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Abstract——It has become increasingly clear that
the accumulation of proteins in specific regions of the
plasma membrane can facilitate cellular communica-
tion. These regions, termed signaling microdomains,
are found throughout the blood vessel wall where
cellular communication, both within and between cell
types, must be tightly regulated to maintain proper
vascular function. We will define a cellular signaling
microdomain and apply this definition to the plethora
of means by which cellular communication has been
hypothesized to occur in the blood vessel wall. To that
end, we make a case for three broad areas of cellular
communication where signaling microdomains could

play an important role: 1) paracrine release of free
radicals and gaseous molecules such as nitric oxide
and reactive oxygen species; 2) role of ion channels
including gap junctions and potassium channels,
especially those associated with the endothelium-
derived hyperpolarization mediated signaling, and
lastly, 3) mechanism of exocytosis that has consider-
able oversight by signaling microdomains, especially
those associated with the release of von Willebrand
factor. When summed, we believe that it is clear that
the organization and regulation of signaling micro-
domains is an essential component to vessel wall
function.

I. Introduction

It has become clear that proteins do not randomly
accumulate at cellular foci but are instead organized at
particular regions of the cell to exert their function in
a more efficient manner. The vast majority of proteins
does not act alone but are highly coordinated by a network
of associated molecules that can modify, activate, or
inhibit the protein’s function. Concordantly, the numerous
signaling molecules involved in intracellular signaling
pathways often have a short half-life; thus their target
must frequently be spatially localized to their site of
production. For example, the half-life of inositol 1,4,5-
trisphosphate (IP3) produced by phospholipase C (PLC) is
of the order of 30 ms with a diffusion coefficient of
approximately 300 mm2/s because of its rapid degradation
by localized 5-phosphatases (Wang et al., 1995). Therefore,
having IP3 receptors (IP3R) in close proximity to the
region where the IP3 is produced maximizes the effect of
themessenger (Berridge, 2006). This has been shown to be
the case with PLC, because the enzyme has been found to
reside in close proximity to IP3R on the endoplasmic
reticulum (ER) (e.g., Nomura et al., 2007; Weerth et al.,
2007). Overall, there are few proteins that can diffuse to
notable distances within the cell without being modified,
activated, or inhibited in some way. Thus, it is important
to have associated proteins within close proximity to
efficiently maintain their function.
However, the question arises as to how the proteins

associated with a particular function congregate to a
precise location within the cell. It is now recognized
that this can be accomplished by multiple factors, in-
cluding but not exclusive to 1) differing lipid composition
of the membrane, 2) unique addressing sequences within
proteins directing them to the apical, basal, or lateral
regions of the cells, 3) sequestration of proteins transcribed

in local regions of the cell, and/or 4) associated protein-
protein interaction into macromolecular structures
(Lippincott-Schwartz et al., 2000). This last example
forms the basis of signaling microdomains, where
a group of proteins form a macromolecular complex
that in turn can regulate cell-to-cell (paracrine) or
cell-to-self (autocrine) signaling processes. There is
currently no specific definition for a signaling micro-
domain, and so we have put forth a set of guidelines
to define these nexuses (Table 1).

A. Definition of a Signaling Microdomain

The first characteristic of a signaling microdomain is
that proteins are concentrated to a specific region
within the cell (Table 1). As mentioned above, it would
be difficult for proteins at opposite ends of a cell to have
rapid, nonrandom associations, because they are not
located in the same cellular location. The closer the
protein association is, the more the effect could be deemed
nonrandom and deliberate. This is especially true in
specialized cellular structures such as the myoendothelial
junction where hemoglobin a (Hba) has been shown to
accumulate and regulate nitric oxide diffusion to sur-
rounding smooth muscle cells (Straub et al., 2012).

The next characteristic of a signaling microdomain is
that the proteins are within specific regions of the plasma
membrane (Table 1). The plasma membrane is composed
of a variety of lipids, and it is now well understood that
specialized lipid regions, especially those enriched with
cholesterol, can harbor proteins together to create a
signaling platform at the plasma membrane. Perhaps
the most well-known of these specialized plasma mem-
brane regions are lipid rafts and caveolin 1 (Cav1)-
enriched caveolae, which are known to concentrate
membrane receptors, transporters, and other signaling
proteins (for review, see Popescu et al., 2006). The
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association of endothelial nitric-oxide synthase (eNOS)
with Cav1 can be spatially enriched in the vicinity of
a number of cofactors and substrates (Mineo and Shaul,
2012). The membrane compartmentalization then can
serve an important role in keeping proteins organized
that together can regulate a particular function.
The third rule is that two or more proteins directly

interact with each other (Table 1). There are numerous
instances where two proteins actually bind together,
and their tertiary states can affect one another’s
activation or inhibition (e.g., Jones, 2012). This would
indicate that the proteins require direct association. An
example of this can be found with connexin 43 (Cx43)
and zonula occludens-1 (ZO-1) (see section III.A). There
is a unique binding sequence for ZO-1 on Cx43 via a PDZ
domain, and this interaction dictates both Cx43 traffick-
ing to the plasma membrane and actual function of the
fully formed gap junction (see section III.A). Thus the
direct interaction of these two proteins serves as a model
of how the discreet direct interaction of two proteins
plays an important part in cellular communication.
Lastly, proteins may regionally associate without direct

protein-protein interaction (Table 1). In this instance, the
proteins may not be directly associated, but may be part of
a larger macromolecular complex or spatially localized to
a similar region of the cell where they work in concert. In
this case, the functional association of several proteins is
usually revealed using pharmacological tools and often
involves an intracellular messenger with a short half-life
(e.g., nitric oxide, superoxide anion, IP3, calcium ion).
With a definition in hand, the focus of this review is

centered on the organization of signaling microdomains
and how they are functionally used by cells of the blood
vessel wall, specifically the endothelial cells (ECs) and
vascular smooth muscle cells (VSMCs), for cellular
communication (Fig. 1). The areas of cellular communi-
cation this review will focus on include 1) paracrine
release of molecules such as nitric oxide or superoxide
anion, 2) channel communication via gap junctions and
other ion channels, and 3) exocytosis. There are other

examples of released molecules, channels, transporter, or
other proteins that play a role in cellular communication,
but because they have yet to be fully recognized as being
part of a signaling microdomain we have not discussed
them in detail because they do not fit into the focus of
this review (e.g., pannexin channels). There are other
aspects of cellular communication including the role of
integrins and chemotaxis that are not discussed here but
can be found in multiple reviews (Herbert and Stainier,
2011; Hoffman et al., 2011).

B. On the Importance of
Calcium Compartmentalization

Calcium is a ubiquitous second messenger that controls
numerous cellular functions. How calcium is compartmen-
talized in cells and the consequences on vascular function

TABLE 1
Rubrics defining a signaling microdomain

In this review, at least two rules listed below are required to consider a group of proteins as part of a signaling microdomain that can regulate
cellular communication. Examples of signaling microdomain applicable to each guideline are indicated in the right column.

Guideline Example

1. Proteins are concentrated to a region of the cell (i.e.,
apical membrane, myoendothelial junction) and
altogether participate in a specific cellular function.

Exocytosis at the apical membrane (section IV)
Endothelium-dependent hyperpolarization-mediated

response (section III.C)
2. There is an accumulation of two or more proteins

contained within a membranous phospholipid region
(i.e., lipid raft, caveolae), and the loss of this structure
alters cell-cell communication.

eNOS localized in caveolae (section II.A)

3. There is a direct protein-protein interaction, and
disruption of this interaction alters cell-cell
communication.

eNOS and caveolin 1 (section II.A.1)
eNOS and Hba (section II.A.4)
Cx43 and ZO-1 (section III.A.4)

4. There is evidence for close localization of proteins,
with a loss of one of the proteins (function or
expression) altering the way in which cell-cell
communication occurs.

Endothelium-dependent hyperpolarization-mediated
response (section III.A)

Fig. 1. Schematic representation of intercellular communication in the
arterial wall. The SMCs and ECs composing the vascular wall can
communicate with each other either by releasing molecules to neighbor-
ing cells (paracrine communication) or directly via gap junction channels
that link the cytoplasm of two adjacent cells. The different types of
intercellular communications are represented by the arrows.
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must be discussed because such compartmentalization
directly relates to both the coordination of intercellular
communication between cells and their corresponding
signaling microdomains. In addition, the calcium signaling
microdomains at the origin of such compartmentalization
are an excellent example of how cells accumulate proteins
together to efficiently regulate cellular functions. The
concept of calcium compartmentalization described in this
section is by no means exhaustive and will not cover in
detail the dynamics of calcium homeostasis; we invite the
reader to refer to excellent reviews on this topic (Berridge,
2006; Bolton, 2006; Parekh, 2008; Putney and Bird, 2008;
Hill-Eubanks et al., 2011; van Breemen et al., 2013).
Cells need to maintain a low intracellular calcium

concentration ([Ca2+]i) to avoid inappropriate and random
activation of signaling pathways. The cytosolic calcium
concentration is maintained at a low level ([Ca2+]i ;100
nM) through a multitude of pumps and calcium trans-
porters at the plasma membrane and at the ER mem-
brane, respectively, extruding calcium outside of the cell
or storing calcium in the ER [or in the sarcoplasmic
reticulum (SR), a specialized ER in muscle cells] (ZhuGe
et al., 1999). Because the equivalent of the total free
cytosolic calcium enters the cells every half second, these
pumps and transporters have to be constitutively active to
maintain a low [Ca2+]i (Lee et al., 2002). The extracellular
calcium concentration and the calcium concentration
within the ER ([Ca2+]ER) are higher (approximately
2 mM and 200 mM, respectively). Additionally, it is now
accepted that the mitochondria constitutes another
buffer organelle to regulate cytoplasmic calcium con-
centration (for review, see McCarron et al., 2012).
Because calcium is a central molecule for cellular

functions, the dynamics of calcium are complex to
temporally and spatially control specific signaling path-
ways. Thus, it has become evident that cells do not
regulate their [Ca2+]i as a whole but more in discrete
regions to activate specific, localized signaling pathways
(i.e., the calcium signaling is compartmentalized). The
activity level of the multiple calcium pumps, channels,
and transporters are thus responsible for high calcium
concentrations that can develop close to the plasma
membrane as well as close to the ER membrane (Cheng
et al., 1993; Nelson et al., 1995; Perez et al., 2001; Berridge
et al., 2003; Navedo et al., 2005; Berridge, 2006; Niggli and
Shirokova, 2007; Feletou, 2011b). To help with this, the
different intracellular calcium compartments are close to
one another and/or to the plasma membrane to form
a restricted space, where the calcium can be confined. The
best known examples of such intracellular membrane
junctions are found in cardiac myocytes where the
T-tubules of the sarcolemma and the terminal cisternae
of the SR come into contact, a contact that is central in the
excitation-contraction coupling of the cardiac muscle
(Fabiato and Fabiato, 1972; McNutt, 1975).
Some of the best examples of compartmentalized

calcium are in SMCs because they are the best described

to date. Compartmentalization of calcium allows for the
activation of specific cellular pathways, mainly through
the activation of calcium-dependent enzymes located
close to the sources of calcium, near the ER or the plasma
membrane (Berridge, 2006). In contrast, other calcium-
dependent enzymes located further from the sources of
calcium (i.e., further from the ER or the plasma mem-
brane) are not activated because of the rate of calcium
diffusion (Berridge, 2006). A striking example of calcium
compartmentalization is the observation that, although
increases in whole [Ca2+]i cause contraction of SMCs,
a local subplasmalemmal increase in calcium facilitates
relaxation (Nelson et al., 1995); this example will be
discussed in detail in this section (see section I.A.1.a).
Calcium homeostasis has particularly been investigated in
vascular SMCs (VSMCs) because of the central role of
calcium in the contractile process (Nelson et al., 1990;
Fleischmann et al., 1994). Heterogeneous and high local
calcium concentrations have been observed in VSMCs in
multiple reports (e.g., Deth and van Breemen, 1977; Van
Breemen, 1977; van Breemen et al., 1986; Laskey et al.,
1992; Kargacin, 1994; Nelson et al., 1995; Rembold et al.,
1995), and computer modeling of calcium signaling within
the VSMCs showed that high calcium concentrations could
occur in restricted spaces and persist for 100–200 ms
(Kargacin, 1994, 2003; Naraghi andNeher, 1997). Based in
part on these reports, calcium compartmentalization was
conceptualized where localized [Ca2+]i could activate the
contractile apparatus without altering other calcium-
dependent pathways (Karaki, 1989).

1. Spatial Organization of Intracellular Organelles Is
Crucial For Efficient Calcium Compartmentalization.
There is evidence that spatial localization of organelles
can contribute to calcium compartmentalization, includ-
ing (but not limited to) proximity of the SR and plasma
membrane and proximity of the SR and mitochondria
(Fig. 2A). Thus, the location of calcium entry from the
outside of the cell or the location of the release of calcium
from the SR into the cytoplasm is not only important in
regard to the signaling proteins that are surrounding the
calcium channel but also in regard to the intracellular
organization of organelles (Poburko et al., 2004). Indeed,
if calcium influxes occur at a location where intracellular
organelles come into close contact with the plasma
membrane, the latter will prevent free diffusion of
calcium, making localized calcium concentration persist
for longer periods of time. Conversely, if calcium influxes
occur in a region of the plasma membrane where there
are no intracellular organelles, the calcium will diffuse
freely and dilute in the cytoplasm, and its effect on the
surrounding signaling proteins will be lower (Kargacin,
1994). One example of importance in cell-cell communi-
cation is the localization of ER at the myoendothelial
junctions (MEJ), a cellular structure linking ECs and
SMCs that is embedded in extracellular matrix (for
review, see Heberlein et al., 2009). The local release of
calcium in this compartment, presumably from ER, has
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been observed in numerous instances (Ledoux et al.,
2008; Bagher et al., 2012), which could act to regulate
eNOS or other localized channels such as IKCa channels
(see sections II.A and III.B).
Observations of plasma membrane-SR junctions (PM-

SR junctions) were reported nearly 50 years ago
(Fawcett, 1961; Rosenbluth, 1962; Franzini-Armstrong,
1964; McNutt, 1975). In these articles, the authors
observed the close proximity of two biological mem-
branes separated by a cytoplasmic space of 10–30 nm

wide over a few hundred nanometers in both skeletal
and cardiac muscle cells. These junctions were func-
tionally associated with the calcium-induced calcium
release (CICR) present in cardiac and skeletal muscles
(Fawcett, 1961; Rosenbluth, 1962; Franzini-Armstrong,
1964; McNutt, 1975). In the VSMCs, the close apposi-
tion of the SR to the plasma membrane has been sug-
gested by several investigators (Somlyo et al., 1971, 1979;
Somlyo, 1985; Benham and Bolton, 1986; Hermsmeyer
and Sturek, 1986), and the presence of a CICR and

Fig. 2. Schematic representation of calcium compartmentalization. (A) In VSMCs, calcium (Ca2+) can be stored in both the SR and in the mitochondria.
Calcium release from both organelles is tightly coordinated to calcium influx at the PM, and this coordination is facilitated by the close proximity
between the organelles and the PM. (B) In cerebral VSMCs, after increased intravascular pressure, there is a coordinated action of TRPV4, TRPM4,
VGCC, and large conductance potassium channels (BKCa) at the plasma membrane and ryanodine receptors RyR at the SR membrane. In this
configuration, increased pressure activates calcium influx in VSMCs via TRPV4, which stimulates calcium release from the SR through RyR, whereas
opening of TRPM4 results in calcium influx through VGCC also activating calcium release from the SR through RyR. Calcium release from RyR (also
termed calcium “sparks”) further activates potassium (K+) efflux via BKCa channels. The hyperpolarization resulting from potassium efflux reduces the
activity of VGCC, making BKCa key in the autoregulation of calcium homeostasis in VSMCs. (C)Upon cerebral VSMC stimulation with ET-1, activation
of IP3-R1 at the SR membrane activates calcium influx through TRPC3 independently of calcium release via IP3R but via a direct protein interaction
between IP3-R and TRPC3. This IP3R/TRPC3 interaction is facilitated by the presence of Cav1. Calcium release via IP3R upon ET-1 stimulation further
activates BKCa channels at the plasma membrane in a similar manner as RyR activates BKCa channels in (B). Activation of BKCa induces
hyperpolarization of the plasma membrane, thus attenuating the activation of VGCC by cation influx through TRPC3. (D) After stimulation with ET-1,
nicotinic acid adenine dinucleotide phosphate (NAADP) activates the release of calcium from intracellular lysosomes via the two pore calcium channel
(TCP2). The calcium released from the lysosome further activates calcium release from the SR via RyRs. (E) The compartmentalization of VGCC, TRP
channels, the NCX, and the SERCA are part of a signaling microdomain controlling calcium replenishment of the PM-SR junction. In this
configuration, calcium and Na+ influxes via TRPC6 activate the adjacent VGCC and the NCX in reverse mode. Calcium influx via the VGCC and the
NCX provide sources of calcium for ER/SR replenishment via the SERCA pump. Additionally, the STIM present at the SR membrane is capable of
sensing decreased levels of calcium in the SR and activates calcium influx via Orai at the plasma membrane, again providing calcium for SR
replenishment via the SERCA pumps. (F) Mitochondria also play a major role as a buffer and as a source of calcium for the SR. After stimulation of
VSMCs, mitochondria take up the calcium released from IP3R via the VDAC on the outer mitochondrial membrane and the mitochondrial calcium
uniporter (MCU) on the inner mitochondrial membrane. The buffering role of mitochondria is essential to prevent the formation of high local calcium
concentrations surrounding the IP3-R, which would inhibit the IP3-R activity. The release of calcium from the mitochondria via the mitochondrial
sodium/calcium exchanger (NLCX) present on the inner mitochondrial membrane and the permeability transition pore (PTP) on the outer
mitochondrial membrane provides a source of calcium for SR replenishment by the SERCA pumps. Straight arrows with positive and negative signs
indicate activation and inhibition by Ca2+, respectively. Wavy arrows with a positive or negative sign indicate activation by depolarization or an
inhibition by hyperpolarization respectively.
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very high local calcium concentrations in the cytoplas-
mic space between the two membranes were both
evidenced in this cell type (Van Breemen, 1977; van
Breemen et al., 1986). Since the presence of PM-SR
junctions were identified, van Breemen et al. (2013)
proposed that the SR in VSMCs is capable of forming
at least eleven types of junctions with other intracel-
lular organelles and with itself. However, the junctions
formed by apposition of the plasma membrane and the
SR membrane are the most abundant SR junctions in
the VSMCs (van Breemen et al., 2013).
Structurally, various reports have identified a series

of proteins that play an important role in the architec-
tural organization of PM-SR junctions. Junctophilins
(Takeshima et al., 2000; Komazaki et al., 2002) and
junctate (Treves et al., 2010; Srikanth et al., 2012) are
two transmembrane proteins expressed at the SR mem-
brane that constitute protein bridges that keep the SR
and plasma membranes close and may prevent their
fusion (Carrasco and Meyer, 2011). For example, PM-
SR junctions are absent in cardiac myocytes from mice
deficient in the cardiac isoform of junctophilins gene
(Takeshima et al., 2000). Further studies on these pro-
teins could help reveal another key component to
localization of calcium-related organelles.
2. Examples of Calcium Compartmentalization In-

volved in Vascular Smooth Muscle Cells Contractile
State. When VSMCs are stimulated, the coordination
between all of the molecular players responsible for
calcium entry into the cell and calcium release from the
intracellular organelles is crucial for a homogeneous
and regulated contraction. In this section, we describe
three examples where compartmentalization of cal-
cium signaling plays an important role in the regula-
tion of VSMC contraction.
a. Regulation of myogenic tone in cerebral arteries.

