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Abstract
Considerable progress has been made in the past few years in the fight against Alzheimer’s disease
(AD) and Parkinson’s disease (PD). Neuropathological studies in human brains and experimental
in vivo and in vitro models support the notion that synapses are affected even at the earliest stages
of the neurodegenerative process. The objective of this manuscript is to review some of the
mechanisms of synaptic damage in AD and PD. Some lines of evidence support the notion that
oligomeric neurotoxic species of amyloid β, α-synuclein, and Tau might contribute to the
pathogenesis of synaptic failure at early stages of the diseases. The mechanisms leading to
synaptic damage by oligomers might involve dysregulation of glutamate receptors and scaffold
molecules that results in alterations in the axonal transport of synaptic vesicles and mitochondria
that later on lead to dendritic and spine alterations, axonal dystrophy, and eventually neuronal loss.
However, while some studies support a role of oligomers, there is an ongoing debate as to the
exact nature of the toxic species. Given the efforts toward earlier clinical and preclinical diagnosis
of these disorders, understanding the molecular and cellular mechanisms of synaptic degeneration
is crucial toward developing specific biomarkers and new therapies targeting the synaptic
apparatus of vulnerable neurons.

INTRODUCTION
The past few years have witnessed considerable progress in the fight against Alzheimer’s
disease (AD), with the introduction of the revised clinical [1] and neuropathological [2]
criteria for the diagnosis of AD, identification of new biomarkers [3–5], better
characterization of the poly-genetic aspects of AD [6, 7], and a more clear understanding of
the contribution of neurotoxic aggregates of amyloid β (Aβ) [8–10] and microtubule
associated protein τ (Tau) [11, 12], to the pathogenesis of neurodegeneration in AD.
Likewise, in disorders with parkinsonism and dementia such as Parkinson’s disease (PD),
PD with dementia (PDD) and dementia with Lewy bodies (DLB) (jointly denominated
Lewy body disease [LBD]) [13] dramatic progress has been made in identifying new genes
involved in familial [14] and sporadic [15] forms, several of them possibly converging on
the α-synuclein (α-syn) pathway [16, 17].
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In 2013 an estimated 5.2 million Americans of all ages have AD and 1 million have PD [18].
This year an estimated 450,000 people in the US will die with AD, making AD the sixth-
leading cause of death in the US [18]. Without a cure, the number of cases of AD, as defined
by the 1984 and DSM-IV criteria, will double by the year 2050, with western states
experiencing the highest rates [18]. The new criteria published in 2011 proposed three stages
of the disease, namely preclinical AD, mild cognitive impairment (MCI) due to AD, and
dementia due to AD [1]. The 2011 criteria proposes that AD begins before the development
of symptoms and that new positron emission tomography (PET) and cerebral spinal cord
fluid (CSF) biomarkers are able to identify brain alterations before the onset neurological
alterations [1]. However, the predictive value of such biomarkers is not yet proven in
sporadic preclinical cases [19]. If AD can be detected earlier, as defined by the 2011 criteria,
the number of people reported to have AD will be much larger than 5 million.

In 2011 a workgroup of experts was organized to revise the 1997 neuropathological criteria
for the diagnosis of AD and related disorders [2]. The 1997 criteria required a history of
dementia [20], while the new criteria disentangle the clinico-pathologic term “Alzheimer’s
disease” from AD neuropathologic change [2]. Using the new criteria, AD neuropathologic
change would be ranked along three parameters (Amyloid, Braak, CERAD) to obtain an
“ABC score”. For this purpose a modified version of Thal phases of Aβ plaque
accumulation was proposed [21], adapted to a four-point scale, continued use of the staging
scheme for neurofibrillary tangles as described by Braak [22], reduced to four stages that
improves inter-rater reliability, and continued use of CERAD protocol for neuritic plaque
scoring [23]. The new criteria provided guidance on clinico-pathologic correlations for
pathologists reporting autopsy findings based on the literature and analysis of the National
Alzheimer’s Coordinating Center (NACC) database. The new criteria also emphasized the
importance of assessing non-AD brain lesions in recognition of commonly co-morbid
conditions in cognitively impaired elderly. Among the co-morbid conditions,
synucleinopathies such as PD, PDD and DLB, are important given that over 75% of patients
with AD display LB’s in the amygdala [24, 25] and about 25% of patients with AD develop
parkinsonism [26].

