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Abstract

In neuronal cells, actin remodeling plays a well known role in neurite extension but is also deeply involved in the
organization of intracellular structures, such as the Golgi apparatus. However, it is still not very clear which mechanisms may
regulate actin dynamics at the different sites. In this report we show that high levels of the TTC3 protein, encoded by one of
the genes of the Down Syndrome Critical Region (DCR), prevent neurite extension and disrupt Golgi compactness in
differentiating primary neurons. These effects largely depend on the capability of TTC3 to promote actin polymerization
through signaling pathways involving RhoA, ROCK, CIT-N and PIIa. However, the functional relationships between these
molecules differ significantly if considering the TTC3 activity on neurite extension or on Golgi organization. Finally, our
results reveal an unexpected stage-dependent requirement for F-actin in Golgi organization at different stages of neuronal
differentiation.
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Introduction

Neuronal cells are characterized by a high degree of morpho-

logical and functional polarization, which is required for their

activity as information processors and is progressively established

during development [1–3]. Neuronal polarization, occurring

during the earliest stages of differentiation, is driven by the

interaction of cell-extrinsic and cell-intrinsic mechanisms, imping-

ing on growth cone cytoskeletal dynamics and on polarized

membrane trafficking [4,5].

During the fast axonal growth phase, which follows neuronal

polarization, the Golgi apparatus has a very compact organization

and is oriented towards the growing axon [1,6]. However, since

dendrites initiate their rapid growth phase, the Golgi becomes

more dispersed and is oriented towards the dendrites [6], which

very often contain specialized Golgi outposts associated with

branch points [4,7].

The dynamics of actin cytoskeleton play an essential role at the

growth cone [8–10] and at the Golgi [11,12] and are likely to be

involved in the crosstalk between these two structures during

neurite extension. Remodeling of F-actin at the growth cone is

essential for neuronal polarization, since the neurite which will be

specified as the axon is characterized by increased actin instability

[13]. This condition allows the penetration of microtubules, which

can direct membrane flow from the Golgi to the growing tip

[8,14]. On the other hand, while in most cell types depolymer-

ization of the actin cytoskeleton does not disrupt Golgi compact-

ness [11], it may elicit Golgi fragmentation in differentiating

neurons [15].

As in all the other cell types, cytoskeletal dynamics of neuronal

cells are primarily orchestrated by small GTPases of the Rho

family and by their effector networks [2]. Rho-GTPases may act

both at the growth cone and at the Golgi, strongly suggesting that

they could mediate the dynamic crosstalk between these structures

during differentiation.

This possibility is strongly supported in the case of Cdc42 and of

its effectors. Indeed, Cdc42 is enriched in the Golgi [16] and is

accumulated by polarity cues at the axonal growth cone, where it

may promote actin instability and actin retrograde flow by

increasing the local phosphorylation of Cofilin, which is mediated

by the ser/thr kinase LIM-kinase [17–21]. This can be in turn

activated by the Rac1/Cdc42 effectors PAK kinases [22] or by the

RhoA effectors Rho-kinases (ROCKs) [23]. In addition, in

neuronal cells, LIMK can promote the delivery of the PAR3/

PAR6 polarity complex to the growth cone [21]. Together, these

reports suggest that the CDC42 to LIMK pathway may sustain a

positive feedback loop between the Golgi and the growth cone,

which may maintain polarity. Accordingly, the CDC42 effectors

PAK4 [18] and LIMK1 [21] are localized both at the growth cone
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and at the Golgi; in the case of LIMK1 it has also been shown that

Golgi localization is important for axon outgrowth [21].

Previous studies suggest that also RhoA could mediate a Golgi

to growth cone crosstalk. It is well established that RhoA inhibits

growth cones extension through a pathway connecting RhoA with

the neuro-specific Profilin IIa isoform (PIIa) [24] through ROCKs

[2,10]. In addition, we found that active RhoA is specifically

associated with the Golgi of differentiating neurons [15] and that it

may regulate Golgi compactness through Citron-N (CIT-N) [25],

a CNS-specific variant of the cytokinesis regulator Citron-kinase

(CIT-K) [26–28]. Since CIT-K is capable to inhibit neuronal

differentiation [29], it is conceivable that it may share this activity

with CIT-N, but this has not been demonstrated directly so far.

The product of the TTC3 gene [30] is an interesting possible

regulator of these molecules in neuronal differentiation. TTC3 is

one of the genes mapped to the Down Critical Region, a relatively

small locus of human Chr. 21 that plays a major role in generating

the characteristic intellectual disability of Down syndrome [30].

The encoded protein contains four TPR motifs in the amino-

terminal half, a potentials coiled-coil region and a Citron binding

region in the central part and a E3 ubiquitin ligase ring-finger

domain at the carboxi terminus [31,32]. The only substrate of the

ubiquitin-ligase activity of TTC3 so far reported is the phosphor-

ylated form of Akt [33]. Expression profiling studies, performed in

human cells from patients and in mouse models have shown that

TTC3 is one of the most consistently upregulated genes in a Chr.

21-related trisomic context and in other disorders associated with

intellectual disability [34]. These data suggest that increased

expression levels of TTC3 in neuronal cells may significantly

contribute to the phenotypes that characterize Down syndrome

(DS).

In agreement with this possibility, we previously found that

TTC3 inhibits the neuronal-like differentiation of pheocromocy-

toma cells by activating RhoA and by binding to Citron proteins

[32]. However, TTC3 has never been studied so far in primary

neuronal cells. Moreover, it is not known whether, being a Citron

partner, TTC3 may also control neuronal Golgi organization and

whether this may relate to its effects on differentiation.