Calcium release from the SR and coordination with
channels and other transporters at the plasma mem-
brane of cerebral VSMCs was first described in 1995 by
Nelson et al. (1995). In the seminal article, the group
defined calcium sparks as a temporal and spatial
release of intracellular calcium from the SR via the
ryanodine receptors (RyR), which further activate
calcium-dependent large conductance potassium chan-
nels (BKCa) at the plasma membrane (Nelson et al.,
1995) (Fig. 2B). Activation of BKCa channels induced
hyperpolarization of the plasma membrane, making
the coordination between RyR and BKCa central to the
regulation of voltage gated calcium channel (VGCC)
expressed at the plasma membrane (Fig. 2B) (Nelson
et al., 1995; Jaggar et al., 1998b). Conversely, calcium
influx from channels at the plasma membrane can also
activate RyR at the SR membrane. Calcium influx
through channels from the transient receptor potential
(TRP) family, namely TRPV4 channels, is expressed at
the plasma membrane of cerebral VSMCs and acti-
vates calcium release from the SR via RyR channels,

making TRPV4 and RyR part of a CICR mechanism
(Earley et al., 2005) (Fig. 2B). Of note, high calcium
concentrations between RyR and BKCa were demon-
strated in stomach SMCs where the calcium concen-
tration between both channels could reach 10 mM in an
area of 1 mm2 during a calcium spark (ZhuGe et al.,
1999; Zhuge et al., 2002). At the arterial level, the
coordination between RyR, BKCa, and TRPV4 is crucial
in the regulation of smooth muscle contraction as
shown specifically in pressure-induced constriction,
where the hyperpolarization induced by BKCa channels
negatively feeds back on the depolarization occurring
during increases in intravascular pressure (Jaggar
et al., 1998a,b; Knot and Nelson, 1998; Knot et al.,
1998; Jaggar, 2001; Wellman et al., 2002; Ledoux et al.,
2006). Accordingly, cerebral arteries isolated from mice
deficient in the b subunit of BKCa channels are
significantly more constricted at a given intraluminal
pressure compared with control mice (Brenner et al.,
2000). This negative feedback is key in the autoregu-
lation of cerebral blood flow, a process that is impaired
during subarachnoid hemorrhage, thus resulting in
a decreased activation of the BKCa and a higher
constriction of cerebral arteries (Koide et al., 2011).

During pressure-induced contraction of cerebral
arteries, other calcium channels expressed at the
plasma membrane of cerebral VSMCs are activated by
calcium release from the SR, specifically TRPM4
channels (Earley et al., 2005). However, as opposed to
BKCa channels that are activated by calcium sparks
released via RyR channels, TRPM4 channels are
activated by calcium release via IP3R present at the
SR membrane (Fig. 2B) (Gonzales et al., 2010a). In
cerebral VSMCs, TRPM4 channels at the plasma
membrane are less than 50 nm from the SR membrane
but are not physically coupled to the IP3R, as shown by
immunofluorescence overlap and immuno-fluorescence
resonance energy transfer (Zhao et al., 2010; Gonzales
and Earley, 2012). It is noteworthy that translocation of
the TRPM4 channels at the plasma membrane via
a PKC-dependent pathway is key for the channel
activation by calcium release through IP3R (Crnich
et al., 2010; Garcia et al., 2011). Because activation of
TRPM4 by a PKC-dependent pathway is involved in the
myogenic response to increased intravascular pressure
(Earley et al., 2004, 2007; Gonzales et al., 2010b), it has
been hypothesized that the functional complex formed
by IP3R, TRPM4, and PKC could play a role in the
depolarization of VSMCs observed upon increase in
intravascular pressure (Earley, 2013). However, neither
the origin of IP3R activation by increased levels of IP3

(Narayanan et al., 1994) nor the origin of PKC
activation upon increase intravascular pressure has
been elucidated (Earley, 2013). Mechanical activation of
Gq receptors by increased intravascular pressure has
been suggested (Mederos y Schnitzler et al., 2008;
Brayden et al., 2013) and could reconcile the ideas that
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both PKC and IP3R are activated during increased in-
travascular pressure, which would, respectively, result
in relocation of the TRPM4 at the plasma membrane
and in its activation. Further investigation is needed,
because activation of Gq receptors upon increased intra-
vascular pressure is controversial (Anfinogenova et al.,
2011; Earley, 2013).
b. Agonist-induced constriction in cerebral arteries.

As opposed to the functional but indirect interactions
between channels at the plasma membrane and at the
SR membranes described above, TRPC3 channels
expressed at the plasma membrane of VSMCs have
been shown to be physically coupled to IP3R1 on the
SR. This direct interaction was demonstrated using
coimmunoprecipitation in intact rat cerebral arteries
and by immuno-fluorescence resonance energy transfer
(Adebiyi et al., 2011). Functionally, TRPC3:IP3R1
coupling is important in the endothelin-1 (ET-1)-
mediated response where activation of IP3R1 directly
activates a cation influx via TRPC3 channels at the
plasma membrane, producing a sustained constriction
(Xi et al., 2008; Adebiyi et al., 2010, 2011). It is
noteworthy that activation of TRPC3 by IP3R1 occurs
independently of calcium release from the SR via the
IP3R1, because exogenous IP3 or ET-1 applied to
isolated cerebral myocytes induces a cation influx via
TRPC3, even when the SR was depleted of calcium (Xi
et al., 2008). The TRPC3:IP3R1 interaction occurs via
a calmodulin and IP3R binding domain (CIRB) that is
present on the TRPC3 channels and can be disrupted
using a peptide corresponding to the N-terminal
sequence of the IP3R1 known to interact with CIRB
domain (Adebiyi et al., 2010). Conversely, the func-
tional effect of TRPC3:IP3R1 interaction can be
mimicked by a peptide corresponding to the CIRB
domain of TRPC3, which simulates IP3R1 interaction
to TRPC3 and results in the activation of TRPC3 at the
plasma membrane (Adebiyi et al., 2010).
The presence of Cav1 is key in the assembling of

IP3R and TRPC3 complex as shown by the decrease in
IP3-induced cation influx via TRPC3 when VSMCs
were treated with methyl b cyclodextrin (MbCD) or
with shRNA targeting Cav1 (Adebiyi et al., 2011). The
same group also demonstrated that IP3-induced cation
influx via TRPC3 was inhibited by a peptide that
competes with endogenous Cav1 for interaction with
protein partners (Adebiyi et al., 2011). Concordantly,
MbCD, shRNA targeting Cav1, and the competing
peptide all abolished IP3-induced constriction of cere-
bral arteries (Adebiyi et al., 2011). In parallel, it was
also shown that local calcium release via IP3R1 could
activate BKCa channels, similarly to BKCa activation
by calcium sparks (see above) (Zhao et al., 2010).
These observations clearly demonstrate the impact

of compartmentalized calcium signaling, especially as
it relates to VSMCs. These areas of compartmentalized
calcium signaling have also been demonstrated in the

systemic circulation, where IP3R1, TRPC3, and Cav1
also interact together (Adebiyi et al., 2012). Addition-
ally, another TRP channel can activate BKCa at the
plasma membrane of systemic VSMCs, namely TRPC1,
which coimmunoprecipitate and colocalize with BKCa

channels in freshly isolated aortic SMCs (Kwan et al.,
2009). Functionally, the authors demonstrated that
TRPC1 channels are involved in the responses to
several contractile agonists including ET-1, but also
phenylephrine and U-46619. Agonist-induced activa-
tion of TRPC1 further activates a potassium efflux via
BKCa at the plasma membrane, thus controlling the
contractile state of VSMCs (Kwan et al., 2009). It is
noteworthy that the IP3R:TRPC3 coupling is increased
in spontaneously hypertensive rats, along with an
increase in TRPC3 expression and ET-1-induced vaso-
constriction (Adebiyi et al., 2012).

c. Lysosome-sarcoplasmic reticulum junctions.
The membrane appositions between the lysosomes and
the SR have important implications in processes such
as autophagy and cholesterol metabolism (van Breemen
et al., 2013). Recent studies reported a role of these
junctions in the regulation of CICR from the SR in-
duced by the second messenger nicotinic acid adenine
dinucleotide phosphate. This second messenger, which
can be produced in response to agonists such as ET-1,
stimulates the release of calcium from the lysosomes
via the two pore segment channel subtype 2 (TPC2;
Fig. 2D) (Calcraft et al., 2009). The released calcium
further activates release of calcium from the SR via
RyR3 found at SR-lysosomes nanojunctions in a CICR
manner (Kinnear et al., 2004, 2008). After activation
of RyR3, the RyR2 isoform is activated in a CICR
manner, and the calcium released from the SR is prop-
agated as a wave in the cytoplasm to activate con-
traction of SMCs (Kinnear et al., 2004, 2008; Clark
et al., 2010). By use of a lysosome marker and labeled
ryanodine, Kinnear et al. (2008) demonstrated a close
proximity between the lysosomes and ryanodine
receptors. These studies strongly point to a calcium
compartmentalization between the SR and the lyso-
some that may play important roles in the regulation of
calcium homeostasis.

3. Calcium Signaling Microdomains Involved in the
Regulation of Calcium Concentration in the Sarcoplas-
mic Reticulum. The SR is able to autoregulate its own
calcium content and maintain a constant calcium concen-
tration. The capacity of SR to store calcium is attrib-
uted to the presence of high-capacity, low-affinity
calcium-binding proteins in its lumen such as cals-
equestrin and calreticulin (Michalak et al., 1992; Milner
et al., 1992; Raeymaekers et al., 1993). After stimula-
tion of a cell, the SR is able to replenish its content by
pumping calcium via the sarco/endoplasmic reticulum
calcium ATPase (SERCA) pumps localized strategi-
cally in close apposition to the plasma membrane and
the mitochondria (Fig. 2, E and F) (Putney, 1986; Floyd
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and Wray, 2007; Satoh et al., 2011). Thus, the SR is
able to refill its calcium stock from both the
extracellular space and the mitochondria. To do this,
the cells have established different mechanisms to
transfer calcium from the extracellular space or the
mitochondrial matrix to the SR in a highly coordi-
nated manner to avoid diffusion into the cytosol and/
or unwanted activation of calcium-dependent signal-
ing pathways.
a. Signaling microdomains at the plasma membrane-

sarcoplasmic reticulum junctions. Upon VSMC stim-
ulation, the opening of TRPC6 channels at the plasma
membrane allows for the entry of sodium along with
calcium, which reverses the sodium and calcium
exchanger (NCX) by increasing subplasmalemmal
concentration of sodium and activating calcium entry
via VGCC, respectively (Lee et al., 2001; Lemos et al.,
2007; Poburko et al., 2007; Fameli et al., 2009) (Fig.
2E). Activation of VGCCs can be induced solely by
cation influx from TRPC6 and independently of the
NCX; however, reversal of the NCX offers an additional
source of calcium specifically for calcium refilling
(Poburko et al., 2008). Disruption of the PM-SR junc-
tions using the cytoskeleton-disrupting agent calyculin
A prevents calcium refilling of the SR, inhibits calcium
influx, but increases sodium entry presumably due to
a disruption of the refilling mechanism involving NCX,
TRPC6, and SERCA presented in Fig. 2E (Dai et al.,
2005a; Lemos et al., 2007). At the mitochondrial level,
a similar mechanism involving the mitochondrial NCX
has been demonstrated (see section I.B.3.b).
In parallel, the SR can also replenish its calcium

content by stromal interaction molecule (STIM) and
Orai expressed, respectively, at the SR and plasma
membrane (Williams et al., 2001; Liou et al., 2005;
Roos et al., 2005; Zhang et al., 2005; Feske et al., 2006;
Prakriya et al., 2006). In this system, STIM serves as
a [Ca2+]SR sensor due to an EF-hand located in the SR
lumen (Zhang et al., 2005) and relocate to SR regions
that are close to the plasma membrane (approximately
10–25 nm) when [Ca2+]SR decreases (Luik et al., 2006;
Wu et al., 2006; Calloway et al., 2009). After STIM
relocation at the PM-SR junctions, STIM interact
physically with the Orai channels at the plasma
membrane and activate Ca2+ entry (Fig. 2E) (Liou
et al., 2005; Zhang et al., 2005; Prakriya et al., 2006;
Ong et al., 2007; Muik et al., 2008; Navarro-Borelly
et al., 2008; Park et al., 2009a; Zheng et al., 2013a).
Recently, the store operated channel entry associated
regulatory factor was found to associate with STIM at
the plasma membrane so as to regulate calcium influx
via Orai to avoid excessive refill of the SR (Palty et al.,
2012).
b. Calcium signaling microdomains at the sarcoplas-

mic reticulum-mitochondria junctions. Fifty years
ago, mitochondria were shown to accumulate calcium
(Deluca and Engstrom, 1961; Vasington and Murphy,

1962; Lehninger et al., 1963), but the physiologic
relevance of the process was initially dismissed because
of the discordance between the mitochondria’s low
affinity for the ion (in the millimolar range) and the
measured physiologic cytosolic values of calcium (,1 mM)
(Patron et al., 2013). The role of mitochondria in cal-
cium homeostasis re-emerged in the early 1990s with
the development of calcium probes targeted to the
mitochondria (Rizzuto et al., 1992). Since then, the dis-
crepancy between the low affinity of the mitochondria
for calcium and the low cytosolic calcium concentration
has been explained by the close proximity between the
organelle and channels that release calcium both at the
SR and at the plasma membrane (Mannella et al.,
1998; Rizzuto et al., 1998; Csordas et al., 1999).

In VSMCs, the functional role of mitochondria in
calcium homeostasis was demonstrated using mitochon-
dria protonophores, which cause the mitochondrial
membrane potential to collapse or pharmacologically
block the mitochondrial calcium uniporter (MCU)
known to drive calcium influx into the mitochondria
(Drummond and Fay, 1996; McCarron and Muir, 1999).
Because the mitochondrial calcium uptake relies on the
large proton electrochemical driving force, these mito-
chondrial inhibitors were shown to increase cytosolic
calcium concentration upon depolarizing stimulation
(Drummond and Fay, 1996; McCarron and Muir, 1999;
Kamishima and Quayle, 2002; Cheranov and Jaggar,
2004). Blockers of the mitochondrial ATP synthase,
however, did not affect mitochondrial calcium uptake,
suggesting that the role of mitochondria in calcium
homeostasis was not due to a depletion of cellular ATP
and subsequent inactivation of the calcium pumps
present at the SR (e.g., SERCA) or at the plasma
membrane (e.g., PMCA) (Drummond and Fay, 1996;
McCarron and Muir, 1999). It recently became more
clear that the mitochondria acts as a buffer of the
calcium released from the SR, because an increase in
mitochondrial calcium concentration ([Ca2+]mit) occurs
after release of the ion from the SR (Drummond and
Fay, 1996). Indeed, application of caffeine or a GqPCR
agonist, which stimulate the RyRs and the IP3R,
respectively, or flash photolysis of caged IP3 induced
increases in [Ca2+]mit (Drummond and Fay, 1996;
Drummond and Tuft, 1999; McCarron and Muir, 1999;
Gurney et al., 2000; Kamishima and Quayle, 2002;
Chalmers and McCarron, 2008). This increase in [Ca2+]mit

was sensitive to mitochondrial protonophores (Drummond
and Tuft, 1999). Given the buffering role of mitochon-
dria, their contribution to the return of [Ca2+]i to
baseline levels after stimulation has also been demon-
strated (Drummond and Tuft, 1999; McCarron and
Muir, 1999; Kamishima and Quayle, 2002; Chalmers
and McCarron, 2008 ). For example, mitochondrial
protonophores increased the time of recovery of [Ca2+]i
after caffeine application in rat PASMCs (Drummond
and Tuft, 1999).
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The temporal buffering of calcium by the mitochon-
dria was also demonstrated using ATP in rat PASMCs,
where application of the purine induced oscillations in
[Ca2+]i synchronized with oscillations of [Ca2+]mit

(Drummond and Tuft, 1999). More direct evidence
has been observed in HeLa cells where [Ca2+]mit, [Ca

2+]SR,
and [Ca2+]i have been measured simultaneously
(Arnaudeau et al., 2001). These studies indicated
a larger ER depletion when calcium uptake by the
mitochondria was blocked by inhibitors of the mito-
chondrial respiratory chain (Arnaudeau et al., 2001).
The same study also demonstrated a larger ER
depletion when calcium efflux from the mitochondria
by the mitochondrial Na+-Ca2+ exchanger was phar-
macologically blocked, indicating that mitochondria
calcium stores aid in the refilling of the ER by locally
extruding calcium proximal to the SERCA pump on the
ER (Arnaudeau et al., 2001). Interestingly, ER regions
that are close to mitochondria refilled and released
more calcium than ER regions that are more distant
from mitochondria (Arnaudeau et al., 2001).
Because calcium has been shown to accumulate in

the mitochondrial matrix, the ion has to traverse both
the external mitochondrial membrane and the inner
mitochondrial membrane. It is presumed that calcium
ions, driven by the negative charge of the mitochon-
drial membrane potential established by the respira-
tory chain, cross the external mitochondrial membrane
via the voltage-gated anion channel. Calcium residing
in the intermembrane space is then imported into the
mitochondrial matrix via the MCU (Madesh and
Hajnoczky, 2001; Rapizzi et al., 2002; Kirichok et al.,
2004). Calcium is slowly released from the mitochon-
dria via the Na+-Ca2+ exchanger and the mitochondrial
permeability transition pore and is used to refill the SR
via the SERCA pump (Landolfi et al., 1998; Szado et al.,
2003; Ishii et al., 2006; Chalmers and McCarron, 2009;
Poburko et al., 2009; Giacomello et al., 2010) (Fig. 2F).
Several reports demonstrated that calcium buffering by
the mitochondria is especially important in the spatial
area surrounding the IP3R to prevent its inhibition by
cytosolic calcium accumulation (Hajnoczky et al., 1999;
Olson et al., 2010).
4. Calcium Signaling Microdomains Involved in

Protein Expression and Cell Proliferation. During
cellular proliferation, the transcription factor nuclear
factor of activated T-cells can be activated by calcium-
bound calcineurin, which induces the translocation to
the nucleus (Hogan et al., 2003; Aubart et al., 2009).
Several SR and plasma membrane calcium channels
have been involved in the calcium-induced transloca-
tion of nuclear factor of activated T-cells in the nuclei,
and it appears that the STIM/Orai complex described
above is central in this process (Aubart et al., 2009;
Baryshnikov et al., 2009; Zhang et al., 2011). In-
terestingly, in contractile quiescent VSMCs, STIM and
Orai are expressed at very low levels; however, when

VSMCs dedifferentiate and transition to a proliferative
phenotype, the expression of these two proteins is
significantly increased (Aubart et al., 2009; Potier
et al., 2009; Bisaillon et al., 2010). For example, several
reports have demonstrated an increased expression of
the STIM1 and Orai1 isoforms in VSMCs after carotid
balloon injury, where VSMCs adopt a highly pro-
liferative phenotype (Aubart et al., 2009; Guo et al.,
2009; Bisaillon et al., 2010; Zhang et al., 2011). In these
studies, the genetic knock down of STIM1 and Orai1 in
vivo resulted in significant inhibition of neointimal
growth (Aubart et al., 2009; Guo et al., 2009; Bisaillon
et al., 2010; Zhang et al., 2011).