The main purpose of this manuscript is to review evidence supporting the synapse failure
hypothesis of AD and LDB and the role of Aβ, α-syn, and Tau accumulation in the
pathogenesis of this process. We conclude that synaptic dysfunction occurs early, followed
by pre-synaptic and spine loss, axonal dystrophy and eventually neuronal loss. We focus on
synapses because Aβ is released at the synaptic terminal [27] and α-syn localizes to the
synaptic vesicles [28] where they can effect synaptic transmission. However, a number of
other cellular substrates play an equal important role (e.g.: neuro-inflammation, vascular,
glial) and deserve close consideration. For example, a recent GWAS study highlighted the
association of AD with innate immune response [29–33].

SYNAPTIC DAMAGE AND Aβ IN EARLY ALZHEIMER’S DISEASE
For several years the classical definition of neurodegeneration in disorders such as AD and
PD was limited to the finding of selective neuronal loss and astrogliosis. This concept has
now been expanded to include synaptic loss and neuro-inflammation. Synaptic damage can
be detected at the earliest stages of AD. Patients with MCI demonstrate loss of pre-synaptic
proteins such as synaptophysin, VAMP2, and SNAP25 and post-synaptic markers such as
PSD95 and Shank1 [34]. Likewise ultrastructural [35] and confocal microscopy studies [36]
have shown progressive alterations of synapses in early stages of AD and in APP tg models
[37]. This has been confirmed in experimental APP transgenic models [38], as well as after
acute injection of Aβ oligomers [39]. These studies have shown more severe loss of
glutaminergic terminals but not GABAergic terminals in the hippocampus [40, 41].
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Consistent with the neuropathological and structural studies, recent gene array investigations
have shown that in early AD there is altered expression of genes involved in synaptic vesicle
trafficking and release, neurotransmitter receptors and receptor trafficking, postsynaptic
density scaffolding, cell adhesion regulating synaptic stability, and neuromodulatory
systems [42–45]. The memory impairment in patients with AD is related to synaptic loss in
the neocortex and limbic system [46–48]. In contrast, cognitive impairment does not
correlated with Aβ plaques in the brain. The loss of synapses in AD is greater than the extent
of the neuronal loss in the cortex. This suggests that synaptic damage precedes the loss of
neuronal cell bodies. This is why synapses are a good correlate to cognitive deficits [43, 46,
47, 49–52]. The remaining synapses appear to be enlarged representing a possible
compensatory mechanism [47, 53, 54].

The mechanisms of synaptic loss in AD might involve axonal transport defects, oxidative
stress, mitochondrial damage, and neuroinflammation among others [55]. Increasing levels
of Aβ1–42, the proteolytic product of APP metabolism are also suspected to be centrally
involved in the pathogenesis of synaptic damage in AD [56–60] (Fig 1A). Accumulation of
Aβ in AD is the result of an imbalance in the mechanisms of synthesis, aggregation, and
clearance (Fig 1B). Increased synthesis and aggregation has a prominent role in familial AD,
and altered clearance including degradation and autophagy has a role in sporadic AD [61,
62]. The mechanisms through which accumulation of Aβ and other APP metabolites might
lead to synaptic damage and neurodegeneration are under investigation. More specifically,
the potential role of neurotoxic Aβ oligomers has emerged as a topic of considerable interest
in recent years [63–66] (Fig 1).

Monomeric Aβ can aggregate to form amyloid fibrils, protofibrils, annular structures [67],
Aβ-derived diffusible ligands (ADDLs) [68] and smaller order oligomeric species (for
reviews, see [69–74]). Oligomers of Aβ can organize into dimers, trimers, tetramers, and
higher order arrays that can form annular structures [75]. Smaller oligomers are divided into
those generated from synthetic peptides and those purified from cells, transgenic (tg) mice,
or AD human brains [8, 69, 76]. However, it is worth noting that there is great heterogeneity
in the Aβ arrays accumulating in the brain of AD patients, and more recent studies have
highlighted that there is uncertainty around the pathological significance of some of these
oligomeric species [76].

An example of a naturally occurring oligomer specie is Aβ*56 derived from the brains of
APP tg mice, which has been shown to promote age-dependent memory deficits [77]. Aβ*56
and Aβ trimers secreted by cultured cells could turn out to share common synaptotoxic
properties [69]. The Aβ dimers, trimers, and higher order oligomers secreted by cultured
neurons inhibit LTP, damage spines, and interfere with activity-regulated cytoskeleton
associated protein (Arc) location [64, 65, 69, 78, 79]. Additional studies have shown that Aβ
dimers extracted from human CSF disrupt synaptic plasticity and inhibit hippocampal LTP
in vivo [80] (Fig 1). Together, these studies indicate that Aβ oligomers, ranging in size from
2–12 subunits, might be responsible for the synaptic damage and memory deficits [81]. A
number of recent studies have begun to investigate the possibility that Aβ oligomers might
interfere with synaptic function by altering synaptic proteins such as post-synaptic
density-95 (PSD95) [82–85], Shank1 [34], and glutamate receptors [86].