In this report we have used hippocampal neurons in primary

culture to investigate the effects of TTC3 levels on neurite

extension and Golgi organization during the early stages of

neuronal differentiation. Moreover, we analyzed the role of F-

actin and the pathways that could connect TTC3 to actin

remodeling, using overexpression, RNAi-mediated knockdown or

pharmacological inhibition of the critical genes. The results of

these experiments and their possible implications are described

and discussed.

Results

TTC3 Restrains Neuronal Differentiation by Modulating F-
actin Stability: Role of CIT-N and of the Other RhoA
Downstream Players
To address whether TTC3 can modulate the physiologic

neuronal differentiation program, we resorted to rat hippocampal

neurons in primary culture [35], which were first used to perform

overexpression studies. In particular, neurons were electroporated

immediately before plating with plasmids expressing GFP-TTC3

from a CMV promoter and their morphology was assessed 24 and

48 hours after transfection. The typical transfection efficiency was

around 30% and transfected cells displayed TTC3 levels 5 to 10

folds higher than endogenous levels (Fig. S1A). TTC3 overex-

pression strongly impaired neuronal differentiation, with only 20%

of the neurons displaying a multi-neurite morphology (stage 2,

[35]) at 24 hours (Fig. 1A), or displaying a clearly polarized

morphology (stage 3, [35]) at 48 hours (Fig. 1B). In comparison,

50% and 90% of cells transfected with a control GFP plasmid

reached Stage 3 at 24 hours and 48 hours, respectively (Fig. 1A–

B). Time-lapse recording (Fig. 1C, Movies S1 and S2) showed that

cells expressing high TTC3 levels are capable to progress from

spherical morphology (stage 1, [35]) to a bipolar shape, but are

then defective in neurite elongation. To establish whether the

over-expression paradigm reflects the role of TTC3 in the

physiological context, i.e. it is a physiological modulator of neurite

outgrowth, we set out to reduce its expression by RNA

interference, using two independent sequences which have been

previously validated [32]. Primary neurons were transfected in

suspension shortly after dissection and analyzed 72 hours later.

The typical transfection efficiency was around 40% and shRNA-

expressing constructs reduced TTC3 immunoreactivity at levels of

approximately 30%, if compared to controls (Fig. S1B). Axonal

length was significantly increased in TTC3-depleted neurons

(Fig. 1D–E). As expected, this phenotype was reverted by

cotransfection of an expression construct encoding full length

TTC3 (Fig. 1F). Since axon is the neurite growing at higher speed

in this window of the differentiation program, these results are

consistent with the possibility that TTC3 plays a physiological role

in neurite growth.

To address the role of the actin cytoskeleton in the phenotype

induced by abnormal TTC3 levels, we tested whether these can be

modified by changes of the polymerization state of actin. In

particular, since the overexpression of TTC3 can be detected

already 6 hours after transfection (data not shown), to evaluate the

role of actin polymerization on the overexpression phenotype we

measured the percentage of differentiated cells (i.e. of cells

possessing at least one neurite longer than twice the cell body)

and the average number of neurites per cell, which are two

fundamental parameters of the early differentiation stages.

Moreover, since in RNAi experiments the reduction of TTC3

can be detected only 72 hours after transfection, to evaluate the

role of actin polymerization on the knockdown phenotype we

measured axonal length. Interestingly, in TTC3 overexpressing

neurons, the percentage of differentiated cells (Fig. 2A–B) and the

number of neurites (Fig. 2C) were restored to control values by

treatment with 1 mM of the actin-destabilizing drug Cytochalasin

D (CytoD). Conversely, Jasplakinolide (Jaspla), a macrocyclic

peptide which stimulates actin nucleation and induces actin

polymerization, reverted to control levels the increased axonal

length induced by TTC3 knockdown (Fig. 2D).

We previously found that in PC12 cells the excess of TTC3

inhibits differentiation by activating RhoA, through a pathway

requiring CIT-K but not impinging on Rho kinases (ROCKs)

[32]. Although it appears reasonable to postulate that a similar

mechanism may operate in neurons, it is also possible that TTC3-

dependent events occurring in primary neurons are significantly

different from those characterizing immortalized neuroendocrine

cell lines. For instance, an important difference is that post-mitotic

neurons express CIT-N but do not express CIT-K [15,28,36],

while PC12 and neuroblastoma cells express only CIT-K

regardless of their differentiation state [29,32]. Therefore, we

assessed the role of CIT-N, RhoA and ROCK in the events

activated by TTC3 overexpression in hippocampal neurons

during the early stages of differentiation. We first asked whether,

as in the case of CIT-K in neuroblastoma cells [29], CIT-N may

restrain neurite outgrowth in primary neurons. This was indeed

the case, since the knockdown of CIT-N increased axon outgrowth

in primary neurons (Fig. 3A) similarly to TTC3 knockdown.

Moreover, CIT-N knockdown significantly increased the number
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of differentiated cells in TTC3-overexpressing neurons (Fig. 3B),

thus indicating that CIT-N is a physiological modulator of

neuronal differentiation acting downstream of TTC3. Consistent

with this observation, the overexpression of CIT-N significantly

reduced the percentage of differentiated neurons (Fig. 3C).

Inhibition of RhoA in TTC3-overexpressing neurons, obtained

through a cell-permeable C3 toxin, significantly increased the

number of differentiated cells (Fig. 3D–E), a result consistent with

the previous findings [32]. However, in contrast with the results

obtained in PC12 cells [32], inhibition of ROCK by the Y27632

compound partially rescued the differentiation phenotype (Fig. 3D

and 3F), thus indicating that in primary neurons ROCK acts

downstream of TTC3. Inhibition of RhoA did not rescue the

differentiation phenotype induced by CIT-N overexpression

(Fig. 3E), suggesting that in this context CIT-N acts downstream

of RhoA. Moreover, the inhibition of ROCK in CIT-N

overexpressing neurons significantly increased the percentage of

differentiated cells (Fig. 3F), indicating that ROCK may act

downstream of CIT-N. Taken together, these results provide

evidence that TTC3 levels affect neuronal differentiation at least

in part through actin remodelling via RhoA, CIT-N and ROCK,

with these molecules acting in a linear pathway.