Calcium influx secondary to calcium release from the
SR (i.e., calcium capacitive influx) plays a key role in the
increased PASMC proliferation observed during pulmo-
nary hypertension (Sylvester et al., 2012; Firth et al.,
2013). Both TRPC1 and the STIM/Orai molecular
complex are key in this capacitive calcium influx (Ng
et al., 2009, 2010a,b) and have been shown to play
a critical role in the calcium response of PASMC under
hypoxic conditions (Lu et al., 2008, 2009; Ng et al., 2012).
Although multiple lines of in vitro data demonstrate
the importance of the STIM/Orai/TRPC1 complex in
PASMCs, the physiologic relevance of the complex in vivo
remains unclear. However, because it is well accepted
that the capacitive calcium entry in PASMCs in vivo is
involved in the development of pulmonary arterial
hypertension, the STIM/Orai/TRPC1 complex could be
an important molecular component in this pathology.
Indeed, a recent investigation reported that platelet-
derived growth factor, a growth factor known to be
elevated in patients with pulmonary arterial hyperten-
sion, enhances the expression of STIM and Orai in
human PASMCs, along with an increase in capacitive
calcium entry and proliferation of the cells (Ogawa
et al., 2012).

The main conclusion that can be drawn from the work
described above is that calcium is highly regulated and
compartmentalized by the cell. To do so, cells harbor
a complex organization of intracellular organelles but
also assemble calcium pumps, calcium channels, and
calcium-binding proteins in calcium signaling microdo-
mains. The result of such highly organized microdomains
is a very efficient regulation of calcium homeostasis.
Therefore, calcium signaling microdomains provide
a valuable example to both understand and provide a
basis for signaling microdomains that regulate inter-
cellular communication work.

II. Gaseous Molecule Cellular Communication by
Signaling Microdomains

The biologic prevalence of physiologic and pathologic
signaling cascades utilizing diffusible gaseous mole-
cules in the blood vessel wall has been extensively
documented. Of particular note, a number of reactive
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nitrogen and oxygen species have been implicated in
a vast array of cellular signaling pathways in the
vascular wall. Among these gaseous molecules, nitric
oxide (NO) and its oxidized derivatives, nitrate, nitrite,
and peroxinitrite, have been studied the most exten-
sively, with a number of other free radical species
[notably superoxide anion (O2

•2) and hydrogen perox-
ide (H2O2)] having come into focus over the last decade
with conclusive work demonstrating an equally impor-
tant role in cellular communication (reviewed by
Ronson et al., 1999; Wolin, 2000; Ignarro, 2002;
Ardanaz and Pagano, 2006; Bian et al., 2008; Touyz
et al., 2011; Sparacino-Watkins et al., 2012; Bueno
et al., 2013). How these molecules are regulated by
signaling microdomains is discussed below, as well as
potential contributions from carbon monoxide (CO) and
hydrogen sulfide (H2S).

A. A Case for Endothelial Nitric-Oxide Synthase and
Nitric Oxide

The initial discovery by Murad in 1977 that
exogenous NO can act as a bioactive messenger to
activate soluble guanylate cyclase (sGC) in SMCs
(Katsuki et al., 1977), along with the work by
Furchgott and Zawadzki (1980) identifying the pres-
ence of an endothelium derived relaxing factor that has
since been identified as NO (Ignarro et al., 1987;
Palmer et al., 1987), fueled the concept that NO is an
essential player in regulating blood vessel physiology.
Since then, a number of intra- and intercellular targets
for bioactive NO have been identified with the bi-
ological effects ranging from enzyme activation or
inhibition, posttranslational modifications altering
protein function, including S-nitrosylation and tyrosine
nitrosation, and the generation of complex reactive
nitrogen and oxygen species through the rapid spon-
taneous reaction of NO with other gaseous molecules in
the cell (Ignarro, 1991; Davidge et al., 1995; Xu et al.,
1998; Handy and Loscalzo, 2006; Yoshida et al., 2006;
Kang-Decker et al., 2007; Selemidis et al., 2007;
Zuckerbraun et al., 2007; Illi et al., 2008; Briones
et al., 2009; Fernhoff et al., 2009; Lima et al., 2010;
Thibeault et al., 2010; Bess et al., 2011; Choi et al.,
2011; Straub et al., 2011; Marin et al., 2012; Haldar
and Stamler, 2013; Korkmaz et al., 2013).
It has now become evident that the spatial and

temporal regulation of reactive nitrogen and oxygen
species generation can dictate the functional impact of
these signaling molecules on the homeostatic mainte-
nance of vascular function, where dysregulation can
lead to complications including, but not limited to,
endothelial dysfunction, inflammation, and atheroscle-
rosis (reviewed by Giles, 2006; Pacher et al., 2007;
Muller and Morawietz, 2009). The biologic half-life of
NO is extremely short (,5 seconds), because of the
rapid diffusion to surrounding cells, chemical reac-
tions with other cellular oxidants, and scavenging by

heme-containing proteins, most notably hemoglobin
(Nathan, 1992; Archer, 1993; Hakim et al., 1996). These
observations suggest that the generation of NO may be
spatially confined to microdomains within the cell
where induction of NO-dependent signaling cascades
can be poised in close proximity to downstream targets.

Although the potent effects of NO as a vasodilator
and anti-inflammatory mediator were first recognized
nearly 30 years ago, the enzymes responsible for its
synthesis were not identified until the early 1990s.
Three nitric-oxide synthase (NOS) enzymes have since
been cloned and characterized with differential tissue
distributions and regulatory elements. These NOS
isoforms were subsequently termed nNOS (neuronal
NOS; NOS1) (Bredt et al., 1990; Bredt and Snyder,
1990), inducible NOS (NOS2) (Charles et al., 1993;
Sherman et al., 1993; Maier et al., 1994), and eNOS
(endothelial NOS; NOS3) (Busse and Mulsch, 1990;
Lamas et al., 1992; Marsden et al., 1992). With respect
to the cells comprising the blood vessel wall, eNOS is
the most abundant isoform with robust expression in
the ECs lining the vascular intima under physiologic
conditions. The other two NOS isoforms have also been
identified in the vessel wall, with nNOS expression
being detectable at low levels in the VSMCs in certain
vascular beds (Boulanger et al., 1998; Brophy et al.,
2000) and inducible NOS expression increasing in both
ECs and VSMCs in response to vascular damage or
cellular activation by proinflammatory cytokines
(Hansson et al., 1994; Kanno et al., 1994; Ikeda et al.,
1997; Hecker et al., 1999). In addition to the vascular
cells comprising the blood vessel wall, sympathetic
perivascular nerves innervate the resistance arteries
express nNOS, providing another source of NO for the
regulation of vascular function (Sosunov et al., 1995;
Faraci, 2002). Based on the current myriad of litera-
ture implicating eNOS in vascular NO generation and
the complex regulatory networks dictating compart-
mentalized eNOS signaling, this section of the review
will focus on the signaling microdomains important for
control of eNOS activity and signal transduction
cascades in the vascular endothelium and how these
domains impart discrete control over NO production in
this tissue.

1. Structural Organization and Functional Regulation
of Endothelial Nitric-Oxide Synthase. Endothelial
NOS is a highly regulated enzyme in the vasculature,
with a multifaceted control of its enzymatic activity
conferred by numerous factors including local substrate
and cofactor availability, regulatory protein binding
partners, and dynamic posttranslational modifications,
predominantly by phosphorylation of specific serine,
tyrosine, and threonine residues. The eNOS enzyme has
a constitutive low level of activity for NO generation
that is tightly modulated by each of the aforementioned
factors (Palmer et al., 1988; Bredt and Snyder, 1990; Busse
and Mulsch, 1990; Lamas et al., 1992; Garcia-Cardena
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et al., 1996; Michel et al., 1997; Presta et al., 1997). The
enzyme contains an N-terminal oxygenase domain
harboring a heme prosthetic group and a C-terminal
reductase domain with the latter containing binding
sites for flavin mononucleotide, flavin adenine dinucle-
otide, and NADPH (Sessa et al., 1992; Fleming and
Busse, 1999) (Fig. 3A). The oxygenase and reductase
domains are separated by a linker region containing
a calmodulin binding domain (Sessa et al., 1992;
Fleming and Busse, 1999) (Fig. 3A). Translated eNOS
forms a homodimer where the N-terminal oxygenase
domain from one monomer participates in oxidation-
reduction reactions with the C-terminal reductase
domain of the second monomer (Fig. 3B). As a dimer,
eNOS uses NADPH, L-arginine, and O2 to synthesize
NO and the byproduct L-citrulline through a reaction
driven by electron transport from the enzyme’s

reductase domain to the heme moiety located in the
oxygenase domain of the second monomer (Fig. 3B).
This reaction by the heme iron promotes binding and
subsequent reduction of O2 and incorporation into
L-arginine, ultimately terminating with the production
of bioactive NO (Palmer et al., 1988; Presta et al., 1997;
Fleming and Busse, 1999). This process is dependent on
a number of cofactors including 1) tetrahydrobiopterin
(BH4), which binds to the oxygenase domain and is
required for eNOS dimerization; 2) CaM, which binds to
the linker region of dimeric eNOS conferring an
activating conformational change; and 3) heat shock
protein 90. Transient increases in intracellular Ca2+

recruit CaM to its regulatory binding site in the eNOS
linker, promoting NADPH-dependent electron flux
between the reductase domain of one eNOS monomer
to the oxygenase domain of the second monomer (Abu-
Soud and Stuehr, 1993; Chen et al., 1997; List et al.,
1997; Presta et al., 1997). In addition, BH4 is required
for coordinating the electron transport from the re-
ductase to oxygenase domains and a decrease in the
bioavailability of this essential cofactor leads to eNOS
uncoupling and the production of superoxide anion
(O2

•2) instead of NO, imparting oxidative stress on the
cell (Wever et al., 1997; Stuehr et al., 2001) (Fig. 3B).

In addition to the array of regulatory cofactors that
control eNOS activity, the enzyme is dynamically
modulated by phosphorylation, with modification of
multiple serine, threonine, and tyrosine residues
influencing NO synthesis (Fig. 3A). Although there
are several potential phosphorylation sites on eNOS,
Tyr81, Ser615, Ser633, and Ser1177 have been
identified as target residues for enzyme activation by
phosphorylation, and Ser114 and Thr495 for enzyme
inhibition (Dimmeler et al., 1999; Fleming et al., 2001;
Scotland et al., 2002; Chen et al., 2003; Fulton et al.,
2005; Li et al., 2007; Fisslthaler et al., 2008; Loot et al.,
2009; Watts and Motley, 2009). Phosphorylation of
Ser1177 in the C-terminal reductase domain has been
the most extensively characterized, and this activating
modification increases electron flux and NO synthesis
by eNOS (Dimmeler et al., 1999; Scotland et al., 2002).
Ser1177 is modified by a number of kinases in
a context-dependent manner. For instance, shear-
stress induces the activation of the kinases Akt and
protein kinase A (PKA), which phosphorylate eNOS at
Ser1177 and promote NO-dependent arterial relaxa-
tion (Dimmeler et al., 1999; Gallis et al., 1999; Boo
et al., 2002b). Akt-mediated phosphorylation of eNOS
has also been observed in response to VEGF and
estrogen stimulation, whereas the vasodilation ob-
served in response to bradykinin is controlled by
phosphorylation of eNOS Ser1177 by CaM kinase II
(Papapetropoulos et al., 1997; Bernier et al., 2000;
Yang et al., 2000; Fleming et al., 2001; Chambliss and
Shaul, 2002; Chen et al., 2006; Gentile et al., 2013).
Site-directed mutagenesis studies have found that

Fig. 3. eNOS: protein domains, phosphorylation sites, and higher order
organization. (A) eNOS is composed of an N-terminal oxygenase domain
containing binding sites for tetrahydrobiopterin (BH4), Zn

2+, heme, and
L-arginine and a C-terminal reductase domain containing NADPH, flavin
adenine dinucleotide, and flavin mononucleotide binding sites. The
oxygenase and reductase domains are separated by a linker region that
harbors a regulatory CaM binding domain. Binding domains are
indicated in italics. eNOS also harbors several serine, threonine, and
tyrosine residues that are targeted for phosphorylation. The most
extensively characterized phosphorylated residues are depicted with
those that promote enzyme activation in green (Tyr81, Ser615, Ser633,
and Ser1177; human sequence) and sites imparting inhibition in red
(Ser114 and Thr495). (B) eNOS forms a homodimer coordinated by BH4
and Zn2+ binding in the N-terminal oxygenase domains of each monomer.
Dimeric eNOS synthesizes NO from L-arginine and O2 through NADPH-
dependent electron flux from the C-terminal reductase domain of one
monomer to the heme moiety located on the oxygenase domain. Depletion
of BH4 promotes eNOS uncoupling, leaving the enzyme in a monomeric
form, resulting in the production of superoxide rather than NO.
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mutating this residue to an alanine prevents Akt-
dependent NO synthesis, whereas a phosphomimicking
mutation of Ser1177 to aspartate renders eNOS
constitutively active (Dimmeler et al., 1999; Fulton
et al., 1999). In addition to Ser1177, Ser633 can be
phosphorylated in response to shear stress and
adiponectin stimulation in a PKA and 59-AMP-
activated protein kinase-dependent manner, respec-
tively, leading to eNOS activation and NO synthesis in
arterial endothelial cells (Boo et al., 2002a; Chen et al.,
2003; Osuka et al., 2012). More recently, phosphoryla-
tion of Tyr81 in the N-terminal oxygenase domain has
been reported to increase eNOS activity in a c-Src-
dependent manner (Fulton et al., 2005). Phosphoryla-
tion of Ser615 has also been observed in response to
bradykinin stimulation and has been associated with
increased eNOS activity (Michell et al., 2002). In
contrast to these activating modifications, targeted
phosphorylation of Ser114 or Thr495 exerts inhibitory
effects on eNOS. Modification of Ser114 renders eNOS
less active in response to VEGF stimulation, and
mutagenesis studies have concurrently revealed that
phosphorylation of this residue promotes eNOS in-
teraction with its scaffolding regulatory protein Cav1
(Li et al., 2007). Of the most studied inhibitory residues
in eNOS, Thr495 located in the CaM binding site plays
a dynamic role in regulating eNOS activity. In resting
ECs, Thr495 is constitutively phosphorylated by 59-
AMP-activated protein kinase and PKC, antagonizing
CaM binding in response to Ca2+-mobilizing agonists
and functionally inhibiting NO synthesis by the
enzyme (Fleming et al., 2001; Watts and Motley,
2009). The myriad of evidence for eNOS regulation by
phosphorylation has made it clear that the dynamic
balance between phosphorylation of activating and
inhibiting residues of eNOS imparts strict control over
the enzyme’s ability to produce NO and propagate NO-
dependent signaling cascades. Based on the growing
literature for phosphorylation in regulating interac-
tions of eNOS with its cofactors, these posttransla-
tional modifications may prove to play an important
role in the regulation of eNOS in distinct signaling
microdomains by controlling the localization and
binding interactions between other known signaling
partners that are discussed in the following sections.
Characterization of the catalytic activity of eNOS and
the requirement of indispensable cofactors and sub-
strates have prompted numerous investigations into
the key factors conferring specificity to localization of
the enzyme to specific regions in the cell where these
substrates are concentrated and interactions between
eNOS and other protein binding partners that can
regulate its activity. At the axis of eNOS regulation in
the blood vessel wall, evidence has emerged suggesting
distinct signaling microdomains containing the enzyme
at the level of the Golgi, plasma membrane caveolae,
and the MEJ.

2. Compartmentalized Endothelial Nitric-Oxide Syn-
thase Regulation in the Endothelial Cells Golgi
Apparatus. eNOS resides in several distinct locations
within ECs, notably the Golgi apparatus, cholesterol-
enriched microdomains at the plasma membrane (in-
cluding lipid rafts and caveolae), and the MEJ where
heterocellular communication can occur through direct
cell-to-cell coupling. Proper trafficking of eNOS to these
domains requires the coordinated cotranslational modi-
fication of eNOS by N-myristoylation at amino acid
residue Gly2 and posttranslational modification by
S-palmitoylation at residues Cys15 and Cys26 (Sessa
et al., 1993; Liu and Sessa, 1994; Liu et al., 1995; Robinson
and Michel, 1995; Shaul et al., 1996; Fernandez-Hernando
et al., 2006). N-Myristoylation is an absolute requirement
for eNOS trafficking through the Golgi because a de-
ficiency in the covalent attachment of a myristoyl group
to Gly2 results in cytoplasmic sequestration of the
enzyme and decreased catalytic activity for NO genera-
tion. Retention of eNOS in the cytoplasmic compartment
of the cell probably results in decreased NO generation
because of suboptimal exposure of the enzyme to its
required cofactors and substrates for NO synthesis.
Following N-myristoylation, eNOS is targeted to the trans-
Golgi, where a class of acetyltransferases of the Asp-
His-His-Cys motif (DHHC) palmitoyltransferase family
palmitoylate eNOS at Cys15 and Cys26 (Fernandez-
Hernando et al., 2006).