Although the neurotoxic effects of the Aβ have been widely studied in experimental models,
less is known about the characteristics of the oligomers across the spectrum of AD and how
this correlates with cognition and synaptic proteins. We have previously utilized
immunoblot analysis to investigate the relationship between levels of Aβ oligomers and
synaptic proteins in fractions from the brains of AD patients and APP tg mice. Our studies
show that Aβ oligomers, in particular dimers and pentamers, progressively accumulate in the
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brains of AD patients, as well as in APP tg mice. This was accompanied by reductions in the
levels of synaptic scaffold proteins such as PSD95, Shank1 and Shank3 [34].

While accumulation of Aβ oligomers at the synaptic site have been proposed to be an
important trigger in the pathogenesis of AD, this hypothesis has been challenged by the lack
of a unified description of the toxic oligomer [76] and by recent negative results from
clinical trials using Aβ vaccines [87]. Alternative explanation as to why the vaccine trials
showed little or no efficacy include that patients treated were at late stages of the disease and
that the antibodies did not target specific Aβ oligomers [88].

DOWNSTREAM MECHANISMS OF SYNAPTIC DEGENERATION IN
ALZHEIMER’S DISEASE

As described in the previous section, synaptic degeneration occurs early in the progression
of AD involving neocortical and limbic system circuitries. Upstream of the cascade is the
accumulation of Aβ oligomers at the synaptic sites. The process of synaptic damage could
involve a multistep process beginning with dysregulation of glutamate receptors [89, 90] and
scaffold molecules such as PSD95 and Shank1 [34] that results in alterations in the axonal
transport of synaptic vesicles and mitochondria that later lead to dendritic and spine
alterations, as well as axonal dystrophy (Fig 2). Therefore, in the early stages synaptic and
network dysfunction [91, 92] might be the norm and actual loss of pre-synaptic terminals
and dendritic spines will occur later as synapses become more damaged (Fig 2). Some
studies have suggested that at the early stages of the disease progression, aberrant synaptic
sprouting might occur as a compensatory mechanism [44]. This is followed by axonal
degeneration, while neuronal loss occurs in the later stages of the disease.

Downstream to the accumulation of Aβ oligomers at the synaptic sites there are a number of
receptors and signaling cascades involved that converge on abnormal Tau phosphorylation,
aggregation and mis-localization from the pre-synaptic to the axonal site (Fig 2). Several Aβ
oligomers receptors have been identified including mGluR5 [93], ephrin (ephR2) [94], prion
protein (PrP) [95] and others. Extracellular Aβ oligomers bound to lipid-anchored PrP(C)
activates intracellular Fyn kinase to perturb synapses (Fig 1) [96–98]. Moreover, recent
studies have shown that co-expression of the metabotropic glutamate receptor, mGluR5,
allowed PrP(C)-bound Aβ to activate Fyn. PrP(C) and mGluR5 interact physically, and
cytoplasmic Fyn forms a complex with mGluR5, resulting in eEF2 phosphorylation and
dendritic spine loss [99].

Once bound to synapses, Aβ oligomers can dysregulate the activity and reduce the surface
expression of both N-methyl-D-aspartate (NMDA) and 2-amino-3-(3-hydroxy-5-methyl-
isoxazol-4-yl)-propanoic acid (AMPA) types of glutamate receptors, impairing signaling
pathways involved in synaptic plasticity [100, 101]. Another interesting finding is that the
glutamate receptor system involved in synaptic loss in AD is represented by extracellular
NMDARs (eNMDARs). Recent studies have shown that Aβ induces the release of astrocytic
glutamate, which in turn activates extrasynaptic NMDA receptors on neurons [102]. This
eNMDAR activity leads to synaptic transmission, tau phosphorylation, and caspase-3
activation, each of which is implicated in spine loss. Nitromemantine, which blocks
eNMDARs activity, protects synapses from Aβ oligomer toxicity [102] (Fig 1).