Increased Levels of TTC3 Disrupt Neuronal Golgi: Role of
CIT-N and of the other RhoA Downstream Players
Because of the close functional relationship between morpho-

logical differentiation and organelle polarization [37–39], of the

previously reported interaction between Citron proteins and

TTC3 [32], and of the involvement of CIT-N in neuronal Golgi

organization during the late stages of neuronal differentiation [15]

we investigated whether the excess or paucity of TTC3 and CIT-

N affect Golgi organization at early differentiation stages. The

overexpression of TTC3 had a dramatic effect, since most of the

TTC3-overexpressing cells displayed a fragmented Golgi already

24 hours after transfection (Fig. 4A–B). This phenotype led us to

analyze by immunofluorescence whether TTC3 is localized to this

organelle in physiological conditions. Under normal fixation,

TTC3 is diffusely detectable in the cytoplasm and in the neurites

of primary neurons, in which it displays a polarized enrichment

(Fig. S1B and 4C). Interestingly, in cells in which the cytosolic pool

of TTC3 was extracted with saponin before fixation, most of the

TTC3 immunoreactivity was eliminated and the residual signal

showed a clear colocaIization with Golgi markers (Fig. 4D). The

good colocalization was confirmed by a pixel-by-pixel analysis

(Fig. 4E). This revealed that the percentage of TTC3-positive

GM130 pixels is close to 100% in both cases, while the percentage

of GM130-positive TTC3 pixels is approximately three times

higher in pre-extracted cells (Fig. 4E). Under the same conditions,

no enrichment at the growth cone could be detected (data not

shown). We then asked whether TTC3 is a physiological

determinant of Golgi compactness, by performing RNAi as

described above. Since no gross qualitative effects could be

detected by expert inspection, we performed a quantitative

analysis of Golgi compactness in TTC3-dpeleted cells, using a

previously described strategy [40]. However, even in this case no

differences with control cells could be detected (Fig. 4F).

These results indicate that TTC3 can associate with Golgi

membranes and that abnormal TTC3 levels can alter Golgi

organization, although TTC3 is most likely not involved in

regulating basal Golgi structure. We then assessed whether, as in

the case of neurite extension, the effects of TTC3 overexpression

on Golgi are mediated by increased actin polymerization.

Treatment with CytoD decreased significantly the number of

TTC3-overexpressing neurons with fragmented Golgi, even

though this was not reverted to control values (Fig. 5A). This

result was not expected since we previously found that CytoD

induces Golgi fragmentation in neuronal cells [15]. However, the

fact that the previous experiments were performed at 7 DIV, while

the present experiments were performed at 1 DIV raised the

possibility that the status of actin cytoskeleton may affect Golgi

organization in different manner at different stages of neuronal

development. We therefore checked the effects of 1 mM and of

2.5 mM CytoD on our cultures at 1 DIV and at 7 DIV. We thus

confirmed that CytoD has no effect on Golgi compactness at 1

DIV, while it induces Golgi fragmentation at 7 DIV (Fig. S2).

Next, we analyzed the role RhoA, ROCK and CIT-N in the

TTC3-induced Golgi fragmentation phenotype. Inhibition of

RhoA and of ROCK partially restored Golgi compactness

(Fig. 5B and 5C), with quantitatively similar effects. Moreover,

we found that also CIT-N knockdown was capable to partially

rescue the Golgi fragmentation phenotype induced by TTC3

overexpression (Fig. 5D). This result was unexpected since we

previously found that, at 7 DIV, CIT-N is required to maintain

Golgi compactness [15]. It suggests that, as in the case of actin,

also the requirement for CIT-N during the first stages of

differentiation could be significantly different if compared to later

time points. Accordingly, we found that CIT-N depletion in 1 DIV

cells does not affect Golgi compactness (Fig. 5D). In addition, the

overexpression of CIT-N at 1 DIV induced a Golgi fragmentation

phenotype comparable with the phenotype induced by TTC3

overexpression (Fig. 5B–C). Even in this case the phenotype was

partially rescued by RhoA inactivation (Fig. 5B). In contrast, the

Golgi fragmentation induced by CIT-N overexpression was not

modified by ROCK inhibition (Fig. 5C). These results indicate

that abnormally high levels of TTC3 alter Golgi organization, at

least in part through actin hyperpolymerization mediated by

RhoA, CIT-N and ROCK. However, the relationships between

CIT-N and the other two players are significantly different if

compared to neurite extension phenotype (see discussion).

The Neuronal Phenotypes Induced by TTC3
Overexpression are Reverted by Increased LIMK and
Decreased PIIa Levels
Based on current models, the RhoA effector ROCK could