The eNOS enzyme has been shown to polarize to the
Golgi along with five members of the DHHC family of
palmitoyl transferases including DHHC 2, 3, 7, 8, and
21. In particular, regional colocalization of eNOS and the
DHHC 21 isoform has been observed by coimmunopre-
cipitation and immunofluorescence overlap studies,
suggesting that these two enzymes may form a func-
tional complex required for eNOS palmitoylation and
activity (Fernandez-Hernando et al., 2006). Modification
of eNOS by S-palmitoylation confers proper trafficking
and subcellular localization of the enzyme to cellular
membranes where eNOS activity has been shown to be
maximal, notably at plasma membrane caveolae and
lipid rafts (Michel, 1999; Sessa, 2004). Dysregulated
acylation of eNOS by DHHC 21 results in diminished
NO production both basally and in response to vaso-
dilatory agonists such as ATP, which may ultimately
perturb communication between the endothelium and
smooth muscle in the blood vessel wall (Fernandez-
Hernando et al., 2006). This is particularly evident
because eNOS constructs with mutations at the myr-
istoylation and/or palmitoylation sites are less active
than wild-type eNOS, and genetic knockdown of DDHC
21 in ECs impairs trafficking of eNOS to plasma
membrane compartments and reduces NO generation
in response to the calcium ionophore ionomycin and
adenosine triphosphate (ATP) (Fernandez-Hernando
et al., 2006). Taken together, these studies suggest that
a signaling microdomain poised in the EC Golgi is
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important for eNOS processing and subsequent traffick-
ing to peripheral membranes in the cell where its
biologic activity is optimal. Improper lipid modification
of eNOS can therefore have detrimental effects on
signaling events in the vasculature, which can lead to
pathologies including hypertension, impairments in
angiogenesis and atherosclerosis.
3. Signaling Microdomains Involving Endothelial

Nitric-Oxide Synthase Regulation at the Plasma
Membrane.
a. Endothelial nitric-oxide synthase and caveolin 1

interactions in the endothelium. The major fraction of
eNOS in ECs is localized to specialized regions of the
plasma membrane, including cholesterol-rich lipid rafts
and caveolae where its activity has been shown to be
optimal (Zhang et al., 2006b). In ECs, eNOS colocalizes
with the caveolin 1 (Cav1) isoform in caveolae, anchor-
ing the enzyme at the cytoplasmic face of the in-
vagination. A direct protein-protein binding interaction
between eNOS and Cav1 has been observed both in
vitro and in vivo, and characterization of this interaction
identified the ability of Cav1 to impart an inhibitory
clamp on the catalytic activity of eNOS, acting as an
allosteric inhibitor controlling NO production in the
endothelium (Garcia-Cardena et al., 1997; Ju et al.,
1997; Bucci et al., 2000). Furthermore, studies aimed at
mapping the interacting domains of eNOS and Cav1
identified this protein-protein interaction to occur
between the N-terminal oxygenase domain of eNOS
and the intracellular N-terminal scaffolding domain of
Cav1 (Ju et al., 1997; Bucci et al., 2000; Bernatchez
et al., 2005). In addition, a synthetic peptide corre-
sponding to residues 82–101 of Cav1 called cavtratin
was capable of binding to and inhibiting eNOS activity
(Ju et al., 1997; Bucci et al., 2000).
Functionally, Cav1 binding to eNOS antagonizes the

interaction of the enzyme with its activating cofactor
calmodulin under resting conditions. Further investiga-
tion of the Cav1/eNOS interaction has identified three
residues (Thr90, Thr91, and Phe92) in the Cav1
scaffolding domain that impart the negative regulation
of Cav1 on eNOS activity (Bernatchez et al., 2005). The
inhibitory clamp can be relieved by stimulating endo-
thelial cells with agonists that mobilize intracellular
Ca2+, including fluid shear stress on the endothelium
and a number of vasodilator agonists. This process leads
to dissociation of eNOS from Cav1, binding of CaM to its
allosteric site on eNOS, and activation of the enzyme to
facilitate NO production (Fig. 4A). Disruption of the
eNOS/Cav1 interaction by genetic deletion of Cav1 from
ECs increases NO production by eNOS and facilitates
SMC relaxation. To this end, Cav12/2 mice develop
systemic hypotension due to increased activity of eNOS
(Murata et al., 2007). On the basis of these observations,
it has been proposed that Cav1 binding to eNOS in
caveolae serves to impart allosteric inhibition of the
enzyme under basal conditions to prevent excessive NO

production and nitrosative stress. In addition to the
systemic vascular effects of Cav1 depletion, mice lacking
Cav1 acquire pulmonary hypertension attributed to
dysregulated eNOS activity (Zhao et al., 2009). The
mechanism responsible for this pathology is proposed to
be mediated through increased protein kinase G
tyrosine-nitration due to nitrosative stress, which inhi-
bits protein kinase G, thus preventing smooth muscle

Fig. 4. Nitric oxide regulation at plasma membrane caveolae. (A) eNOS
localizes to plasma membrane caveolae, where it directly binds to Cav1.
This interaction inhibits basal eNOS activity and NO synthesis. Increases
in Ca2+ facilitate activation of CaM, which is recruited to eNOS and
promotes dissociation of the enzyme from Cav1. Binding of CaM to free
eNOS increases its enzymatic activity, resulting in NO production from
the substrates L-arginine, NADPH, and O2. (B) eNOS colocalizes with
a number of membrane receptors in endothelial cell caveolae, including
the angiotensin II type 1 receptor (AT1), the bradykinin B2 receptor
(BKB2), the endothelin-1 type B receptor, the estrogen receptor (ERa),
and the scavenger receptor (SR-B1). The GPCRs bind eNOS directly
through an interaction with their fourth intracellular domain (ID4) and
inhibit basal eNOS activity. Binding of GPCR ligands to their
complement receptors promotes eNOS dissociation from these receptors,
relieving the inhibitory clamp that is mediated through increases in
intracellular Ca2+ and phosphorylation of eNOS and the GPCR, leading
to NO production by eNOS. Activation of SR-B1 by high-density
lipoprotein (HDL) or ERa by estradiol promotes activation of protein
kinases, including Src, PI3K/Akt, and MAPKs, which promote eNOS
phosphorylation and enzyme activation. (C) Activation of the AT1
receptor in caveolae signals eNOS activation as described in (B) as well
as the recruitment and activation of NOX to caveolae. NOX activation
produces superoxide anion (O2

•2), which uncouples dimeric eNOS to its
monomeric form, resulting in O2

•2 production. NO and O2
•2 generated at

EC caveolae rapidly react to form the free radical peroxinitrite (ONOO2).
See Fig. 6 for NOX regulation. (D) eNOS enriched at EC caveolae
colocalizes with and is regulated by the activity of the cationic amino acid
transporter 1 (CAT1) and the plasma membrane Ca2+ ATPase (PMCA).
In caveolae, PMCA functions to extrude Ca2+ from the local cytosolic
compartment and the subsequent reduction in free intracellular Ca2+

prevents CaM recruitment and Cav1 dissociation from eNOS, inhibiting
NO production. Conversely, CAT1 facilitates the cellular uptake of the
eNOS substrate L-arginine in spatial proximity to the synthase, providing
local enrichment in the precursor for NO synthesis.
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relaxation and increasing vascular resistance in the
pulmonary vasculature. This pulmonary hypertension
has been shown to be ablated in mice lacking both Cav1
and eNOS or by eNOS inhibition in Cav12/2 mice with
L-NAME treatment (Zhao et al., 2009). In addition to the
effects of Cav1 deficiency on the vascular tone, ECs
isolated from Cav12/2 mice have an impaired barrier
function due in part to increased nitrosative stress and
nitration of regulatory proteins involved in adherens
junction assembly and maintenance (Siddiqui et al.,
2011).
After the characterization of this signaling complex

in caveolae, the Sessa laboratory developed a non-
inhibitory analog of cavtratin that contains alanine
substitutions at Thr90, Thr91, and Phe92 called
cavnoxin (Bernatchez et al., 2011). Cavnoxin competes
with Cav1 for binding the oxygenase domain of eNOS
but, unlike cavtratin, does not inhibit eNOS activity.
Instead, cavnoxin increases basal NO production in
eNOS-expressing cells, decreases vascular resistance
in isolated arterioles, and reduces blood pressure in
mice (Bernatchez et al., 2011).
b. Endothelial nitric-oxide synthase interactions with

membrane receptors localized to caveolae in endothelial
cells. Multiple plasma membrane receptors have
been implicated in signal transduction pathways that
regulate the activity of eNOS in caveolae including the
bradykinin receptor B2, the angiotensin receptor, the
endothelin 1 receptor, estrogen receptor a (ERa), and
the scavenger receptor class B type 1 (SR-B1) (Fig. 4B)
(Ju et al., 1998; Chen et al., 1999; Bernier et al., 2000;
Chambliss et al., 2000; Golser et al., 2000; Haynes
et al., 2000; Waid et al., 2000; Hisamoto et al., 2001;
Yuhanna et al., 2001; Suzuki et al., 2006). The G-protein
coupled receptors (GPCRs) have been shown to bind to
eNOS in caveolae through a C-terminal intracellular
domain (ID4) and inhibit the enzyme under basal
conditions (Ju et al., 1998). Activation of these GPCRs
by their complement ligands relieves the inhibitory
clamp on eNOS by inducing an increase in intracellular
Ca2+ (see above) and recruitment of CaM to eNOS or it
can stimulate phosphorylation cascades, ultimately
targeting activating residues in eNOS or the receptor
itself causing dissociation of the receptor from eNOS
(McDuffie et al., 1999; Bernier et al., 2000; Golser
et al., 2000; Waid et al., 2000; Suzuki et al., 2006). Both
mechanisms result in eNOS activation and NO pro-
duction in ECs. Incubation of purified ID4 domains
with purified eNOS decreases the enzyme’s catalytic
activity and NO bioavailability, providing direct evi-
dence for a GPCR:eNOS signaling complex (Ju et al.,
1998; Golser et al., 2000).
Of particular note, eNOS regulation at caveolae in

ECs by the AT1 receptor provides complex control over
the production of NO and its oxidized derivative
peroxinitrite (ONOO2) (Fig. 4C). Activation of the
caveolae angiotensin receptor by angiotensin II (Ang II)

promotes eNOS activation through the mechanisms
described above but may also promote recruitment and
activation of NADPH oxidase (NOX) to this micro-
domain (Pueyo et al., 1998; Lobysheva et al., 2011). This
process results in the generation of O2

•2, which can
readily react with eNOS-derived NO to form ONOO2.
Upon ONOO2 accumulation, eNOS dimers uncouple to
their monomeric form in the caveolae resulting in the
synthesis of O2

•2 rather than NO. In addition, ONOO2

may diffuse within the cell or to surrounding cells in the
vascular wall, imparting oxidative stress (Huie and
Padmaja, 1993; Hogg et al., 1994).

Additional evidence has supported a role for high-
density lipoprotein (HDL) mediated eNOS activation
by binding to and activating SR-B1, conferring athero-
protective NO production (Yuhanna et al., 2001).
Binding of HDL to SR-B1 localized to EC caveolae
leads to activation of several protein kinases including
Src, MAPK, and PI3K/Akt, which function to phos-
phorylate and activate eNOS. Likewise, the estrogen
receptor ERa colocalizes with eNOS in plasma mem-
brane caveolae, and binding of estradiol to this
receptor activates eNOS and promotes NO generation
in ECs through the coordinated action of protein
kinase-mediated eNOS phosphorylation (Chambliss
et al., 2000; Haynes et al., 2000; Hisamoto et al.,
2001). This signaling mechanism has been suggested to
be an important determinant for atheroprotection in
females that can be mimicked in the male population
by estrogen supplementation.

c. Regulation of endothelial nitric-oxide synthase by
membrane transporters and channels in caveolae.
The sequestration of eNOS to caveolae in ECs poises
the enzyme in a spatial region of the cell where specific
membrane channels and transporters have been shown
to colocalize and regulate eNOS activity by tightly
controlling the abundance of essential cofactors and
substrates. Notably, the cationic amino acid trans-
porter 1 (CAT1) colocalizes with eNOS and Cav1 in
endothelial cell caveolae, where its function has been
proposed to regulate the cellular import of L-arginine,
the prerequisite substrate for NO synthesis by eNOS,
in close proximity to the enzyme (Fig. 4D). Studies
have shown that the CAT1 coimmunoprecipitates with
eNOS and Cav1 from isolated endothelial cell mem-
branes, suggesting a regionalized interaction between
these proteins in caveolae (McDonald et al., 1997).
Therefore, the regulated activity of CAT1 in vascular
endothelial cell caveolae may impart functional effects
on NO synthesis through localized modulation of
substrate bioavailability.

In addition to CAT1, the plasma membrane calcium
ATPase (PMCA) has also been found to localize to
plasma membrane caveolae. Notably, PMCA is con-
centrated 18- to 25-fold higher in caveolae compared
with noncaveolae plasma membrane fractions (Fujimoto,
1993; Schnitzer et al., 1995). PMCA is a P-type ATPase
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that plays a crucial role in the regulation of cell calcium
homeostasis (Di Leva et al., 2008). As its name
indicates, it utilizes energy from ATP hydrolysis to
extrude calcium from the cytosol to the extracellular
space (Di Leva et al., 2008). In human umbilical vein
endothelial cells (HUVECs), treatment with methyl b
cyclodextrin (MbCD), which disrupts caveolae by se-
questering cholesterol from the compartment, signifi-
cantly reduces Ca2+ efflux mediated by PMCA (Zhang
et al., 2009). Conversely, replenishment of cholesterol to
MbCD-treated cells restored PMCA-mediated calcium
efflux from ECs (Zhang et al., 2009). Because eNOS
activity is highly dependent on calcium, PMCA was
shown to negatively regulate eNOS activity by extrud-
ing Ca2+ from the cytosol, decreasing the local concen-
tration of Ca2+ in spatial proximity to eNOS in caveolae
(Holton et al., 2010). This active shuttling of Ca2+ to the
extracellular compartment decreases CaM recruitment
to Cav1 bound eNOS, preventing dissociation of the two
proteins and ultimately preventing NO synthesis (Fig.
4A). In addition to the control of local Ca2+ availability
at the caveolae membrane, recent work has identified
a novel binding interaction between endothelial cell
PMCA and eNOS that may directly antagonize eNOS
activity and NO production partly through effects on
eNOS phosphorylation status (Holton et al., 2010).
Taken together, these observations provide evidence
for a regulated signaling microdomain between CAT1,
PMCA, and eNOS isoforms in EC caveolae.
4. Compartmentalized Nitric Oxide Signaling at the

Myoendothelial Junction. The MEJ is a distinct ana-
tomic structure in the blood vessel wall where (pre-
dominantly) ECs send cellular projections through
small holes in the internal elastic lamina separating
the intima and media that allow for direct cell-to-cell
contact with the overlying smooth muscle cell layer
(Moore and Ruska, 1957; for review, see Heberlein
et al., 2009). In small resistance arteries, MEJs are
numerous compared with larger conduit arteries and
coordinate signal transduction between the smooth
muscle and endothelium by facilitating intercellular
transport of small molecules and ions as well as
harboring polarized proteins involved in vascular cell
crosstalk (Sandow and Hill, 2000; Dora et al., 2003a;
Isakson and Duling, 2005; Isakson et al., 2007;
Isakson, 2008; Straub et al., 2011).
a. Nitric oxide regulation of gap junction permeability

at the myoendothelial junction. The MEJ has emerged
as an important signaling microdomain in the vascula-
ture with a number of signaling proteins localized to the
junction that influence vascular homeostasis, most nota-
bly gap junctions comprised of connexins.
The presence of gap junctions at the MEJ influences

smooth muscle-endothelial cell coupling, and the per-
meability of connexin 43 (Cx43)-based gap junctions is
tightly regulated by nitric oxide (Straub et al., 2011).
Use of a vascular cell coculture model has revealed an

enrichment of Cx43 and eNOS localized to the MEJ in
vitro, and characterization of this enrichment in vivo
by immunolabeling coupled to transmission electron
microscopy has confirmed this observation in the intact
arterial wall (Straub et al., 2011). Concurrent with
a localized enrichment of these two proteins at the
MEJ, a novel signaling microdomain involving eNOS
and Cx43 has been identified in which the post-
translational modification of Cx43 at the MEJ by
S-nitrosylation of Cys271 regulates the permeability of
these intercellular channels. S-Nitrosylation of Cx43
promotes an open-channel conformation allowing
exchange of cytosolic constituents between smooth
muscle and endothelium. Cx43 is constitutively
S-nitrosylated at the MEJ due to colocalization of eNOS,
which harbors a low level of basal activity (Straub
et al., 2011). In small resistance arteries, stimulation of
smooth muscle a1-adrenergic receptors promotes in-
duction of Gq-dependent signaling cascades, leading to
the activation of phospholipase C that cleaves the
phospholipid phosphatidylinositol 4,5-bisphosphate to
IP3 and diacylglycerol, increasing the cytosolic inositol
triphosphate (IP3) concentration. The generated IP3

induces Ca2+ release from the smooth muscle cell SR
(see above) but can also directly traverse gap junctions
at the MEJ to activate the IP3 receptor type 1 (IP3R1)
in ECs (Isakson et al., 2007; Isakson, 2008). This has
been proven in vivo in mesenteric and cremasteric
arteries, where IP3 diffusion from SMCs can elicit
a local increase in [Ca2+]i in ECs specifically at the
MEJ where a subset of the IP3R1 isoform is poised at
extensions of the ER within the MEJ (Isakson, 2008;
Ledoux et al., 2008). The initial rise in endothelial
calcium activates another enzyme polarized and
enriched at the MEJ, the S-nitrosoglutatione reductase
(GSNOR), whose activation facilitates denitrosylation
of Cx43 and channel closure (Straub et al., 2011)
(Fig. 5, top). After activation of GSNOR and denitro-
sylation of Cx43, the rise in endothelial cell [Ca2+]i
promotes eNOS activation and subsequent generation
of NO at the MEJ, which diffuses to and relaxes the
SMCs and ultimately renitrosylates Cx43 at the MEJ,
presumably providing rapid spatial and temporal
control of heterocellular communication between the
vascular cells (Straub et al., 2011). In addition to the
role of smooth muscle derived IP3 in regulating
endothelial cell [Ca2+]i signaling at the MEJ, smooth
muscle Ca2+ released from the SR downstream of IP3

mobilization may also influence heterocellular commu-
nication by traversing the gap junctions at the MEJ to
control eNOS and GSNOR activity (Isakson et al.,
2007). Regardless of the second messenger to elicit the
increase in [Ca2+]i, the NO-related dynamics on the EC
side of the MEJ likely remain the same. These studies
have shown a novel interaction between Cx43, IP3R1,
eNOS, and GSNOR localized to the MEJ, providing
evidence for a signaling microdomain that can regulate
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cellular communication between the EC and SMC in
the blood vessel wall.
b. Nitric oxide signaling regulation at the myoendo-

thelial junction by hemoglobin a and cytochrome B5

reductase 3. Polarization and enrichment of eNOS at
the EC side of the MEJ poises the enzyme in close
proximity to the overlying SMC layer, allowing for

rapid NO diffusion upon eNOS activation. Recent
evidence has shown that the alpha chain of hemoglobin
(Hba) is actively synthesized by arterial ECs and
polarizes to the MEJ in small resistance arteries
(Straub et al., 2012). In addition, the Hba subunit
has been shown to be expressed in small mesenteric
arteries (Burgoyne et al., 2012). In red blood cells,
hemoglobin is known to scavenge NO through reactive
chemistry involving its heme center (Cassoly and
Gibson, 1975). Recent work has also found a similar
function of Hba at the MEJ, where monomeric Hba
acts to regulate NO diffusion to SMCs and functionally
impacts arterial reactivity (Straub et al., 2012).

