Smits et al., 2013; Tan et al., 2013). The detection of
cyclovirus DNA in NPAs (upper respiratory tract) of
children with lower tract respiratory problems raises the
possibility of a role for these viruses in respiratory illnesses.
Further investigations of the host and tissue tropism, the
transmission route(s) and any physiological consequences
of human cyclovirus infections and possible interactions
with anelloviruses are required.
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