increase actin polymerization downstream of TTC3 by two

different pathways. On one hand, ROCK may increase the

amount of F-actin through the activating phosphorylation on Thr-

Figure 1. Effects of altered TTC3 levels on neuronal differentiation. A–B. Hippocampal neurons extracted from E18.5 rats were
electroporated by nucleofection with the indicated plasmids. 24 hours (A) or 48 hours (B) after plating, cells were processed for immunofluorescence
and the morphology of GFP-positive cells was assessed to analyze their distribution across the indicated differentiation stages. C. Selected frames
from time-lapse series of neurons transfected as in panel A, undergoing differentiation in culture. For full movies, see supporting material. D–E.
Hippocampal neurons were nucleofected with control or TTC3-specific sh-RNA-expressing plasmids, plated and allowed to differentiate 72 hours in
culture. Cells were then processed for IF with anti-Tau antibodies and the axonal length was then quantified with ImageJ. F. Overexpression of GFP-
TTC3 (TTC3) is able to rescue the phenotype induced by TTC3 downregulation. Cells were co-electroporated with sh-RNA-expressing plasmids
together with GFP-empty (empty) or GFP-TTC3 (TTC3). After 72h, cells were than analyzed as in panel E. Scale bars = 10 mm; error bars = Standard
Error of the Mean (SEM); *P,0.05, **P,0.01, two tails Student T-test.
doi:10.1371/journal.pone.0093721.g001
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508 of LIMK [23], which in turn inhibits the actin-depolymerizing

protein Cofilin by phosphorylating its Ser3 residue [17]. This

pathway would be particularly attractive to explain the phenotypes

described above, because LIMK can localize both at the growth

cone and at the Golgi, through its PDZ and LIM domains,

respectively [21]. However, it is still not clear whether this

pathway actually operates in differentiating neurons at early times.

For instance, the same activating phosphorylation on LIMK can

be produced by PAK kinases, operating downstream of Rac and

Cdc42 [22]. To address whether the ROCK/LIMK/Cofilin

pathway is actually working during the early stages of neuronal

differentiation, we analyzed the effects of ROCK inhibition on

Cofilin phospholrylation. We found that the ratio between Ser3-

Cofilin and total Cofilin was not decreased in 1DIV primary

neuronal cultures upon ROCK inhibition (Fig. 6A). Moreover, the

overexpression of LIMK did not worsen, but rather rescued the

phenotypes induced by TTC3 overexpression, both on neurite

outgrowth and on Golgi (Fig. 6B–D). LIMK mutants lacking

either the PDZ or the LIM domains were capable to partially

rescue the effects of TTC3 on neurite outgrowth and to totally

rescue the Golgi phenotype (Fig. 6C–D). In contrast, a kinase dead

LIMK mutant did not affect both TTC3-induced phenotypes

(Fig. 6C–D). These results argue against a role of LIMK as a

canonical downstream player of ROCK in TTC3 induced

phenotypes.

On the other hand, ROCK could increase actin polymerization

rate through Profilin IIa (PIIa) [24], a brain-specific form of

Profilin playing a fundamental role in neuronal differentiation

[2,41]. Consistent with this possibility, PIIa overexpression

reverted neurite length in TTC3-depleted cells to control values

(Fig. 7A). Moreover, PIIa inactivation increased significantly the

number of differentiated cells (Fig. 7B) and the number of cells

with intact Golgi (Fig. 7C) in TTC3-overexpressing cultures, both

to levels comparable with those produced by RhoA and ROCK

inactivation. These results strongly suggest that TTC3 may affect

neurite extension and Golgi organization by increasing actin

polymerization through PIIa rather than decreasing actin depo-

lymerization through LIMK and Cofilin.

Discussion

In this work we have investigated the role of TTC3 in primary

neuronal cells during the first stages of differentiation, with respect

to both neurite extension and Golgi organization. Moreover, we

have addressed the role of some of the possible downstream

players which could connect TTC3 to actin organization,

especially the CIT-N protein. First of all we have confirmed that,

in line with previous studies performed in pheocromocytoma cells

[32], TTC3 is a physiological determinant of the neuronal

differentiation cell-autonomous program, since its knockdown

leads to increased neurite extension. In contrast, the reduction of

TTC3 levels is not sufficient in differentiating neurons to alter

Golgi organization. Together with the observation that only a

minimal fraction of TTC3 is associated with the Golgi, this result

suggests that the primary function of TTC3 could be to restrain

neurite outgrowth by acting on the growth cone, rather than on

the Golgi. However, if TTC3 is expressed above physiological

levels, as it may occur in Down syndrome (DS) and other

neurological diseases [34], besides impairing neurite extension it

can also disrupt Golgi compactness. These findings could be of

relevance for understanding how increased levels of TTC3 in DS

may contribute to the overall intellectual disability phenotype.

Indeed, it is commonly believed that the complex pathological

scenario characterizing DS arises from a combination of

neurodevelopmental abnormalities and neurodegenerative pro-

cesses [42–44].

Addressing which processes are irreversible and which ones can

be prevented or reverted by manipulating genes and pathways is of

paramount importance for the possible development of new

therapeutic strategies. Impaired neuronal differentiation has been

reported by some studies in DS patients [45,46]. In addition, a

prominent role in neuronal differentiation has also been reported

for Dyrk1a [47], a gene mapping into the DCR which is

considered one of the major players in DS [48]. On the other

hand, although Golgi abnormalities have not been reported so far

in DS, they have recently been found in several neurodegenerative

disorders [49–51]. If deeper studies on patients and/or experi-

mental models should confirm the existence of neurite extension or

Golgi organization phenotypes in DS, the TTC3 pathway could

become an interesting potential target for experimental manipu-

lation.

The effects of TTC3 on neurite extension are mainly mediated

by an increase of actin polymerization. Indeed, the enhanced

neurite outgrowth produced by TTC3 knockdown is reverted by

F-actin stabilization, while the differentiation block produced by

TTC3 overexpression is reverted by F-actin depolymerization. An

increase in actin polymerization is also involved in the Golgi

fragmentation phenotype produced by TTC3 overexpression. At a

first glance, this result was in apparent contrast with our previous

discovery that in neuronal cells F-actin is required for Golgi

compactness [15], a finding which differs from those obtained in

other cell types [11]. However, it raised the interesting possibility

that in neurons the requirement of F-actin for the structural

integrity of the Golgi may change throughout differentiation. We

found that this is indeed the case, because CytoD treatment has no

effect on Golgi compactness during the earliest stages of

differentiation, while it induces Golgi fragmentation at later stages

(Fig. S2). The mechanisms responsible for this switch are presently

unknown and may represent an interesting subject for future

studies.