NO scavenging by hemoglobin in the red blood cell can
be regulated by the reducing activity of the enzyme
cytochrome B5 reductase 3 (CytB5R3), where the enzyme
acts to reduce the heme iron in Hb from the Fe3+ state to
the Fe2+ state (Hultquist and Passon, 1971). Importantly,
the reaction kinetics of NO with heme iron in the Fe2+

state is extremely rapid (2.4 � 107 M21×s21) (Cassoly and
Gibson, 1975), whereas the control of NO diffusion by
heme iron in the Fe3+ state occurs more slowly (3.3�103

M21×s21) (Sharma et al., 1987). As a result, Hba residing
at the MEJ in the Fe2+ state may scavenge NO rapidly,
preventing diffusion to SMCs and maintaining a more
constricted state. Conversely, Hba in the Fe3+ state may
allow for greater NO diffusion to SMCs, enhancing
vasorelaxation. Concurrently, NO scavenging by heme
iron in the Fe2+ state can limit the amount of NO
diffusing to the overlying SMC layer, whereas heme iron
in the Fe3+ binds NO at a slower rate. It is noteworthy
that CytB5R3 was also present at the MEJ and that
coimmunoprecipitation studies using in vitro MEJ
fractions, intact arteries, and purified proteins have
indicated that eNOS, Hba, and CytB5R3 form a protein
complex enriched at this signaling nexus (Straub et al.,
2012).

In isolated resistance arteries, siRNA knockdown of
Hba in EC potently increased NO diffusion through the
arterial wall, indicating the functional importance of
Hba in scavenging endothelium-derived NO (Straub
et al., 2012). Furthermore, pressure myography studies
on these arteries have provided functional evidence for
NO scavenging by EC Hba in response to phenyleph-
rine and acetylcholine stimulation, two agonists that
induce NO synthesis by the endothelium (Straub et al.,
2012). Further analysis revealed that CytB5R3 ac-
tively reduces Hba to the Fe2+ state at the MEJ,
imparting strict control over the ability of Hba to
scavenge diffusible NO at the interface of endothelium
and smooth muscle (Straub et al., 2012). These
observations have identified a novel signaling micro-
domain at the MEJ in small resistance arteries where
Hba, eNOS, and CytB5R3 work in concert to regulate
arterial tone (Fig. 5, bottom).

The identification of multiprotein signaling micro-
domains at the MEJ has shed light on the regulation of

Fig. 5. Nitric oxide regulation at the MEJ. Top, Nitric oxide posttransla-
tionally modifies the gap junction protein connexin 43 (Cx43) at the MEJ
through S-nitrosylation. Under basal conditions, Cx43 is constitutively
S-nitrosylated, which renders the channel in an open, permeable state.
IP3 and Ca2+ from the smooth muscle cell layer diffuse through these
open gap junctions and bind to IP3 receptor type 1 (IP3R1) on the EC
endoplasmic reticulum that is poised at the MEJ, resulting in Ca2+

release from the internal store. This local increase in Ca2+ promotes the
activation of the denitrosylase enzyme S-nitrosoglutathione reductase
(GSNOR) whose activity leads to denitrosylation of Cx43. Reduction of
the S-nitrosothiols on Cx43 closes the channel, preventing additional ion
and metabolite diffusion into the ECs. After this event, the local rise in
Ca2+ activates the eNOS localized at the MEJ, resulting in increased NO
production and renitrosylation of Cx43 gap junctions, restoring gap
junctional communication between ECs and SMCs in the arterial wall.
The black dashed arrow indicates reduction of the nitrosothiol, and the
red dots on Cx43 correspond to the cysteine residue on the carboxyl tail of
Cx43 that is S-nitrosylated. Bottom, Hemoglobin a (Hba) is synthesized
by vascular ECs and is enriched at the MEJ, where it forms a complex
with eNOS and the reductase CytB5R3. NO generated by eNOS at the
MEJ is able to diffuse to the overlying smooth muscle cell layer when Hba
resides in the Fe3+ state (methemoglobin, maroon). Reduction of Hba to
the Fe2+ state (oxyhemoglobin, red) by the activity of CytB5R3 promotes
NO scavenging by Hba and prevents NO diffusion.

Regulation of Cellular Communication in Blood Vessel Wall 529



heterocellular communication in the resistance vascu-
lature and provides insight into the complex control of
arterial tone. At one axis, it is now clear that gap
junctions at the MEJ can be direct targets of bioactive
NO that is synthesized in close proximity to the
junction by eNOS. Furthermore, the eNOS:Hba:
CytB5R3 ternary complex that resides at the MEJ
plays a role in regulating the diffusion of NO to the
junction and surrounding SMCs to influence arterial
tone. These new insights into signal propagation
between ECs and SMCs may prove to be intimately
associated where Hba may not only function to control
the amount of NO diffusing to the SMC to activate
cGMP-dependent relaxation, but also regulate the
extent of Cx43 S-nitrosylation and ultimately gap-
junction-mediated heterocellular communication. In
this respect, decreased NO scavenging by Hba at the
MEJ may favor S-nitrosylation of Cx43 poising the
junctions in an open conformation and allow diffusion
of IP3 and calcium from the SMC to EC, promoting
vasodilation (Fig. 5).
In conclusion, eNOS activation and NO bioavailabil-

ity results from a complex regulating process involving
direct protein interaction with multiple players (Cav1,
GPCR, Hba, CytB5R3, PMCA, etc.) that accumulate
within a specialized phospholipid region, caveolae, and,
in some cases, are polarized to a specific region of the
cells, the MEJ. With regard to our definition in Table 1
and the work described above, eNOS and its protein
partners are an important signaling microdomain for
intercellular communication in the blood vessel wall.

B. Reactive Oxygen Species Are Signaling Molecules
Involved in Intercellular Communication

Oxygen is a necessary molecule for cellular function by
fueling the respiratory chain in the mitochondria.
Paradoxically, oxygen is also the main source of reactive
oxygen species (ROS) that cause a multitude of cellular
damages within the cell. The superoxide anion (O2

•2) is
at the origin of the formation of other ROS such as
hydrogen peroxide (H2O2) or the hydroxyl radical (×OH).
The superoxide anion can also react with NO and form
peroxynitrite (ONOO×), which can further generate reac-
tive nitrogen species that also have deleterious cellular
effects (for review, see Martinez and Andriantsitohaina,
2009). When ROS are produced in large amount, due to
upregulation of the proteins orchestrating their synthesis
and/or decreased ROS degradation or scavenging, it
results in cellular oxidative stress. Oxidative stress oc-
curs in multiple pathologic conditions, including hyper-
tension, atherosclerosis, and myocardial infarction where
ROS are involved in VSMC proliferation and migration,
monocyte infiltration, endothelial dysfunction, and re-
modeling of the extracellular matrix (for review, see
Touyz et al., 2011; Montezano and Touyz, 2012; Sedeek
et al., 2012). The plasma level of the ROS H2O2 is
increased in patients with hypertension compared with

healthy patients, suggesting its importance as a para-
crine molecule mediating oxidative stress (Varma and
Devamanoharan, 1991; Lacy et al., 1998; Halliwell et al.,
2000).

The short half-life of ROS and their high reactivity
has led to the hypothesis that these oxidant molecules
may be produced and exert their effects in a restricted
space (Davidson and Duchen, 2006). Although the
concept of a “ROS microdomain” has never been clearly
established, O2

•2 production was observed in discrete
regions at the plasma membrane and in the area
surrounding the mitochondria (Zorov et al., 2000; Aon
et al., 2003; Brady et al., 2004; Davidson and Duchen,
2006; Yi et al., 2006; Garcia-Perez et al., 2012; Siddall
et al., 2013). Superoxide anion can be produced via
several pathways, both intracellularly and extracellu-
larly. The main intracellular source of O2

•2 is the
mitochondria, which “leaks” electrons from the respira-
tory chain that react with molecular oxygen. At the
plasma membrane, NADPH oxidase is the principal
source of O2

•2 and produces O2
•2 extracellularly. Given

the extremely short half-life of the superoxide anion and
the presence of an extracellular form of superoxide
dismutase (EC-SOD), it has been hypothesized that
O2

•2 is rapidly dismutated to H2O2 in the extracellular
space. Because H2O2 is a lipophilic molecule, it can
readily diffuse through the plasma membrane and exert
its oxidative effects intracellularly. Conversely, due to
the lipophilic nature and relative stability of H2O2

compared with O2
•2, it has been suggested that H2O2 is

the central molecule imparting oxidative stress. How-
ever, it is becoming increasingly clear that O2

•2

produced extracellularly by Nox has an effect intracel-
lularly, which has subsequently led several groups to
investigate candidate proteins for the transport of the
O2

•2 across the plasma membrane.
1. NADPH Oxidase as a Signaling Microdomain.

The NADPH oxidase (Nox) was first characterized in
phagocytic cells where it plays an important role in the
antimicrobial defense via the production of superoxide
anion (Parkos et al., 1987; Rotrosen et al., 1992). Nox is
a multimeric protein complex that could be considered
in itself a signaling microdomain because it is composed
of two distinct enzymatic subunits that interact with
multiple small regulating proteins. The intrinsic trans-
membrane component of the Nox is formed by a hetero-
dimeric flavocytochrome, which comprises two subunits,
gp91phox and p22phox (Fig. 6) (Parkos et al., 1987;
Rotrosen et al., 1992). This heterodimeric flavocyto-
chrome is also called cytochrome b558, based on its
spectroscopic properties. These subunits were named
after their molecular mass on gel electrophoresis
whereas the letters indicate a protein (p) or glycoprotein
(gp) of the phagocyte oxidase (phox) (Dinauer et al.,
1987; Parkos et al., 1987, 1988; Rotrosen et al., 1992).
Several homologs of gp91phox have been identified and
are termed Nox1, Nox3, Nox4, Nox5, Duox1, and Duox2,
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with the isoform gp91phox subsequently renamed Nox2
(for review, see Bedard and Krause, 2007; Montezano
et al., 2011). These isoforms have different modes of
regulation, expression, and activity but all harness the
capacity to produce O2

•2, with the exception of Nox4,
which has been shown to mainly produce H2O2 (Wu
et al., 2010). The Nox1, Nox2, Nox4, and Nox5 isoforms
have all been identified in the vasculature, with
differential expression in both ECs and VSMCs (Touyz
et al., 2011). Although each Nox isoform (with the
exception of Nox5) requires the presence of the
enzymatic subunit p22phox, their activity is differen-
tially regulated: Nox1 is regulated by NOX1A, NOX1B,
and Rac1, whereas Nox2 is regulated by p47phox,
p67phox, and the small GTPase (Rac) (Nunoi et al.,
1988; Volpp et al., 1988; Abo et al., 1991; Bedard and
Krause, 2007). Although the regulators of Nox1 and 2
have been well characterized, the mechanisms control-
ling Nox4 and Nox5 activity are not as well understood;
however, it appears that Nox4 is constitutively active
and Nox5 does not require the subunit p22phox
(Montezano et al., 2011).
In resting conditions, the different elements compos-

ing the Nox enzymatic complex are colocalized at the
plasma membrane, but they only interact with each
other upon stimulation, which brings each subunit and
regulating protein in close apposition (Sumimoto et al.,
1996; Han et al., 1998; Groemping et al., 2003). Once

activated, two heme groups present in the transmem-
brane portion of the gp91phox subunit allow for the
transfer of electrons from a cytosolic NADPH to
a molecular oxygen on the extracellular side of the
plasma membrane, thus producing O2

•2 in the extra-
cellular milieu (Bedard and Krause, 2007). In the
vasculature, production of O2

•2 can be activated by a
variety of stimuli such as Ang II, inflammatory
mediators, and shear stress (Fisher, 2009). The activa-
tion of Nox, specifically Nox2, by Ang II has been at the
center of a multitude of investigations, and it is now
well described that Ang II induces the phosphorylation
of the regulatory subunits p47phox and p67phox,
causing them to relocate to the plasma membrane with
the heterodimeric flavocytochrome b558 (Griendling
et al., 1994). In these conditions, p38 MAPK is activated
by the Nox2-derived ROS and results in VSMC
hypertrophy (Ushio-Fukai et al., 1998).

The superoxide anion produced extracellularly by the
Nox can exert its effect via several pathways. The most
well described pathway involves dismutation of O2

•2 to
H2O2 in the extracellular space by the EC-SOD. Thus,
H2O2 has been considered a second messenger that is
involved in intercellular communication as well as in
intracellular signalization (Bedard and Krause, 2007).
The role of H2O2 as a paracrine molecule has been
demonstrated in the vascular wall, where H2O2 is key in
the communication between the vascular adventitia and
VSMCs and is involved in VSMC hypertrophy (Liu
et al., 2004). In parallel, studies indicate that H2O2

derived from the adventitia plays a critical role in the
relaxation of rat carotid artery in response to acetyl-
choline by activating p38 MAPK and inhibiting the
protein tyrosine phosphatase SHP-2 in VSMCs (Cascino
et al., 2011). In addition to the damaging effect of O2

×2-
dependent H2O2 production, it has become evident that
despite its short half-life, O2

•2 may itself play an active
role in oxidative cellular damage. Studies incorporating
exogenous SOD to deplete O2

•2 have aided in the
investigation of a primary role for the free radical
during oxidative stress. For example, mice deficient in
EC-SOD exhibit higher systemic blood pressure upon
Ang II infusion compared with control mice (Welch
et al., 2006). Likewise, a recombinant heparin-binding
form of SOD acutely decreased blood pressure in
spontaneously hypertensive rats (Chu et al., 2003).
These observations have raised questions regarding the
exact mechanism responsible for intracellular oxidative
damages caused by the extracellular production of O2

•2,
and several investigators suggested different mecha-
nisms that may facilitate the transport of O2

•2 across
the plasma membrane, including the voltage-gated
chloride channel ClC-3 and aquaporin (Fig. 6).

2. Candidates for Transport of Reactive Oxygen
Species across the Plasma Membrane.

a. ClC-3 channels. ClC-3 is a member of the family
of voltage-gated chloride channels that is abundantly

Fig. 6. ROS microdomain at the plasma membrane. NADPH oxidase is
the main source of O2

•2 at the plasma membrane where it produces O2
•2

in the extracellular space. The NADPH oxidase protein complex
represented here corresponds to the Nox2 isoform (previously termed
gp91phox). Upon stimulation, the regulators of gp91phox, including
gp22phox, gp67phox, gp47phox, and Rac assemble with the gp91phox.
The O2

•2 produced extracellularly can either be dismuted by the
extracellular superoxide dismutase (EC-SOD) or traverse the chloride
channel ClC3 at the plasma membrane. In the extracellular space, the
dismutation of O2

•2 results in the production of H2O2, which can either
cross the plasma membrane directly because of its lipophilic property or
via the aquaporin channels (AQP1).
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expressed in the VSMCs and ECs where it can be
activated by increases in cell volume or cellular stretch
(Duan, 2011). Additionally, ClC-3 channels have been
shown to open in conditions where the cells are
stimulated by Ang II, ET-1, CaM kinase II, and ROS
(for review, see Duan, 2011). Evidence for a flux of O2

•2

across the plasma membrane has been demonstrated
in pulmonary microvascular ECs using the superoxide-
sensitive dye hydroethidine (Hawkins et al., 2007).
When O2

•2 was added to the extracellular milieu, the
fluorescence of EC loaded with hydroethidine in-
creased significantly, and this was abolished when
cells were pretreated with the anion channel blocker
(4,49-diisothiocyanato-2,29-stilbenedisulfonic acid diso-
dium salt) or with siRNA targeting ClC-3 (Hawkins
et al., 2007). The authors observed an increase in [Ca2+]i
when cells were treated with exogenous superoxide
anion (Hawkins et al., 2007). The calcium appeared to
be originating from the ER, and in turn, calcium
altered the mitochondrial membrane potential, in-
ducing more superoxide anion production from the
mitochondria (Madesh et al., 2005; Hawkins et al.,
2007).
In pulmonary hypertension, increased ROS production

has been correlated with increased Nox expression and/
or increased activity of Nox (for review, see Freund-
Michel et al., 2013). Additionally, the increased ROS
production has been shown to be involved in VSMC
proliferation and endothelial dysfunction (Freund-Michel
et al., 2013). Interestingly, in a model of monocrotalin-
induced pulmonary hypertension, the expression of the
gene coding the ClC-3 channels was upregulated in rat
pulmonary arteries and cultured canine PASMCs (Dai
et al., 2005b). Although no direct link has been
established between the overexpression of Nox4 and
ClC-3, the in vitro data reported by Hawkins et al. (2007)
could lead to the hypothesis that the channel over-
expression contributes to the influx of extracellular O2

•2

produced by the enzyme.
b. Aquaporin. As discussed above, H2O2 has been

assumed to be the best candidate for intracellular
damage given its longer half-life and lipophilic proper-
ties. Because of these characteristics, it was assumed
that H2O2 exerts its intracellular effects by diffusing
across the plasma membrane. This notion was recently
challenged by Miller et al. (2010), who reported that
aquaporin can mediate H2O2 uptake in mammalian
cells. In this study, human embryonic kidney-293 and
HeLa cells overexpressing different isoforms of aqua-
porin showed increased uptake of the chemoselective
H2O2 indicator Py1-ME (Miller et al., 2010).
In the vasculature, Pagano’s laboratory was the first

to describe the transport of H2O2 through aquaporin-1
channels at the plasma membrane of VSMCs (Al
Ghouleh et al., 2013). In their model, H2O2 applied
exogenously on rat aortic SMCs penetrated into the
cells via aquaporin-1 and activated superoxide anion

production by Nox1 (Al Ghouleh et al., 2013). This
signaling cascade leads to the phosphorylation of the
protein Ask1, which results in hypertrophy of SMCs.