Finally, recent work has also found that Aβ oligomers are ligands with nanomolar affinity to
paired immunoglobulin-like receptor B (PirB) in murines and its human ortholog, leukocyte
immunoglobulin-like receptor B2 (LilrB2). The extracellular domains of PirB and LilrB2
mediate this role, leading to cofilin signaling. The synapto-toxic effects of Aβ oligomers
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require PirB, and in a transgenic model of AD, PirB not only contributed to memory deficits
present in adult mice, but also mediated loss of synaptic plasticity the cortex [103].

Downstream to Aβ, recent studies suggests an emerging role for Tau at the synapse (Fig 2).
Even in the absence of tangles, mice over-expressing human Tau display significant synaptic
degeneration, suggesting that soluble, oligomeric Tau is the synaptotoxic species [104].
Aggregated or hyperphosphorylated Tau is able to interact with post-synaptic signaling
complexes, regulating glutamatergic receptor content in dendritic spines [105], and
influencing axonal mitochondrial transport [106, 107]. Interestingly, reducing Tau by
genetic means [106] or with immunotherapy reduces behavioral deficits, synaptic
dysfunction and network degeneration [108] (Fig 2).

Recent studies suggest that the abnormal localization of Tau to the dendrites might play a
role in AD [109]. In support of this possibility, a study showed that Tau translocation to
dendrites is mediated by spastin, a microtubule (MT)-degrading enzyme. Spastin is recruited
by MT polyglutamylation, induced by Tau mis-sorting, triggering translocalization of
TTLL6 (Tubulin-Tyrosine-Ligase-Like-6) into dendrites. Consequences of this translocation
include spine loss, as well as mitochondria and neurofilament mislocalization. Adding Tau
to Tau-deficient neurons reestablishes Aβ-induced toxicity, which requires phosphorylation
of Tau’s KXGS motifs. Transgenic mice overexpressing Tau show TTLL6 translocalization
into dendrites and decreased MT stability [110].

Another interesting downstream pathway includes α1-takusan, which was previously
identified as a protein that enhances synaptic activity via interaction with PSD-95 and
mitigates oligomeric Aβ-induced synaptic loss. In contrast, knockdown of takusan results in
enhanced synaptic damage. α1-Takusan interacts with Tau either directly or indirectly, and
prevents Aβ-induced Tau aggregation and mitochondrial pathology. α1-Takusan protects
synapses from Aβ-induced insult via interaction with PSD-95 and Tau [111].

In addition to the indirect interactions between Aβ and Tau mediated by receptors and
signaling pathways, recent studies suggest that monomeric and oligomeric Aβ directly
interacts with tau in neurons affected by AD. These interactions progressively increased
with the disease process damaging synapses, leading to cognitive decline in AD patients
[112].

In between the Aβ oligomer receptors and Tau, a number of studies suggest the role for
abnormal activation of signaling cascades including GSK3β, CDK5 and Fyn kinase (Fig 1).
Pharmacological interventions targeting the interactions between Aβ oligomer and receptors
as well as blocking these kinases have been proposed for the treatment of AD. A number of
reviews deal with this subject in greater detail [113–116].

SYNUCLEIN ACCUMULATION IN SYNAPTIC DEGENERATION IN LEWY
BODY DISEASE

Lewy body diseases (LBDs) form a heterogeneous group of disorders including PD, PDD
and DLB [13]They are often referred to as synucleinopathies as the accumulation of the
presynaptic protein α-syn is what characterizes LBDs. α-Syn is a highly abundant protein at
the pre-synaptic terminals [117–119], where it is associated with the distal reserve pool of
synaptic vesicles [120–122] and has a role in the regulation of neurotransmitter release,
synaptic function and plasticity [123, 124] (Fig 3). Various mutations (A53T, A30P, and
E46K) [125–127] and multiplications of [128] within the gene encoding of α-syn (SNCA)
leads to dominant familial parkinsonism (Fig 3A). Furthermore, certain polymorphisms in
SNCA are associated with elevated risk levels for sporadic PD [129]. An increasing group of
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evidence from animal models, as well as data from genetic, biochemical and biophysical
studies support the hypothesis that the processes of α-syn oligomerization [130, 131] and
fibril growth [132, 133] have central roles in the pathogenesis of PD and other
synucleinopathies [134–136] (Fig 3A).

α-Syn aggregates that might play a role in LBD include oligomers, protofibrils, and fibrils.
The Lewy bodies, which are the hallmark of LBD, contain mostly fibrillar forms of α-syn
[137, 138]. As is the case with Aβ for AD [76], there is no consensus as to the precise α-syn
aggregates that are responsible for the synaptic damage in LBD [135]. However, there is
indirect evidence supporting the existence of oligomeric α-syn intermediates in vivo under
pathophysiological conditions[120, 131, 139–141].