The effects of TTC3 overexpression on Golgi compactness

cannot be explained only by its activity on actin polymerization,

since the rescue of the phenotype elicited by CytoD was much less

pronounced than the rescue of the neurite extension phenotype.

Since it has previously been shown that TTC3 may also affect the

PI3-kinase (PI3K)/Akt pathway by ubiquitinating Akt, thus

stimulating Akt degradation [33], one possibility is that TTC3

may affect Golgi compactness through this mechanism. However,

this possibility would be in contrast with a recent report showing

that, in polarized migrating cells, the PI3K/Akt/mTOR pathway

Figure 2. Effects of actin-affecting drugs on the neurite-extension phenotypes induced by modulating TTC3 levels. A. Hippocampal
neurons were electroporated by nucleofection with the indicated plasmids and treated after 6 hours with vehicle (DMSO) or with 1 mM Cytochalasin-
D (CytoD). 18 hours later cells were then processed for IF. Neurites were revealed by the GFP signal. B. Quantification of the percentage of
differentiated cells in hippocampal neurons treated as in panel A. Differentiated cells were defined as those bearing at least one neurite longer than
twice the cell body. C. Quantification of the average number of neurites in hippocampal neurons treated as in panel A. D. Hippocampal neurons
were nucleofected with control or with TTC3-specific sh-RNA-expressing plasmids, plated and allowed to differentiate 54 hours in culture. Cells were
then treated with 5 nM Jasplakinolide (Jaspla) or with vehicle for additional 18 hours and processed for IF to reveal GFP and Tau. The length of the
main neurite (Tau-positive axon) was then quantified. Scale bars = 10 mm; error bars = SEM; *P,0.05, ***P,0.001, two tails Student T-test.
doi:10.1371/journal.pone.0093721.g002
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controls the polarization of the plasma membrane but does not

affect Golgi polarization [52]. It is not known whether these

conclusions can also be applied to differentiating neurons. An

alternative possibility is that TTC3 may affect Golgi organization

by inducing the ubiquitilation of presently unknown substrates. To

this regard, it must be noticed that CIT-K was excluded as a

possible target by previous studies [33]. On this basis and

considering the positive functional relationship between TTC3

and CIT-N we consider very unlikely the possibility that CIT-N

may be a TTC3 substrate in neurons.

Our results suggest that the molecular networks mediating the

effects of enhanced TTC3 expression at the growth cone and at

the Golgi may differ significantly, a scenario that was confirmed by

our epistatic analysis of TTC3 downstream players (for a

summary, see the scheme in Fig. 8). For what concerns neurite

extension, our previous studies on pheocromocytoma cells had

suggested that TTC3 may limit neurite extension by activating

RhoA, which in turn may signal to cytoskeleton through ROCK

and CIT-K, with the latter two molecules working in parallel [32].

We have found that the same players operate also in differentiating

primary neurons, although in this case Citron proteins are

represented by CIT-N. Indeed, the inhibition of RhoA and

ROCK and the knockdown of CIT-N are all capable to rescue the

neurite outgrowth phenotype induced by TTC3 overexpression.

However in this case ROCK regulates neurite extension acting

downstream of CIT-N, rather than in parallel with it. Interest-

ingly, the same players are also capable to mediate the Golgi

disorganization induced by TTC3 overexpression, but there are at

least two important differences with neurite outgrowth inhibition.

The first difference is that in this context ROCK does not work

downstream of CIT-N. The second is that CIT-N works largely

upstream of RhoA, rather than downstream of it. The latter

finding is consistent with the data obtained in other biological

processes implicating Citron proteins. Indeed, CIT-K and CIT-N

have previously been shown to regulate midbody abscission

[53,54] and dendritic spine maintenance [55,56], respectively, by

locally stabilizing active RhoA. To summarize, our data reveal

that TTC3 overexpression may affect Golgi organization through

at least two pathways (Fig. 8): a ‘‘canonical’’ pathway flowing from

RhoA to actin polymerization through ROCK and PIIa; a non

canonical pathway involving CIT-N and RhoA, which may

impinge on other mechanisms. To this regard, it must be noticed

that Citron proteins have recently been linked to microtubules

[57], which are well known for their critical role in Golgi

organization [58].

Although ROCK is only partially responsible for the effects

induced by TTC3 overexpression, it was important to understand

how it may affect actin polymerization downstream of TTC3. The

reason of this is that ROCK inhibitors display neuroprotective

effects in models of neurodegenerative disorders and have already

been approved for clinical use [59]. Based on current models, a

first mechanism by which ROCK may increase the amount of F-

actin is through the activating phosphorylation on Thr-508 of

LIMK [23], which in turn inhibits the actin-depolymerizing

protein Cofilin by phosphorylating its Ser-3 residue [17].