The presence of multiple regulators directly inter-
acting with the different Nox isoforms makes the
NADPH oxidase complex a signaling microdomain by
itself. Additionally, because the structural character-
istic of the enzyme results in extracellular production
of O2

•2 and the presence of 1) channels that allow the
transfer of the ROS into the cell and 2) EC-SOD that
degrades the O2

•2 into H2O2, it could be argued that
a ROS signaling microdomain is an important compo-
nent of vascular cell communication.

C. Signaling Microdomains in the Release of
Hydrogen Sulfide and Carbon Monoxide?

In addition to the well-defined nitrogen-related
gaseous species described above, carbon monoxide
(CO) and hydrogen sulfide (H2S) have also been shown
to have potent effects in the blood vessel wall as
specific cellular signaling molecules that can alter local
vasoconstriction/dilation and blood pressure [e.g., CO
(Suematsu et al., 1994; Johnson et al., 1997; Caudill
et al., 1998; Leffler et al., 1999); H2S (Zhao et al., 2001;
Yang et al., 2008; Leffler et al., 2011a; Liang et al.,
2011)]. Both gases are produced by ubiquitously
expressed enzymes. Although their production and
activation have yet to be identified as being regulated
by signaling microdomains, emerging evidence may
indicate a possible role in CO production.

Heme oxygenase [HO; found in two isoforms, HO-1
(inducible) and HO-2 (constitutive)] catalyzes the O2-
dependent degradation of heme into free iron, biliver-
din IXa, and CO. NADPH-cytochrome P450 reductase
provides the electrons for this catalysis (for review, see
Kim et al., 2006; Leffler et al., 2011b). Although both
HO-1 and HO-2 are primarily found in the endoplasmic
reticulum (e.g., Tenhunen et al., 1968), there is now
sufficient evidence that both enzymes can associate
with Cav1 at the plasma membrane of mesengial (Jung
et al., 2003) and endothelial cells (Kim et al., 2004).
Further reports indicated that Cav1 is a competitive
inhibitor for HO-1, identifying a minimum sequence
required for binding (Taira et al., 2011) and possibly
regulating activation of BKCa channels in endothelium
(Riddle and Walker, 2012) [although this Cav1 in-
teraction has yet to be detected in smooth muscle cells
where the link between BK and CO was originally
identified and well-described (Wang et al., 1997;
Jaggar et al., 2002, 2005; Xi et al., 2004)]. One report
indicated that cytochrome P450 reductase is also
associated with Cav1 (Jung et al., 2003), potentially
forming a compartmentalized signaling microdomain
for CO production. Further work on this concept is
required to elucidate the role for sequestration of these
proteins into microdomains and the importance in
cellular signaling. In addition, because CO is potently
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scavenged by hemoglobin, it will be interesting to
determine how the Hba expressed in the endothelium
of small arteries (Burgoyne et al., 2012; Straub et al.,
2012) may interact and modulate CO function.
The production of H2S is by a series of steps starting

with serine and homocysteine that proceeds through
cystathionine beta synthase (with H2S as a substrate)
producing cystathionine, which feeds into cystathio-
nine g-lyase (with H2S as a substrate) producing cyste-
ine; this is the trans-sulfuration pathway (Hildebrandt
and Grieshaber, 2008). The cysteine produced from
this pathway or other endogenous sources can then
feed into the cysteine catabolism pathway, which
converts cysteine into mercaptopyruvate via cysteine
aminotransferase (Hildebrandt and Grieshaber, 2008).
Lastly, mercaptopyruvate sulfurtransferase converts
the meraptopyruvate into pyruvate and H2S (although
the exact acceptors remain unidentified) (Hildebrandt
and Grieshaber, 2008; Kabil and Banerjee, 2010).
There remains much to understand in regard to H2S,
including the following. 1) How does H2S penetrate the
plasma membrane? Under physiologic pH, H2S does
not readily move through plasma membranes and
there are currently no known transports for this
molecule (Mathai et al., 2009), 2) How can H2S
specifically be inhibited? The current pharmacological
inhibitors have been called into question (Kabil and
Banerjee, 2010). 3) What is the physiologic concentra-
tion of H2S? The amount of H2S needed to produce
biologic effects is an order of magnitude above
physiologically relevant levels (Furne et al., 2008;
Whitfield et al., 2008; Olson, 2009). The answers to
these questions may lead to a novel understanding of
how such a fundamental gas could function in the
vasculature. Currently there is no known localization
of the H2S enzymes together in a particular region of
the cell that may constitute a signaling microdomain.

III. Channel-Based Cellular Communication by
Signaling Microdomains

In section II, we described intercellular communica-
tion via free diffusion across the plasma membranes or
extracellular production of signaling molecules by cells
within the vascular wall. In this section, we will first
discuss intercellular communication through the direct
cytoplasmic transfer of molecules from one cell to
another via gap junctions. We will further describe the
multiple ion channels structured in a signaling micro-
domain, especially those involved in the endothelium-
derived hyperpolarization (EDH) mediated response.

A. Gap Junction Channels

One of the first indications of a physiologic role for
gap junctions in the vasculature came from studies by
Segal and Duling (1986) that identified a “conducted
vasodilation” in arterioles upstream of a vasodilator

stimulus, suggesting that some form of direct commu-
nication was involved. Gap junction channels coordi-
nate responses through the passage of small molecules
between cells and are important in normal vascular
physiology but are also highly implicated in vascular
pathophysiology such as hypertension and arterio-
genesis. The gap junctions as membrane proteins
contain highly flexible intracellular regions that make
them ideal for forming protein-protein interactions to
regulate their function, and decades of studies have
established their roles in signaling microdomains.

The gap junctions as a cellular structure were
described nearly 50 years ago (Dewey and Barr, 1964).
These membrane channels permit direct cell-to-cell
(intercellular) transfer of ions, metabolites, and small
molecules between two different cell cytoplasms and are
essential for the maintenance of normal vascular func-
tions. The small molecules include (but are not limited
to) ATP, IP3, nicotinamide adenine dinucleotide, and
other metabolites up to 1 kDa in size (see Table 2). Gap
junctions are ubiquitously expressed in almost all cells
of the body, existing transiently at the cell surface and at
points of cell-to-cell contact (Laird, 2006; Johnstone
et al., 2009a). The protein subunit comprising gap junc-
tions is the connexin (Cx), which assembles in hexameric
channels at the plasma membrane. In this state, the
hexameric channel is referred to as a connexin hemi-
channel or connexon, which is transported to the plasma
membrane. Two connexin hemichannels residing on
apposed cells further dock to each other, forming a gap
junction channels. In total, 21 human connexin isoforms
have been identified with a primary role of direct
intercellular communication. The classification of con-
nexin isoforms is based on their molecular weights, with
further classification based on isoform interaction (Eastman
et al., 2006). Within the cells of the blood vessel wall,
four connexins have been well characterized: Cx37,
Cx40, Cx43, and Cx45. In addition, it was recently
shown that Cx32 is expressed within vascular cells and
may contribute to direct cell-to-cell communication
through gap junctions (Okamoto et al., 2009, 2011;
Fowler et al., 2013). Typically, ECs predominantly
express Cx37, Cx40, and Cx43, whereas VSMCs have
been shown to express Cx37, Cx43, and Cx45 (Johnstone
et al., 2009a,b; Okamoto et al., 2009). Additionally,
within the resistance vasculature at sites of endothelial
to smooth muscle contact (i.e., MEJ), Cx37, Cx40, and
Cx43 have all been shown to be expressed (Haddock
et al., 2006; Sandow et al., 2006; Isakson et al., 2008;
Straub et al., 2010, 2011). However, connexin expression
across the vascular wall varies widely depending on the
animal species and the vascular bed examined. A
number of factors may influence this, including sheer
stress or changes in vessel wall structure (as can be
found in vascular disease states such as atherosclerosis
and hypertension) (Kwak et al., 2002; Johnson and
Nerem, 2007; Vorderwulbecke et al., 2012). A more
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detailed examination of vascular specific differences in
connexin expression profiles in EC and VSMC in vitro
and in vivo can be found in Table 3.
1. Intrinsic Characteristics of Connexins Allowing for

Protein Interactions. Connexin proteins possess an
intracellular N terminus, four transmembrane-spanning
domains, two extracellular loops, a single intracellular
loop, and a highly flexible intracellular C-terminal
region containing multiple sites for potential protein
interactions and posttranslational modifications (Evans
and Martin, 2002; Kovacs et al., 2007). Within the
connexin isoforms expressed in the vasculature,
C-terminal regions are essentially unstructured, allow-
ing for rapid changes as a result of protein modifica-
tions such as phosphorylation and nitrosylation events
(Sorgen et al., 2004a; Bouvier et al., 2009; Straub et al.,
2012). These random coil or disordered domains are
the main sites of connexin protein-protein interactions,
and a diverse array of proteins have now been
demonstrated to regulate connexin protein assembly,
trafficking, and gating, ultimately affecting cellular
communication involved in cell proliferation and mi-
gration (Wei et al., 2004; Johnstone et al., 2012b).
Eliminating the C-terminal domain of Cx43, the most
ubiquitously expressed isoform, significantly reduces
the formation of large gap junction plaques but does
not alter the proper trafficking and insertion into the
plasma membrane, suggesting that interactions be-
tween the C-terminal domain and other proteins are
required (but not essential) for efficient gap junction
plaque formation (Duffy et al., 2004; Simek et al.,
2009).
A further unique feature of connexin-protein interac-

tions that can be crucial for incorporation into signaling

microdomains is the apparent requirement for dimeriza-
tion of two connexin proteins to allow for interactions
such as interactions between the C terminus and the
intracellular loop within the same Cx protein (Ponsaerts
et al., 2010), interactions between Cx and the cell cycle
regulating protein cyclin E (Johnstone et al., 2012b), and
interactions with other connexins (Sorgen et al., 2004b;
Zhou et al., 2007b). An alteration in the C-terminal
structural conformation resulting from phosphorylation
may play a central role in connexin C-terminal dimer-
ization and interactions with other proteins, although the
exact nature of this dimerization has not been de-
termined (Kopanic and Sorgen, 2013; Grosely et al.,
2013).

Oligomerization of the connexins primarily occurs
within the ER for Cx37, Cx40, and Cx45 or later in the
trans-Golgi network (TGN) for Cx32 and Cx43 (Das
Sarma et al., 2001; Vanslyke et al., 2009; Smith et al.,
2012). Composition of a connexin hemichannel can
either be formed of six of the same connexin isoform
(homomeric) or a mixture of multiple isoforms (hetero-
meric). Within the connexin isoforms expressed in the
vasculature, heteromeric channels have been identified
for Cx37/Cx40 (Ayad et al., 2006; Laird, 2006; Smith
et al., 2012), Cx37/Cx43 (Brink et al., 1997; Larson
et al., 2000; Wang et al., 2005; Beyer et al., 2013), Cx40/
43 (He et al., 1999; Stergiopoulos et al., 1999; Bouvier
et al., 2009), Cx40/Cx45 (Martinez et al., 2002); Cx43/
Cx45 (Moreno et al., 1991; Koval et al., 1995), and Cx43:
Cx32 (Lagree et al., 2003; Vanslyke et al., 2009).
Typically, compared with homomeric hemichannels,
these heteromeric associations produce channels with
altered gating sensitivities to voltage, pH, or Ca2+;
altered channel opening; different ion selectivity; and

TABLE 2
Substrates and ions permeable to gap junctions

Table summarizes molecules reported to traverse gap junction channels. Key publication(s) showing evidence for transfer of a molecule via gap
junctions is indicated in the right column

References

Substrate
Glucose Lavado et al., 1997; Goldberg et al., 1999, 2002; Qu and

Dahl, 2004; Ma and Dahl, 2006
10 mer or , siRNA, shRNA, micro RNA Neijssen et al., 2005; Valiunas et al., 2005; Wolvetang

et al., 2007; Kizana et al., 2009; Brink et al., 2010;
Katakowski et al., 2010; Lim et al., 2011

cAMP Lawrence et al., 1978; Murray and Fletcher, 1984;
Spray and Burt, 1990; Stagg and Fletcher, 1990;
Locke et al., 2004; Bedner et al., 2006; Kanaporis
et al., 2008

1-IP and 1,4-IP2,1,4,5-IP3, 1,4,6-IP3, 1,3,4-IP3, 1,3,4,5-
P4

Saez et al., 1989; Hansen et al., 1993; Kam et al., 1998;
Niessen et al., 2000; Locke et al., 2004; Ayad et al.,
2006; Straub et al., 2010; Decrock et al., 2012

cGMP Bevans et al., 1998; Taimor et al., 2000; Locke et al.,
2004

Ions/Small Molecules
K+ Veenstra et al., 1994a,b; Beblo and Veenstra, 1997
Ca2+ Saez et al., 1989; Christ et al., 1992; Tour et al., 2007
Na+ Veenstra et al., 1994a,b; Beblo and Veenstra, 1997;

Behringer et al., 2012
Cl2 Beblo and Veenstra, 1997
Glutamate Beblo and Veenstra, 1997
Nitrate- Garant, 1972; Beblo and Veenstra, 1997
Lithium Beblo and Veenstra, 1997
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permeability properties, but their membrane targeting
is not altered (Beyer et al., 2000, 2001; Cottrell and
Burt, 2001; Wei et al., 2004). The specific characteriza-
tion of the functional properties of these heteromeric
channels has been extensively reviewed by others (e.g.,
Moreno, 2004).
2. Microdomains Regulating the Intracellular Traf-

ficking of Connexins. Once formed, vascular connexin
hemichannels are actively transported to the plasma
membrane through direct binding of their C-terminal
and intracellular loop regions with proteins such as
tubulin (a and b) (Giepmans et al., 2001b; Thomas et al.,
2005; Kang et al., 2009; Saidi Brikci-Nigassa et al.,
2012). Associations between Cx43 and tubulins (a and
b) have been shown through coimmunoprecipitation,
immunofluorescence overlap, analytical size exclusion
chromatography, nuclear magnetic resonance, pull-
down assays, and site-directed mutagenesis in a variety
of studies (e.g., Giepmans et al., 2001b; Saidi Brikci-
Nigassa et al., 2012). The interaction between Cx43 and
tubulins occurs in a 26 amino acid region (in the region
of aa 228–262) in the Cx43 C terminus, which results in
the formation of helical regions at the point of in-
teraction between the two proteins. This process was
recently demonstrated to be regulated through v-src
phosphorylation at the Tyr247 of the Cx43 C terminus
(Giepmans et al., 2001b; Saidi Brikci-Nigassa et al.,
2012). The interaction between connexins and tubulins
regulates membrane targeting, localization within the
plasma membrane, gap junction plaque formation, and
TGF-b signaling (Shaw et al., 2007; Saidi Brikci-
Nigassa et al., 2012). Despite the presence of this
binding site, microtubule blockers do not block traffick-
ing or gap junctions assembly, which can be explained
by redundancies that allow for alternative trafficking
pathways to the cell membrane (Jordan et al., 1999;
Majoul et al., 2009; del Castillo et al., 2010). Addition-
ally, removal of the microtubule-binding domain or
complete removal of the Cx43 C terminus does not stop
plasma membrane trafficking or gap junction assembly
(although gap junction plaques are smaller) (Jordan
et al., 1999; Omori and Yamasaki, 1999; Rhee et al.,
2009). However, under these conditions, there is a re-
duction in available hemichannels at the plasma
membrane and subsequent transition to gap junctions
(Johnson et al., 2002; Maass et al., 2007). Although the
connexins can bypass the tubulin pathway to target the
membrane, it may be a critical domain for normal
development. In transgenic mice, expression of a mu-
tated form of Cx43 where there is a truncated Cx43 C
terminus (d258, within the tubulin binding domain)
produces a lethal phenotype in neonatal mice (Maass
et al., 2004, 2007). Many deletion and mutagenesis
studies have shown that the C terminus is at least in
part dispensable for membrane trafficking of Cx43.
However, a recent study demonstrated that deletion
mutations within the tubulin binding domain i.e., aa

235–242 (unlike previous mutations that retain this
domain) inhibit gap junctions and gap junction in-
tercellular communication (Wayakanon et al., 2012).
These studies clearly define that interactions between
connexins and the microtubule network result in
efficient signaling microdomain formation but demon-
strate that the C-terminal binding site is not essential.

The trafficking of Cx43 in monomer form to the TGN
is facilitated through interactions with the GTPase
protein rab20 (Das Sarma et al., 2008). By use of GST
pull-down or yeast-2-hybrid assays, connexins have
also been found to specifically interact with consortin
within the TGN. Consortin further interacts with
clathrin adapter proteins to regulate vesicular traf-
ficking of proteins (del Castillo et al., 2010). Reduced
interaction with consortin alters the membrane trans-
port of Cx43, Cx45, and Cx32 (del Castillo et al., 2010).
The ability of connexin hemichannels to reach the
membrane significantly dictates their ability to form
functional gap junction channels with the ultimate
outcome being reduced gap junctional activity through
reduced membrane targeting. Altogether, consortin
and tubulins are key protein partners to connexin
proteins and ensure the trafficking of connexin hemi-
channels to the plasma membrane.

3. The “Functional” Connexin Hemichannel Versus
Pannexin Channel. Connexin hemichannels are
inserted into the membrane in an arbitrary fashion in
that that they are not directed to specific cellular regions
prior to membrane insertion (Lauf et al., 2002; Simek
et al., 2009). Once at the membrane, connexin hemi-
channels are then lateralized to areas of cell-to-cell
contact where they aggregate in clusters based on
plasma membrane lipid composition, thus forming direct
interactions with opposing connexin hemichannels to
form gap junctions (Wang et al., 2013). Before their
insertion into a gap junction cluster, connexin hemi-
channels are in a closed conformation under physiologic
conditions.