A number of oligomeric intermediates of different morphologies, including spherical, chain-
like, and annular oligomers have been described prior to fibril formation by α-syn [142].
Studies suggest that α-syn oligomers can be divided into small (~2–5 mers), medium (~5–15
mers), and large (~15–150 mers)[143, 144]. It is unclear which of these aggregates are
physiological and which ones represent toxic species. A couple of studies have reported a
stable native α-syn tetramer [145, 146] while other studies suggest the monomer as the
native structure [147]. A more recent study suggests that most of the native α-syn is a
monomer with a small fraction as trimers and tetramers that prevent non-membrane-bound
monomers from aggregating [148]. In vitro studies suggest that the oligomers that undergo a
conformational change leading to PK-resistant species might be more toxic [143].

The levels of α-syn is regulated through the balance between rates of α-syn synthesis,
aggregation, and clearance [149] (Fig 3B). Dysfunction of one or more of the pathways that
balance these rates can lead to anomalous and, therefore, toxic levels of α-syn. For example,
in certain forms of familial parkinsonism, multiplication of SNCA leads to elevated
accumulation of α-syn due to the increase in the protein expression levels [128], whereas in
other forms, SNCA mutations enhance the propensity of α-syn to aggregate [130]. A
genome-wide association study (GWAS) linked certain variations in the SNCA gene to
higher risk for developing PD [15]. A representative example of such a polymorphism is
known as Rep1. Rep1 occurs in the promoter region of SNCA and could increase the
susceptibility to PD by increasing the expression of α-syn [150]. Clearance of α-syn
monomers and aggregates takes place via direct proteolysis (i.e., by neurosin or matrix
metalloprotease 9 (MMP9)) [151], binding to molecular chaperones (for example, heat
shock proteins (HSPs)) [152], the proteasome [153–155], and autophagy (related to the
activity of the lysosome) [149, 156–158]. In some isolated forms of PD and DLB, inability
of the autophagy pathways to eliminate oligomers might facilitate α-syn-mediated toxicity
[157]. It has been shown that chaperone-mediated autophagy [121] of mutant α-syn is
impaired. In PD and DLB, regulation of the levels of key autophagy molecules such as
ATG7, a ubiquitin-like modifier-activating enzyme, and mTOR, a serine–threonine-protein
kinase, are impaired [159].

Accumulation of protease K (PK)- resistant α-syn aggregates at the synaptic site results in
early degeneration in selected circuitries in PD, PDD and DLB [160]. Degeneration in DLB
cases is more closely associated with synaptic accumulation of PK-resistant α-syn than to
Lewy bodies [161]. By confocal microscopy there is an average 30–40% loss of synapses in
the frontal and temporal cortex in patients with DLB. Synapse loss in the frontal-temporal
cortex in DLB patients correlates well with the cognitive impairment [162].

In addition to the direct damage to the synaptic membrane, α-syn oligomers might also
trigger synaptoxicity by damaging mitochondria [163], lysosomes [164], or disrupting
microtubules [165]. Moreover, a recent study showed that α-syn aggregates might interfere
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with the axonal transport of synaptic proteins, such as synapsin-1 [123]. Therefore in the
early stages of the process of synaptic degeneration in synucleonopathies, there is a failure
of synaptic function due to altered transport of vesicles, synaptic proteins, and mitochondria
(Fig 2). This then leads to pre-synaptic terminal loss, dendritic damage, axonal dystrophy
and eventually degeneration of selective neuronal populations within the striato-nigral and
cortico-limbic systems among others (Fig 2).

Similarly to what has been described in the previous sections for AD and Aβ oligomers [93],
in PD/DLB α-syn accumulating at the synapses might interact with several receptors
including mGluR5 [166]. Activation of glutamate receptors could lead to excitotoxicity and
activation of signaling pathways that target Tau aggregation and phosphorylation [167–170]
(Fig 2). However it is possible that downstream of α-syn and signaling pathways, targets
other than Tau might also be involved because knocking down Tau in α-syn tg mice does
not completely rescue the deficits associated [171].