However, it is still not clear whether a similar mechanism may

actually operate in differentiating neurons, since the same

activating phosphorylation on LIMK can be produced by PAK

kinases, operating downstream of Rac and Cdc42 [22]. Although

our results do not exclude that the LIMK-Cofilin pathway could

play a role downstream of TTC3, they strongly suggest that this

pathway is not controlled by ROCK, at least in early differenti-

ation. Indeed, we found that the pharmacological inhibition of

ROCK in our system has no effect on the levels of phospho-

Cofilin. Moreover, the overexpression of LIMK does not enhance

the TTC3 overexpression phenotype, but rather rescues it,

through a mechanism that requires the kinase activity and the

domains which localize the protein at the Golgi or at the growth

cone. Together with the previous reports showing that LIMK

stimulates neuronal differentiation [21], these results suggest that,

at early stages of this process, the LIMK-cofilin pathway may be

much more influenced by Cdc42-Rac/PAK than by RhoA/

ROCK. A second mechanism through which ROCK may affect

actin polymerization is by stimulating the activity of Profilins,

which in neurons are mainly represented by PIIa [41]. Our results

strongly support the implication of this player. Indeed the

overexpression of PIIa reverts to control values the increased

neurite extension induced by TTC3 knockdown, while the

knockdown of PIIa rescues both the neurite extension and the

Golgi phenotypes induced by TTC3 overexpression. Moreover,

this results are in line with our previous finding that, in neuronal

cells, CIT-N and ROCK are in a same complex with PIIa [15].

In conclusion, besides confirming that TTC3 plays a crucial role

in the early differentiation of neurons our study reveals a complex

organization of the pathways by which TTC3 may regulate

neurite outgrowth and Golgi organization through the actin

cytoskeleton. It will be interesting to test whether the same

processes and pathways are affected in experimental models of

Down syndrome.

Materials and Methods

Ethics
For the preparation of primary hippocampal neurons, pregnant

rats and embryos were sacrificed conforming to the Italian laws on

animal experimentation and under the supervision of the

veterinary service of our animal facility. The corresponding

experimental protocols have been approved by the Italian Ministry

of Health, Department of Public Veterinary Health with approval

number 22/2007-A, released on 03/14/2007.

Primary Hippocampal Neuronal Cultures
Hippocampal neuronal cultures were prepared from embryonic

day 18.5 rat brains as described [60]. In brief, hippocampi were

dissected and cells dissociated by trypsin (15 minutes at 37uC) and,
after 5 washes in HBSS, separated with mechanical trituration

Figure 3. Role of TTC3 partners in TTC3-dependent neurite extension phenotypes. A. Hippocampal neurons were nucleofected with
control or CIT-N-specific sh-RNA-expressing plasmids, plated and allowed to differentiate 72 hours in culture. Cells were then processed for IF with
anti-Tau antibodies and the axonal length was quantified. B. Hippocampal neurons were nucleofected with control or CIT-N-specific sh-RNA-
expressing plasmids, together with plasmids overexpressing, under a CMV promoter, RFP or RFP-TTC3, as indicated. The percentage of differentiated
cells was then assessed as in the previous figures. C. Hippocampal neurons were electroporated by nucleofection with the indicated plasmids. 24
hours after plating cells were processed for immunofluorescence and the morphology of GFP-positive cells was assessed to analyze the percentage of
differentiated cells. D–F. Hippocampal neurons were nucleofected with the indicated plasmids, allowed to differentiate in culture for 24 hours and
treated with vehicle, with cell permeable C3 toxin at the final concentration of 2 mg/ml during the last 4 hours or with the ROCK inhibitor 36,7 mM
Y27632 during the last 18 hours. Neurites were revealed by the GFP signal. The percentage of differentiated cells (E) was then assessed as in the
previous figures. Scale bars = 10 mm; error bars = SEM; *P,0.05, ***P,0.001, two tails Student T-test.
doi:10.1371/journal.pone.0093721.g003
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using a fire polished Pasteur pipette. Neurons were plated on Poly-

L-Lysine coated coverslips, placed in dishes containing CO2 and

temperature-equilibrated Mem-Horse medium. After 4 hours

incubation neurons were sufficiently attached and coverslips were

placed inverted, separated by paraffin dots, onto astrocyte feeder-

cell layers equilibrated in a N2 medium.

Nucleofection
Hippocampal neurons were electroporated immediately after

tissue dissociation and before plating using the rat neuron

nucleofector kit (Amaxa). In brief, 500000 cells were centrifuged

for 5 minutes at 1000 rpm. After that, supernatant was removed

and neurons were resuspended in 100 ml of Nucleofector. Then

3 mg of DNA/5 mg of siRNA were added to the suspension.

Neurons were transferred to a glass cuvette and electroporated

Figure 4. Effects of altered TTC3 levels on Golgi compactness. A–B. Hippocampal neurons were electroporated by nucleofection with the
indicated plasmids. Cells were processed for immunofluorescence with anti-GM130 antibodies 24 or 48 hours after plating. The percentage of cells
with compact (normal) or fragmented Golgi morphology was then quantified (B). Note the compact morphology of the Golgi in the cell transfected
with the GFP control plasmid (first cell from left in panel A). The other three cells in panel A are different examples of TTC3-overexpressing cells with
disrupted Golgi, analyzed 24 hours after transfection. C–D. Confocal images of 7 DIV primary hippocampal neurons co-stained for TTC3 and GM130
after standard PFA fixation (C) or after pre-extraction with saponin (D). The right panels show a false color imange in which the white pixels represent
the areas of colocalization (CL) of TTC3 and GM130 (cyan and magenta, respectively). E. Pixel intensity plots of the TTC3 and GM130
immunoreactivities in exemplar cells treated as in panels C and D. AU = arbitrary units. F. Hippocampal neurons were nucleofected with control or
TTC3-specific sh-RNA-expressing plasmids (RNAi-TTC3), plated and allowed to differentiate 72 hours in culture. Cells were then processed for IF with
GM130 antibodies and the Golgi compactness was measured (see Material and methods). Scale bars = 5 mm; error bars = SEM; **P,0.01, ***P,0.001,
two tails Student T-test.
doi:10.1371/journal.pone.0093721.g004