Connexin hemichannels at the cell surface have also
been extensively studied for their singular functional
role (besides that of a gap junction). Many studies have
suggested that connexin hemichannels can act by
releasing a number of small ionic molecules such as
ATP, IP3, or NAD+ and by uptake of a number of
fluorescent molecules. However, the ability for connexin
hemichannels to function in a physiologic context
remains contentious (Spray et al., 2006; Bosco et al.,
2011; Fasciani et al., 2013). The primary concerns
center around whether these gap junction intermediar-
ies are really signaling hemichannels, with only a few
studies directly indicating that certain connexin hemi-
channels open under physiologic conditions (Bukauskas
et al., 2002, 2006; Contreras et al., 2003; Bukauskas and
Verselis, 2004), with calls to clearly demonstrate the
signaling potentials of these channels (Spray et al.,
2006; Sosinsky et al., 2011). Every experiment involving
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connexin hemichannels require that no extracellular
calcium be present for the connexin hemichannels to be
opened (Spray et al., 2006). In addition, alterations in
intercellular ionic concentrations of K+ and variation in
pH have been showed to regulate the opening and
closing of connexin hemichannels (Retamal et al., 2007).
Specific pathways for the regulation of channel opening
include intracellular loop and C-terminal regions inter-
actions (Ponsaerts et al., 2010) and the specific post-
translational modifications of connexin C-terminal
amino acids (Bao et al., 2004a,b; Retamal et al., 2006;
De Vuyst et al., 2007) as recently well reviewed (Saez
et al., 2010; Ek-Vitorin and Burt, 2013; Fasciani et al.,
2013; Herve and Derangeon, 2013; Verselis and Srinivas,
2013; Wang et al., 2013).
The role of connexin hemichannels in a physiologic

setting, particularly within the vasculature, has been
further polarized by the fact that connexin-mimetic
peptides as well as a large number of chemical agents
that have been used to demonstrate connexin hemi-
channels specific activity also block pannexin channel
activity (Wang et al., 2013) (see Table 4). The pannexin
class of proteins was only recently discovered in the
early 2000s (Panchin et al., 2000). The pannexins have
similar membrane topology to connexins, with four
membrane-spanning domains and intracellular N ter-
minus, loop, and C terminus (MacVicar and Thompson,
2010). Similar to connexin hemichannels, six pannexin
proteins assemble to form hexameric membrane chan-
nels that have been shown to be expressed in virtually
all cell types, including vascular cells (Billaud et al.,
2011; Sosinsky et al., 2011; Lohman et al., 2012b).
Significantly, pannexin channels are not currently
known to form intercellular channels (as opposed to
connexin hemichannels that form gap junctions) but act
as a paracrine channel for the generation of directional
signaling across the surface of the cell (Dahl and
Locovei, 2006; Sosinsky et al., 2011; Lohman et al.,
2012a). To date, their role as a purine-releasing channel
as well as nonspecific anion channel has been clearly
demonstrated (Chekeni et al., 2010; Lohman et al.,
2012c; Wang et al., 2013). In the vascular wall, the three
pannexin isoforms are expressed with variation depend-
ing on the type of circulation (systemic, pulmonary,
coronary, hepatic) (Lohman et al., 2012b). To date, only
a few studies have investigated the role of pannexin
channels in vascular functions, and it is now clear that
they participate in the adrenergic signaling pathway in
SMCs as well as in the thrombin signaling pathway in
ECs (Billaud et al., 2011; Godecke et al., 2012). Lastly,
although pannexins have not been identified in any
clear microdomains and are not localized within caveoli,
as demonstrated in a rat mammary tumor cell line
(Gehi et al., 2011), they have been associated with
a number of receptors that can initiate their opening,
including the a1D-adrenergic receptor, the NMDA
receptor, and PAR-1 (Billaud et al., 2011; Godecke

et al., 2012; Weilinger et al., 2012). Ongoing and future
studies of these channels could provide interesting clues
into Panx1 integration in signaling microdomains in the
blood vessel wall.

4. Gap Junctional Plaque as a Signaling Microdomain.
Gap junctions form through accretion and docking of
opposing connexin hemichannels between adjacent cells
and have been identified between EC, VSMC, and at the
MEJ in a large number of vascular beds (Brisset et al.,
2009). Although gap junctional communication has been
clearly identified between ECs in numerous vascular
beds, the presence of gap junction between VSMCs and
at the MEJ seems to differ according to the vascular beds
and the species (Johnstone et al., 2009a; Billaud et al.,
2011). Within the blood vessel wall, gap junctions play an
integral role in key physiologic responses, including
vascular resistance, vascular growth, and cell differenti-
ation, and are highly adapted during diseases, implicat-
ing them as key members in modulating different aspects
of disease responses (Kwak et al., 2002; Liao et al., 2007;
Chadjichristos et al., 2008) (see Table 5). The formation
of gap junctions and gap junction channel properties are
highly regulated through intracellular environment but
also through direct protein interactions in signaling
microdomains.

a. Caveolin. At the plasma membrane, connexin
hemichannels are held within discrete cholesterol- and
sphingolipid-rich membrane regions known as lipid
rafts (Schubert et al., 2002; Locke et al., 2005; Locke
and Harris, 2009; Defamie and Mesnil, 2012). Con-
nexins are differentially expressed in a number of
different lipid rafts of variable composition character-
ized by their sensitivity to detergents such as Triton
X-100, Nonidet P-40, or Brijj and by the presence of
Cav1 (Locke et al., 2005). Multiple interaction studies
(e.g., immunofluorescence overlap, coimmunoprecipitation,
Far Western) have now identified that vascular
connexins, including Cx32, Cx37, Cx43, and Cx40,
can interact with both Cav1 and Cav2 (Schubert et al.,
2002; Locke et al., 2005; Langlois et al., 2008; Saliez
et al., 2008). Protein truncation studies have revealed
that Cav1 and Cx43 interact at residues 244–256 on
Cx43 C terminus (Langlois et al., 2008). Although
caveolin interactions are primarily considered at the
plasma membrane in caveolae, newly synthesized
Cx43 can also interact with Cav1 and Cav2 in the
Golgi, indicating that both isoforms of caveolin may
also be involved in the transport of connexins to the
plasma membrane (Langlois et al., 2008). Connexins
within caveolae at the plasma membrane are pre-
sumably connexin hemichannels not gap junctions but
are an integral step in gap junction channel assembly
at the plasma membrane (Locke et al., 2005; Langlois
et al., 2008). In experimental models, the expression
levels of Cx37, Cx40, and Cx43 and gap junction
formation are significantly reduced in Cav12/2 mouse
arteries (Saliez et al., 2008). Additionally, interactions
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between Cx43 and Cav1 and Cav2 are regulated via
PKCg in a model, suggesting that phosphorylation of
Cx43 by PKCg may lead to a redistribution of Cx43
hemichannels in the lipid rafts at the cell membrane,
reducing their accumulation into gap junctional pla-
ques (Lin et al., 2003). Therefore, it is likely that Cav1
and Cav2 interact with connexins in a manner that
promote their incorporation into a signaling micro-
domain to regulate their function.
b. Zonula occludens-1. At the point of insertion to

the plasma membrane, connexin hemichannels become
directly associated with the tight junction proteins ZO-
1/2/3 (Toyofuku et al., 1998, 2001; Singh et al., 2005), as
recently reviewed in Palatinus et al. (2012). Direct
interactions between ZO-1 and Cx43 and Cx45 have
been demonstrated at the plasma membrane (Kausalya
et al., 2001; Laing et al., 2001, 2005a,b). These
interactions have been extensively studied and shown
by numerous biochemical techniques such as coimmu-
noprecipitation, immunofluorescence, proximity ligation
assay, nuclear magnetic resonance, peptide competition,
and pull-down assays (Toyofuku et al., 1998, 2001;
Kausalya et al., 2001; Sorgen et al., 2004a; Laing et al.,
2005a,b; Bouvier et al., 2008; Chen et al., 2008; O’Quinn
et al., 2011; Tence et al., 2012). The interaction between
Cx43 and ZO-1 is not required for proper gap junction
channel functionality per se but instead appears to
negatively regulate accumulation of gap junction chan-
nels at the plasma membrane, limiting plaque size and
stability (Giepmans, 2004, 2006; Hunter et al., 2005;
Rhett et al., 2011; Arora et al., 2012). Plaque size is
regulated by this interaction in two main ways: 1) by
limiting incorporation of connexins into gap junction
plaques and 2) by promoting endocytosis of connexins
from gap junction plaques (Palatinus et al., 2012).
Accordingly, it has been proposed that ZO-1 acts as
a “connexon switch,” regulating the transition from

nonjunctional to junctional form of Cx43 hemichannels
(Rhett et al., 2011). Newly formed connexons aggregate
at the cell surface in noncoupled plaques called
“perinexus” (Rhett and Gourdie, 2012). Interaction of
Cx43 with ZO-1 facilitates movement between the
perinexus and gap junction plaque in this way,
regulating the size of the plaque. Indeed, when Cx43/
ZO-1 interactions are inhibited (e.g., through siRNA
approaches, inclusion of a Cx43-CT-GFP, or site di-
rected mutation of the PDZ domain of ZO-1 or of the
C-terminal region of Cx43), the ability of these two
proteins to interact is abolished, resulting in decreased
size of gap junction plaques (Hunter et al., 2003, 2005;
Palatinus et al., 2011a, 2012).

The second function for Cx43/ZO-1 interactions is to
increase gap junction disassembly and endocytosis.
Phosphorylation of Cx43 at the Ser368 residue is
known to decrease gap junction communication and is
associated to internalization of the protein; in other
words, it is associated with reduced plaque stability.
This phosphorylation is reportedly dependent on Cx43
interaction with ZO-1, because in the absence of ZO-1,
Cx43 can interact with but cannot be phosphorylated
by PKC« and efficiency of disassembly of gap junctions
is reduced (Akoyev and Takemoto, 2007). These results
suggest that ZO-1 interactions cause structural
changes in the Cx43-CT that allow for PKC phosphor-
ylation (Akoyev and Takemoto, 2007; O’Quinn et al.,
2011). Thus, although ZO-1 interaction with Cx43 may
not be critical in the formation of gap junction
channels, ZO-1 may act to regulate their function
through membrane targeting and molecular inhibition
by limiting gap junction formation and promoting
endocytosis from the gap junction plaque.

As mentioned above, ZO-1 plays a role in maintain-
ing gap junction stability not only by binding to Cx43
directly but also through binding to actin (Giepmans

TABLE 5
Examples of physiologic and pathophysiological role of gap junction in the vasculature

There is a plethora of physiologic functions for gap junctions in the vasculature having been described, with a sample of the more recent
referenced below.

Physiologic Function References

Endothelium-derived hyperpolarizing factor Edwards et al., 1998; Hutcheson et al., 1999; Yamamoto et al.,
1999; Beny and Schaad, 2000; Kansui et al., 2004; Mather
et al., 2005; Rath et al., 2012; Howitt et al., 2013

Vascular conducted responses Kruger et al., 2002; Dora et al., 2003b; Simon and McWhorter,
2003; Wolfle et al., 2007; Figueroa and Duling, 2008

Feedback on vasoconstriction Dora et al., 1997; Straub et al., 2011
Smooth muscle cell proliferation Chadjichristos et al., 2006; Liao et al., 2007; Johnstone et al.,

2010; Zhong et al., 2012a

Smooth muscle cell differentiation Kwak et al., 2003; Chadjichristos et al., 2008; Shen et al., 2010;
Gairhe et al., 2011, 2012b

Endothelial cell proliferation Larson et al., 1997; Kwak et al., 2001; Yeh et al., 2006; Nakano
et al., 2008; Wang et al., 2008c

Endothelial cell dysfunction Xie and Hu, 1994; Makino et al., 2008; Chadjichristos et al.,
2010; Wang et al., 2012; Ebong and Depaola, 2013

Endothelial cell migration Pepper and Meda, 1992; Pepper et al., 1989; Kwak et al., 2001
a Evidence that gap junction independent pathways are involved in this regulation (Johnstone et al., 2012b).
b Evidence that although connexin expression and/or gap junction communication levels correlated to disease they do not appear to be directly

linked to phenotypic modulation (Matsushita et al., 2007; Behringer et al., 2012).
c Evidence that gap junctions are not involved in EC wound repair migration or proliferation (Bearden et al., 2010).
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et al., 2001c; Kostin, 2007). In addition, drebrin,
another actin-binding protein originally identified as
neuronal cell-specific, has since been detected in ECs
and VSMCs where it is involved in gap junction
function (Peitsch et al., 1999, 2005; Yamada et al.,
2005). Recent studies using coimmunoprecipitation,
immunofluorescence, and immunolabeling coupled to
transmission electron microscopy have identified that
Cx43 and drebrin directly interact, and drebrin acts to
stabilize actin cytoskeleton association that is required
for the maintenance of stable and functional gap
junctions (Butkevich et al., 2004; Majoul et al., 2007;
Park et al., 2009b). Taken together, studies of
connexins reveal an intricate signaling microdomain
involving tubulins, ZO proteins, and binding partners,
including drebrin and actin, that maintain the ability
of connexins to traffic to the plasma membrane and
form functional gap junctions.
c. Calmodulin. It has been well documented that

connexin hemichannels and gap junctions are sensitive
to calcium environments, although the exact mecha-
nisms of the interaction are not fully defined (Harris,
2001; Lurtz and Louis, 2007; Zhou et al., 2007b; Herve
et al., 2012; Herve and Derangeon, 2013). The first
observation made in the early 1980s using freeze
fracture studies indicated that connexins twist the gap
junction channel shut in response to supraphysiolog-
ical levels of Ca2+ (Peracchia, 1978; Unwin and Ennis,
1983; Bruzzone et al., 1996). Several studies now
suggest that this may be regulated through binding of
the calcium sensing subunit calmodulin. Calmodulin
interacts with both Cx32 and Cx43 to maintain a closed
gap junction channel, potentially by altering channel
conformation or through physical interactions with
calmodulin or calcium itself (Van Eldik et al., 1985;
Torok et al., 1997; Sotkis et al., 2001; De Vuyst et al.,
2006; Stauch et al., 2012; Xu et al., 2012). This
interaction is not homologous between connexin iso-
forms: gap junction channels formed of Cx40 isoforms
are insensitive to high levels of calcium, potentially
because of a lack of the putative binding sites for
calmodulin (Lurtz and Louis, 2007; Xu et al., 2012).
d. Posttranslational modifications. It has become

increasingly evident that the C-terminal region of Cx43
acts as a binding domain for many molecules that are
involved in its trafficking, membrane stability, and gap
junctional communications (Niger et al., 2010) (see
section III.A.1). The C terminus is an unstructured,
highly dynamic region that contains multiple sites for
posttranslational modifications, including phosphory-
lation, nitrosylation, palmitoylation, sumoylation, and
ubiquitination (Palatinus et al., 2011b; Straub et al.,
2011; Johnstone et al., 2012a; Chen et al., 2013). As
described in section III.A.1, the connexin C terminus is
primarily unfolded and rich in serine, threonine, and
tyrosine residues (Ser/Thr/Tyr) that are targeted for
posttranslational modifications (Solan et al., 2003,

2009; Chen et al., 2013). Additionally, through a num-
ber of techniques including coimmunoprecipitation,
immunofluorescence overlap, and pull-down assays,
direct interactions have been identified within the
Cx43 C terminus, with the suggestion that this can
reduce the signaling properties of the gap junctional
pore (Niger et al., 2010). Kinases and sites within Cx43
have been well characterized, including phosphoryla-
tion by kinases from the src family of Tyr265, and
phosphorylated by MAPK of Ser255/(Ser262)/Ser279/
Ser282 residues (Solan and Lampe, 2009; Johnstone
et al., 2012a; Chen et al., 2013). Presumptively, these
posttranslational modifications induce structural
changes within the connexin C-terminal region that
allow for further protein interactions with this region
(Saidi Brikci-Nigassa et al., 2012). However, given the
lack of data on the effect of posttranslational modifi-
cations on the structure of connexin C terminus, the
exact consequences of these modifications remain
unclear.

Further studies have shown that connexins form
aggregate called “formation plaques” prior to accretion
as gap junction plaques in a process that appears
highly regulated by PKC phosphorylation of the
C-terminal domain of Cx43 (Johnson et al., 2012). As
with previously mentioned studies, removal of the
C-terminal region after the tubulin-binding domain
demonstrates that these sites are not essential but
promote efficient gap junction assembly (see section
III.A.1). In the heart, phosphorylation of the Ser368
residue (the main PKC-associated site in Cx43 C
terminus) allows for the interaction with the ZO-1
proteins, which facilitates Cx43 aggregation in gap
junctions but may also be a key factor in Cx43 cellular
distribution. For example, phosphorylation of Cx43
Ser368 in cardiac myocytes induces lateralization of
Cx43 hemichannels by removal from the intercalated
disc where Cx43 is known to interact with ZO-1,
desmin, and interleukins (Giepmans, 2004; Severs,
2007). These proteins form a stable signaling micro-
domain that facilitate Cx43 cellular localization and
gap junctional signaling in the myocardium.

The src kinase family has been demonstrated to
interact with and modulate Cx43 gap junctions through
tyrosine phosphorylation of its C-terminal region
(Warn-Cramer and Lau, 2004). The Cx43 C terminus
contains two binding sites for the SH2 and SH3 domains
of v-src and c-src (Kanemitsu et al., 1997; Loo et al.,
1999; Giepmans et al., 2001a; Lin et al., 2006).
Interaction with these kinases and subsequent phos-
phorylation of Cx43 decreases gap junctional communi-
cation (Duffy et al., 2004; Duffy, 2012; Geletu et al.,
2012). One potential mechanism for this is through
disruption of the interaction between ZO-1 and Cx43
(Toyofuku et al., 2001). Although Cx40 does not contain
the consensus sequence for binding to src kinases, it has
been proposed that src interacts with proline-rich
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domains that are found in Cx40 (Bouvier et al., 2008).
As with previous reports on the C terminus, interactions
of Cx43 with diverse kinases seem to be involved in the
overall regulation of gap junction plaque formation and
function but do not present as an absolute requirement
given that gap junction plaque can form in the absence
of phosphorylation.
Taken together, it is clear that vascular gap junction

proteins are regulated through specific protein inter-
actions in specialized signaling microdomains (Fig. 7).
The studies mentioned in this section report that
connexins 1) can interact with numerous protein
partners, 2) are polarized to specific region of the cells
(e.g., at the MEJ), and 3) can accumulate in specialized
areas of the plasma membrane as they have been
detected in caveoli. However, although the “gap
junction microdomain” can be defined in terms of the
protein partners, the consequences of the protein-
protein interactions still need to be clarified. This is
hindered by the lack of specificity of pharmacological
agents currently available to inhibit gap junctions (see
Table 4). Indeed, a number of inhibitors of gap
junctions are widely used but are generally considered
to be nonspecific, and their mechanism of inhibition
have not been clearly defined (Evans and Boitano,
2001; Evans et al., 2012). For example, studies of the
functional role of connexins in arterioles have exten-
sively used inhibitors such as glycyrrhetinic acid and
carbenoxolone, but recent studies have identified

nonspecific effects of these blockers, including inhibi-
tion of calcium-activated potassium channels (Behringer
et al., 2012). The development of transgenic animals
was first thought to be a solution to cope with the lack
of specific pharmacological inhibitors, but it is now
clear that a number of compensations and/or redistri-
bution of other connexin isoforms occur in Cx KO
animals, which could further hinder interpretation of
connexins on physiologic function (e.g., Kruger et al.,
2002; Simon and McWhorter, 2003; Isakson et al.,
2006a). It appears more specific molecular (e.g., small
molecule inhibitors) or genetic (inducible cell line-
specific knockouts) studies are required to more clearly
delineate connexin function in the vasculature.