In addition to the role of α-syn accumulating at the synaptic site, recent evidence suggests
that under pathological conditions, toxic α-syn oligomers could be released from neurons
[172–174] (Fig 3B). Failure of the intracellular clearance pathways, such as autophagy,
might contribute to the pathological release of α-syn [157, 175]. Extracellular α-syn
aggregates can then transfer from neuron to neuron or from neuron to glial cell [176] where
they can nucleate further intracellular aggregation and/or trigger neuro-inflammation and
exacerbate the synaptic pathology and neuronal loss [157, 177]. We have recently found that
extracellular α-syn released from neuronal cells is an endogenous agonist for Toll-like
receptor 2 (TLR2), which activates inflammatory responses in microglia. The TLR2 ligand
activity of α-syn is conformation-sensitive; only specific types of oligomer can interact with
and activate TLR2. This paracrine interaction between neuron-released oligomeric α-syn
and TLR2 in microglia suggests that both of these proteins are novel therapeutic targets for
modification of neuroinflammation in PD and related neurological diseases [178]. It is likely
that similar to Aβ oligomers, there are several other neuronal and glial receptors for
oligomeric α-syn.

Supporting a potential role of extracellular α-syn in the synaptopathology in LBD, previous
studies have shown accumulation of α-syn in fetal grafted neurons in patients with PD
[179], as well as in grafted neuronal precursor cells in the hippocampus [157] and basal
ganglia [180] in mouse models. Interestingly, α-syn has also been shown to ectopically
accumulate in oligodendroglial cells in multiple system atrophy (another synucleinopathy)
[181] and in astroglial cells in PD [176, 181]. Moreover, the ascending distribution of the
Lewy body pathology in LBD, as described by Braak [182] and recent studies published by
the group of Dr. V. Lee showing prion-like propagation of α-syn after intra-cerebral
injection of seeds [183], which has been interpreted to support the dissemination of α-syn
from subcortical to cortical brain regions. Hardy has recently reviewed this topic and
identified the caveats of using terminology such as “prion” to describe PD and suggests the
use of the term “templating” [184].

In summary, Aβ, α-syn, and Tau aggregates might play a role in synaptic damage in AD and
LBD. At the earliest stages, it has been proposed that oligomers might interfere with the
transport of synaptic vesicle proteins and glutamate receptors resulting in functional deficits
that are potentially reversible; however, further investigation as to the precise nature of the
toxic oligomers is necessary. Later on signaling pathways and Tau might be engaged in
association with axonal transport defects of trophic factors and mitochondria that in turn
lead to synaptic loss and oxidative stress. This could be followed by axonal alterations and
eventually neuronal loss and neuroinflammation, resulting in irreversible damage (Fig 2).
Given the efforts toward earlier and preclinical diagnosis of AD, PD, and related disorders,
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understanding the molecular and cellular mechanisms of synaptic degeneration is crucial to
developing specific biomarkers and new therapies targeting the synaptic apparatus of
vulnerable neurons.
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Figure 1.
Schematic diagram showing the processing of APP, the formation of Aβ oligomers, and its
interaction with Tau in the mechanisms of synapse loss. A) APP is cleaved by β and γ-
secretases to form sAPPβ. Monomeric Aβ42 can form Aβ oligomers that can be cleared by
ApoE and proteases such as neprilysin and IDE. Both Aβ monomers and oligomers progress
to fibrils and plaques, while Aβ oligomers interact with surface receptors that in turn activate
various kinases to alter Tau, leading to loss of axonal transport of neurotrophic factors and
impaired mitochondrial function, culminating in neurotoxicity. B) Aβ production is
dependent on both Aβ clearance, aggregation and synthesis.
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Figure 2.
Schematic representation of progression of the mechanisms of synaptic damage in AD and
synucleinopathies. At the earliest stages, oligomers interfere with the transport of synaptic
vesicle proteins and glutamate receptors resulting in functional deficits that are potentially
reversible. Later on signaling pathways and Tau are engage in association with axonal
transport defects of trophic factors and mitochondria that in turn lead to synaptic loss and
oxidative stress. This is followed by axonal alterations and eventually neuronal loss,
resulting in irreversible damage different neurotoxic insults, their effect on neuronal
function, and stage with in the disease progression.
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Figure 3.
Role of α-syn in the mechanisms of synapse loss in Lewy body disease. A) Neurotoxic
events and genetic predisposition lead to α-syn misfolding and aggregation that in turn leads
to synaptic damage and ultimately neurodegeneration of dopaminergic and non-
dopaminergic circuits. B) Increased synthesis and aggregation, and/or decreased clearance
of α-syn leads to α-syn accumulation causing toxicity via oligomers and propagation of the
toxic species resulting in in axonal and synaptic damage.

Overk and Masliah Page 20

Biochem Pharmacol. Author manuscript; available in PMC 2015 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