Figure 5. Role of TTC3 partners in TTC3-dependent Golgi fragmentation. A. Hippocampal neurons were electroporated by nucleofection
with the indicated plasmids and treated with vehicle (DMSO) or with 1 mM Cytochalasin-D (CytoD) for an additional 24 hours. Cells were then
processed for IF with the Golgi GM130 marker and quantified for normal Golgi as in Fig. 4. B–C. Hippocampal neurons were nucleofected with the
indicated plasmids, allowed to differentiate in culture for 24 hours and treated as described in Fig. 2 with vehicle, C3 toxin and Y27632. Vehicle was
50% glycerol in the case of C3 and water in the case of Y27632. Cells where then processed and analyzed as in panel A. D. Hippocampal neurons
were nucleofected with control or CIT-N-specific sh-RNA-expressing plasmids (RNAi), together with plasmids overexpressing, under a CMV promoter,
RFP or RFP-TTC3, as indicated. The percentage of cells with normal Golgi was then assessed as in the previous panels. Scale bars = 10 mm; error
bars = SEM; *P,0.05, ***P,0.001, two tails Student T-test.
doi:10.1371/journal.pone.0093721.g005
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with the Amaxa program O-003. Finally, neurons were plated on

coverslips.
Plasmids and siRNAs
The CMV-GFP-TTC3 plasmid was previously described [32].

The same cDNA was cloned in pERFP-C1 (Clontech). Expression

Figure 6. Analysis of the role of LIMK in TTC3-dependent phenotypes. A. 1 DIV primary hippocampal neurons plated on biochemistry
dishes were treated for 24h with vehicle or with the ROCK inhibitor Y27632. Cells were then lysed and the expression of the indicated proteins was
analyzed by western blotting with the indicated antibodies. In the left panel the ratio between phopshorylated and non-phosporylated forms of
myosin light chain (MLC, positive control) and of Cofilin was quantified. pMLC and pCofilin indicate the phosphorylated forms of the two proteins.
The result represents the average of three independent experiments. B–D. Primary hippocampal neurons were co-transfected with the CMV
expression plasmids encoding GFP-TTC3 and with HA empty plasmid (Ctrl), HA tagged wild type LIMK (wt) or with the indicated HA-tagged LIMK
mutants. Cells were then processed for IF to reveal the expression of the encoded proteins and with anti-GM130 antibodies. The percentage of
differentiated cells (C) and of cells with intact Golgi (D) was then quantified. Scale bars = 10 mm; error bars = SEM; **P,0.01, ***P,0.001, ns = non
significant, two tails Student T-test.
doi:10.1371/journal.pone.0093721.g006
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plasmids for hemagglutinin (HA)-tagged LIMK1 and HA-DPDZ-

LIMK1 [21] were a kind gift from Alfredo Càceres. To generate

plasmids encoding HA-DLIM-LIMK1, HA-LIMK1-wt cDNA

was amplified by polymerase chain reaction, with the following

primers: forward, 59 GCAAGCTTGCCATGATCGAACA-

GATCCTC 39, reverse 59 GCTCTAGACTCAGCGTAAT

CTGGAAC 39. PCR products were digested with HindIII and

XbaI restriction enzymes and ligated to HindIII- and XbaI-

digested pcDNA3 vector (Invitrogen). To generate plasmids

encoding HA-kd-LIMK1, the K368M mutation [61] was intro-

duced into the HA-LIMK1-wt plasmid using a direct mutagenesis

kit (Stratagene). Profilin IIa was cloned into a pCherry-N1 plasmid

from pEGFP-N1-Profilin IIa [41] using EcoRI-Xhol restriction

sites. TTC3 knockdown by Rnai was performed by using the sh-

mir RNAi constructs based on the pCMV-GIN(Zeo) lentiviral

vector [32]. CITN knockdown by Rnai was performed by using

the sh-RNAi constructs based on the pSUPER-GFP vector [15].

siRNA targeting rat Profilin IIa coding sequence (59-UAAG-

CAAGGUGCCGGUGUA-39) were purchased from Dharmacon

(Thermo Scientific, Lafayette, CO).

Antibody and Inhibitors
The following antibodies were used: rabbit polyclonal anti-GFP

(Abcam, Cambridge, MA); mouse monoclonal anti-GM130

(Transduction Laboratories, BD biosciences, Franklin Lakes, NJ);

mouse monoclonal anti-TAU (Chemicon); rabbit polyclonal anti-

pLIMK1 (Santa Cruz, Santa Cruz, CA); rabbit polyclonal anti-

Profilin IIa (kindly provided by Dr. W. Witke); rabbit polyclonal

anti-cofilin phospho serine 3 (Cell signalling technology); mouse

monoclonal anti-cofilin (Abcam); rabbit polyclonal anti-MLC

phospho serine 9 (Cell signaling technology); mouse monoclonal

anti-mlc (Cell Signaling technology); rabbit polyclonal anti-actin

(Santa Cruz); mouse monoclonal anti-HA (Cell signaling technol-

ogy); we obtained anti-TTC3 rabbit polyclonal antibodies by

injecting rabbits with a fusion protein corresponding to aminoacids

719–1176 of TTC3. C3 cell-permeable transferase protein was

obtained from Cytoskeleton (Denver, CO), dissolved in 50%

glycerol and used in accordance with manufacture’s instruction.

ROCK inhibitor Y-27632 (Sigma-Aldrich) was dissolved in water

and used at 36,7 mM for 24h. As a control, addition of vehicle only

(50% glycerol and water, respectively) was used. F-actin depoly-

merizing drug CytochalasinD (Calbiochem) was suspended in

DMSO, added to neurons 6 hours after plating with a final

concentration of 1 mM and maintained for 24 hours. The actin

stabilizing drug Jasplakinolide (Calbiochem) was suspended in

DMSO, added to neurons 36h after plating at a final concentra-

tion of 5 nM and maintained overnight. As a control for all the

above drugs, addition of vehicle only (DMSO) was used.

Figure 7. Analysis of the role of PIIa in TTC3-dependent phenotypes. A. Hippocampal neurons were nucleofected with control or TTC3-
specific sh-RNA-expressing plasmids, together with plasmids overexpressing, mCherry or mCherry-PIIa. Axonal length was then quantified as
described above. B–C. Hippocampal neurons were nucleofected with control or PIIa-specific sh-RNA-expressing plasmids, together with plasmids
overexpressing GFP or GFP-TTC3, as indicated. The percentage of differentiated cells (B) and of cells with normal Golgi (C) was then assessed as in the
previous figures. Scale bars = 10 mm; error bars = SEM; **P,0.01, ***P,0.001, two tails Student T-test.
doi:10.1371/journal.pone.0093721.g007
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Immunofluorescence
Hippocampal neurons grown on coverslips were fixed with 4%

paraformaldehyde (PFA)/PBS for 10 min. Quenching with

NH4Cl 50mM/PBS was conducted to remove PFA residue for

15 minutes. Permeabilization was carried out with 0,1%TritonX-

100/PBS for 3 minutes and a 5% BSA/PBS saturation (Bovine

serum albumin in PBS) was left for 30 minutes over the coverslips.

Following, primary antibodies (described below) were incubated

for 1 hour. After three quickly washings with PBS, primary

antibodies were detected with anti-rabbit or anti-mouse or anti-rat

Alexa Fluor 568 or 488 secondary antibodies at 1:1000 dilution for

30 minutes; Alexa Fluor 350 was used at 1:250 dilution. After

three quickly washings with PBS, coverslips were mounted with

Mowiol on cover glasses. Images were acquired using an

ApoTome system (Zeiss, Germany) or a ViCo fluorescence

microscope (Nikon), or with a Leica SP5 confocal microscope.

Live Cell Imaging
Hippocampal cultures were prepared as described above and

left for 6 h before videorecording. Videorecording was performed

under an Axiovert Zeiss inverted microscope equipped with an

environmental chamber using a 636 oil-immersion objective.

Cultures were maintained at 37uC and gassed with 5% CO2. For

phase contrast imaging, exposure times were typically 5 ms, 12

frames per hour. Metamorph software (Universal Imaging) was

used for acquiring images and for mounting avi format movies.

Image Analysis
Images were analyzed with ImageJ software, or Apotome (Zeiss)

and ViCo (Nikon) associated software. Differentiated cells were

defined as those bearing at least one neurite longer than twice the

cell body. Quantification of the percentage of differentiated cells

and of cells with normal Golgi was performed in blind by two

different operators. In the latter case, cells were scored as having

either normal or fragmented Golgi, and the corresponding

percentages are therefore complementary. The Golgi compactness

index shown in Fig. 4F is an a-dimensional number calculated on

serial section performed with Apotome (Zeiss). For the analysis of

the circularity of Golgi apparatus, the maximum-projection from

each image was derived using ImageJ software [62]. The images

were then transformed in 8-bit gray-scale, 138861032 pixels. The

Golgi labeling image threshold was set at ,50–60 on a 0–255

black to white scale to remove background pixel from measure-

ment. The Golgi region of interest was defined manually and the

perimeter and surface was measured. The dimensionless circular-

ity of the Golgi apparatus was computed according to the formula

[40]. The colocalization analysis was performed using the ImageJ

software.

Western Blot Analysis
Neuron cortical cells were extracted with lysis buffer (1% SDS,

25mM Tris–HCl pH 6.8, protease inhibitors (Roche, Basel,

Switzerland), 1 mM phenylmethylsulphonyl fluoride, 1mM Sodi-

um Vanadate, 1mM Sodium Fluoride). Equal amounts of proteins

were resolved by reducing SDS-PAGE and blotted to nitrocellu-

Figure 8. Schematic representation of the TTC3 downstream pathways dissected in hippocampal neurons at the early stages of
differentiation in primary culture.
doi:10.1371/journal.pone.0093721.g008
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lose filters, which were incubated with the indicated antibodies

and developed by using the ECL system (Amersham Biosciences).

Supporting Information

Figure S1 Evaluation of TTC3 overexpression and
knockdown in primary neurons. A. Hippocampal neurons

were nucleofected with GFP empty or with GFP-TTC3-expressing

plasmids, plated and allowed to differentiate 36 hours in culture.

The expression of endogenous and overexpressed TTC3 was then

measured by western blotting with rabbit anti-TTC3 antiserum.

B. Hippocampal neurons were nucleofected with control or

TTC3-specific sh-RNA-expressing plasmids, plated and allowed to

differentiate 72 hours in culture. To test the downregulation of

nucleofected cells, we performed IF experiments with rabbit anti-

TTC3 antiserum.

(TIF)

Figure S2 Stage-dependent requirement of F-actin for
Golgi compactness in differentiating primary hippo-
campal neurons. A–B. Hippocampal neurons were allowed to

differentiate in culture for 1 day (A) or 7 days (B) and treated with

1 mM Cytochalasin-D during the last 18 hours before fixation.

The effect of treatment on actin cytoskeleton and Golgi

compactness were then evaluated by staining fixed cells with

Phalloidin (PHD, green in merge) and anti-GM130 antibodies (red

in merge). Identical results were obtained using the drug at 2.5 mM
(data not shown). Scale bars = 10 mm.

(TIF)

Movie S1 Time lapse recording (14 hours) of exemplar
primary hippocampal neuron nucleofected before plat-
ing with a GFP-expressing control plasmid.
(AVI)

Movie S2 Time lapse recording (14 hours) of exemplar
primary hippocampal neuron nucleofected before plat-
ing with a TTC3-expressing plasmid.
(AVI)
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