B. Potassium and Calcium Channels: A Case for the
Endothelium-Derived Hyperpolarization-
Mediated Response

In the late 1970s, the Kuriyama group reported that
acetylcholinewas capable of inducing a hyperpolarization
of the VSMC plasma membrane in guinea pig coronary
and mesenteric artery as well as in rabbit mesenteric
artery (Kuriyama and Suzuki, 1978; Karashima and
Kuriyama, 1981; Takata and Kuriyama, 1980). In
their preparation, VSMC hyperpolarization was para-
doxically simultaneous to arterial constriction, which
was the mechanical response commonly observed in in
vitro arterial preparations at the time (Kitamura and
Kuriyama, 1979; Karashima and Kuriyama, 1981). Over
the same period of time, the identification of an
endothelium-derived relaxant factor (EDRF, see section
II.A) led scientists to realize that the contractile effect of
acetylcholine on in vitro preparation was caused by
damage to the endothelial layer during arterial isolation
(Furchgott and Zawadzki, 1980; Furchgott, 1999). After
this groundbreaking work, care was taken to work on in
vitro preparation with intact endothelium, and in 1984,
Bolton et al. (1984) demonstrated that the VSMC
hyperpolarization induced by acetylcholine also de-
pended on the integrity of the endothelium. In the late
1980s, a clear distinction between EDRF [then identified
as NO (Ignarro et al., 1987; Khan and Furchgott, 1987;
Palmer et al., 1987)] and the endothelium-dependent
hyperpolarization (EDH) of VSMCs was drawn. In their
seminal article, Chen et al. (1988) reported that
hemoglobin and methylene blue (which, respectively,
scavenges NO and blocks the guanylate cyclase) reduced
acetylcholine-induced relaxation and abolished cGMP
production but had no effect on the VSMC hyperpolar-
ization or on the 86Rb efflux (a marker for potassium) in
rat aorta and pulmonary artery (Chen et al., 1988). With
the discovery of L-arginine analogs as specific inhibitors
of NO production (Hibbs et al., 1987a,b; Marletta et al.,
1988; Knowles et al., 1989; Stuehr et al., 1989), it became
clear that the EDHwas resistant to prostacyclin blockers
and NO-synthase blockers, alone or combined (Ishii
et al., 1990; Nagao and Vanhoutte, 1992; Rand and

Fig. 7. Connexins and gap junction signaling microdomains. The
formation of gap junctional structures is regulated through organization
of connexin hemichannels in caveolae that further assemble to a gap
junction plaque through association with multiple protein partners. The
C-terminal domain of connexins interacts with microtubule, PKC, and
ZO-1, and these interactions promote integration of connexin hemi-
channels to the plasma membrane at lipid-enriched caveolae. Assembling
of hemichannels in the lipid raft structures surrounding a gap junction
plaque is enhanced through interactions with ZO-1/2 and drebrin. The
different steps leading to the formation of gap junction assembly as well
as gap junctional permeability are modulated through a dynamic process
of posttranslational modifications at the C-terminal regions of connexins
including phosphorylations by PKC and MAPK, which both reduce gap
junction communication, and by PKA, which increases gap junctional
signaling.
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Garland, 1992; Cowan et al., 1993; Waldron and
Garland, 1994a). These observations pointed to the fact
that NO and prostacyclin derived from ECs could not be
responsible for the endothelium-dependent hyperpolar-
ization of VSMC observed in acetylcholine dilation,
which resulted in a surge of interest in this NO- and
prostacyclin-independent vasodilation.
The concept of an endothelium-derived hyperpolariz-

ing factor (EDHF) emerged in the 1980s (Taylor and
Weston, 1988). Since then, numerous laboratories have
tried to identify the “hyperpolarizing factor” itself and
have worked on characterizing the hyperpolarization
response induced by acetylcholine and other endothelial
agonists. It was generally accepted that the endothelium-
dependent hyperpolarization involved potassium ions
(K+), because 1) the amplitude of hyperpolarization was
inversely correlated to the extracellular concentration of
K+ (Chen et al., 1989; Chen and Suzuki, 1989; Nagao and
Vanhoutte, 1992), 2) K+ efflux was observed in cells
preloaded with a radioactive form of K+ (42K) or a marker
for K+ ions (86Rb) upon stimulation with acetylcholine
(Chen et al., 1988; Taylor et al., 1988), and 3) the EDH
was abolished by potassium channels blockers (Chen
et al., 1991; Nagao and Vanhoutte, 1992; Van de Voorde
et al., 1992). The role of extracellular calcium as well as
calcium from the intracellular stores in EDH-mediated
relaxation was also demonstrated by a number of
laboratories (e.g., Chen and Suzuki, 1990). The role of
extracellular calcium was also confirmed by application
of the calcium ionophore A23187, which also resulted in
an EDH that was insensitive to eNOS blockers and to
inhibitors of the prostacyclin pathway (Chen and Suzuki,
1990; Parsons et al., 1994; Plane et al., 1995; Zygmunt
and Hogestatt, 1996).
1. Role of Potassium Channels. The role of K+ in

acetylcholine response was first proven by the Kuriyama
group’s work on guinea pig coronary arteries that
showed that the amplitude of acetylcholine-induced
hyperpolarization was reduced in low K+ solutions,
whereas removal of other ions (namely Na+ and Cl2)
did not affect the hyperpolarization (Kitamura and
Kuriyama, 1979). When the concept of EDHF emerged
25 years later, the identification that K+ efflux is
a fundamental step in the EDH-mediated response
became a major milestone in our understanding of the
pathway (Chen et al., 1988; Taylor and Weston, 1988).
Later, treatment with potassium channel blockers such
as glibenclamide, an inhibitor of ATP-sensitive potas-
sium channel (Chen et al., 1991; Garland and McPherson,
1992; Van de Voorde et al., 1992; Plane and Garland,
1993, 1994; Plane et al., 1995; Corriu et al., 1996), or
4-aminopyridine, an inhibitor of voltage-dependent
potassium channels (Zygmunt and Hogestatt, 1996;
Hashitani and Suzuki, 1997), failed to consistently
inhibit EDH in several vascular beds. Conversely,
nonselective KCa blockers such as tetraethylammo-
nium or tetrabutylammonium were shown to inhibit

EDH of VSMCs (Chen et al., 1991; Van de Voorde et al.,
1992; Cowan et al., 1993; Zygmunt and Hogestatt, 1996).
Several laboratories further observed that the EDH was
attenuated by drugs such as apamin, a blocker of small
conductance KCa channels (SKCa,), and charybdotoxin,
a nonspecific blocker of large conductance KCa (BKCa),
and intermediate conductance KCa (IKCa) (Adeagbo and
Triggle, 1993; Cowan et al., 1993; Holzmann et al., 1994).
However, in 1994, the EDH-mediated response for the
first time was abolished using a combination of apamin
and charybdotoxin (Waldron and Garland, 1994b). This
observation was followed by the demonstration that
iberiotoxin, a blocker of BKCa, had no effect on the EDH-
mediated response (Zygmunt and Hogestatt, 1996).
Because specific blockers of IKCa were not available at
the time, it was then concluded that both IKCa and SKCa

were involved in the EDH-mediated response. This was
proven to be true with the further development of the
IKCa inhibitors TRAM39 and TRAM34 (Wulff et al.,
2000, 2001), which clarified a role of these channels in
the EDH-mediated relaxation (Crane et al., 2003; Hinton
and Langton, 2003). In parallel, IKCa channel openers
such as 1-ethyl-2-benzimidazolinone (1-EBIO) or SKCa

openers (riluzole) were able to reproduce the EDH
induced by acetylcholine (Edwards et al., 1999a,b;
Walker et al., 2001; Crane and Garland, 2004). These
pharmacological studies led to the conclusion that the
hyperpolarization observed in the EDH pathway reflects
the activation of two potassium channels, IKCa and
SKCa, which was a key step in our understanding of the
EDH-mediated response.

In 1998, the exact role, location, and temporal
activation of these channels became more clear as
a result of an investigation published in Nature by
Edwards et al. (1998). In this study, the authors
measured the membrane potential of ECs and demon-
strated that the K+ efflux observed in EDH-mediated
response was due to the activation of SKCa and IKCa

channels at the plasma membrane of ECs and not of
SMCs as it was assumed at this time (Garland et al.,
2011). Edwards et al. (1998) further showed that this K+

efflux creates an accumulation of K+ in the extracellular
space between ECs and VSMCs, which in turn activates
the Na/K/ATPase as well as the KIR channels at the
plasma membrane of the VSMC, thus hyperpolarizing
and relaxing the VSMCs (Edwards et al., 1998). This K+

accumulation was demonstrated using potassium-
selective electrodes, allowing for the measurement of
local K+ concentration in the blood vessel wall measur-
ing a concentration of approximately 10 mM in the
space between ECs and VSMCs in intact rat hepatic
arteries stimulated with acetylcholine (Edwards et al.,
1998). In parallel, another study confirmed the role of
IKCa and SKCa located at the plasma membrane of EC
in rat mesenteric arteries (Doughty et al., 1999).

It became clear that although both IKCa and SKCa

were involved in the EDH-mediated response, their
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location, mode of activation, and their role were
different. Several studies from the early 2000s showed
that the role of KCa channels appears to differ
depending on the contractile state of the smooth
muscle: when no depolarizing preconstrictor is present
(i.e., when the contractile state of the smooth muscle is
due to basal tone), acetylcholine produces a “true”
hyperpolarization, which is due to activation of SKCa,
whereas in the case of agonist-induced SMC depolar-
ization (in presence of phenylephrine, for example),
EDH-mediated relaxation in response to acetylcholine
can be separated in two components reflecting SKCa

and IKCa activities (Dora et al., 2000; Dora and
Garland, 2001; Crane et al., 2003; Takano et al., 2004).
Because both IKCa and SKCa are activated by the

calcium-calmodulin sensor (Xia et al., 1998) with
similar sensitivity to calcium (Carignani et al., 2002),
their functional difference has been suggested to be the
result of a differential intracellular location in the ECs.
The development of isoform-specific antibodies as well
as knockout mouse models helped to increase our
knowledge regarding the contribution of each isoform
of KCa channels. Several reports observed a spatial
separation of IKCa and SKCa in ECs with SKCa

predominantly expressed at EC-EC junctions, whereas
IKCa channels are mainly present at the points of
contacts between ECs and VSMCs and in close
proximity to the ER (Sandow et al., 2006; Dora et al.,
2008; Ledoux et al., 2008). It is not clear how this
channel polarization occurs, but it is possible that it
may be due to local plasma membrane composition
because IKCa is not located in caveolae, whereas SKCa

is located in caveolae in ECs as demonstrated by
coimmunoprecipitation and experiments using sucrose
gradient (Absi et al., 2007). The SKCa portion of the
EDH-mediated relaxation can be inhibited in presence
of the caveolae disrupting agent MbCD, an inhibition
that was reversed by addition of cholesterol (Graziani
et al., 2004; Absi et al., 2007).
With the development of transgenic mouse models,

the importance of the EDH-mediated response at the
whole animal level has become more clear. Carotid and
resistance arteries isolated from the global KCa3.1
(= IKCa) knockout (KO) mice exert decreased hyperpo-
larization of ECs and VSMCs in response to acetylcho-
line, as well as decreased associated vasodilation (Si
et al., 2006; Wolfle et al., 2009; Milkau et al., 2010).
Interestingly, KCa3.1 KO mice are hypertensive [ap-
proximately 10 to 15 mm Hg higher compared with
wild-type mice), highlighting a crucial role for this
potassium channel in the control of vascular tone and
blood pressure (Si et al., 2006)]. The double KO of both
KCa2.3 (= SKCa) and KCa3.1 exhibited an impaired
acetylcholine-induced EDH and dilation in conduit and
resistance arteries measured in vivo (Brahler et al.,
2009). In a mouse model in which the expression level
of SKCa can be manipulated with dietary doxycycline,

the amount of SKCa expression in the EC was inversely
correlated with the blood pressure (Taylor et al., 2003).
It is noteworthy that several studies in small and large
animals demonstrated that activation of IKCa and
SKCa channels using the drug SKA-31 could decrease
blood pressure, making these channels a potential
therapeutic target for treatment of hypertension
(Sankaranarayanan et al., 2009; Hasenau et al.,
2011; Damkjaer et al., 2012).

2. Importance of Local Calcium Release: Role of
Calcium Channels. In addition to being an important
second messenger in the regulation of the contractile
state of the VSMCs during the EDH-mediated re-
sponse, calcium has been identified as a key element in
the induction of the endothelial hyperpolarization itself
in the late 1990s. Suzuki’s group used submucosal
arterioles loaded with Fura-2 for 1 hour or for 3 hours
to investigate the calcium response from ECs and
VSMCs, respectively, and demonstrated for the first
time that acetylcholine elevates fluorescence in ECs,
whereas it has the ability to reduce Ba2+-induced
increase in [Ca2+]i in VSMCs (Fukuta et al., 1999).
More importantly, their experiments showed that the
decrease in [Ca2+]i in VSMCs was not blocked by
a combination of inhibitors of the EDRF/NO and the
prostaglandin pathways (Fukuta et al., 1999). Lastly,
although charybdotoxin had no effect on the
acetylcholine-induced increase in [Ca2+]i in ECs, it
reduced the acetylcholine-induced decrease in [Ca2+]i
in VSMCs, suggesting that acetylcholine may modu-
late [Ca2+]i in VSMCs indirectly via activation of
potassium channels in the ECs (Fukuta et al., 1999).

Once the KCa channels involved in the EDH-
mediated response were identified in the ECs (see
above), the source of calcium activating the endothelial
KCa channels has been at the center of numerous
investigations. In mouse mesenteric arteries, IKCa are
directly activated by calcium released from IP3R upon
stimulation with acetylcholine (Ledoux et al., 2008).
The role of extracellular calcium has also been
suggested by several investigations, initially showing
that a capacitive entry of calcium is involved in the
EDH-mediated relaxation (e.g., in Taylor et al., 2001).
These initial observations have since been confirmed
by other groups, identifying channels from the TRP
family as the molecular protein responsible for extra-
cellular calcium influx. Namely, the isoforms TRPV1,
TRPV3, TRPV4, TRPC3, and TRPC1 have all been
reported in the EDH-mediated response (Kohler and
Hoyer, 2007; Loot et al., 2008; Earley et al., 2009;
Schmidt et al., 2010; Senadheera et al., 2012; Ma et al.,
2013).

Among the vanilloid family of TRP channels, TRPV1,
TRPV3, and TRPV4 all appear in some way to be
involved in the EDH-mediated response, with TRPV4
being the most studied. The isoform TRPV4 is of
particular interest because 1) TRPV4 KO mice exhibit
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an impaired EDH-mediated relaxation and 2) the
TRPV4 specific opener 4aPDD induced an endothelium-
dependent hyperpolarization (Kohler and Hoyer,
2007). A recent study in rats showed that TRPV4 and
SKCa coimmunoprecipitate and colocalize in isolated
ECs, suggesting a functional interaction between the
two channels (Ma et al., 2013). Interestingly, Fleming’s
group established a correlation between the EDH-
mediated relaxation and the translocation of TRPV4
channel from a perinuclear localization to the cell
membrane (Loot et al., 2008). At the whole animal
level, activation of TRPV4 channels using 4aPDD
resulted in an increase in local blood flow in the
mesenteric vascular bed as well as in a decreased blood
pressure (Ma et al., 2013). Lastly, when TRPV4 KO
mice were treated with an inhibitor of eNOS, the
increased in blood pressure was greater compared with
control mice, showing a prominent role of these
channels in the regulation of blood pressure (Earley
et al., 2009). Regarding other TRPV channels, stimu-
lation of TRPV3 appears to induce an endothelium-
dependent hyperpolarization of adjacent VSMCs as
well as a decreased [Ca2+]i (Earley et al., 2010). The
EDH-mediated response observed upon stimulation of
TRPV3 was further reduced by blockers of SKCa and
IKCa (Earley et al., 2010). Although a lot of important
information has been gained in regard to TRPV
channels with EDH, the more recent experiments have
relied on knockout mice. A future critical point in these
experiments would be to demonstrate the lack of other
TRPV channels when one is deleted, because de-
velopmental compensation has been clearly demon-
strated in a very large variety of germline knockout
animals.
In addition to channels from the TRPV family, TRP

channels from the canonical family such as TRPC1 and
TRPC3 have been studied in the EDH-mediated
response. The role of TRPC3 was recently demon-
strated using Pyr3, which inhibited hyperpolarization
generation (Senadheera et al., 2012). In this study, the
authors concluded that TRPC3 activity is involved in
the triggering of SKCa and IKCa at the EC plasma
membrane, making TRPC3 a possibly important
component to the EDH-mediated response. Conversely,
TRPC1 channels appeared to have an inhibitory effect
on the EDH-mediated response, because the TRPC1
KO mice exhibited increased EDH-mediated relaxation
and a greater hyperpolarization of ECs (Schmidt et al.,
2010). In this study, the authors also showed that
TRPC1 KO mice exhibited a reduced arteriolar tone as
well as reduced blood pressure.
In addition to being an activator of the hyperpolar-

ization on the EC side, calcium is also central in the
relaxation process in the EDH-mediated response. As
mentioned above, investigations of calcium dynamics
simultaneously in the ECs and in the SMCs showed
that the EDH-mediated component of acetylcholine

response is characterized by an increase in calcium in
the ECs, whereas the calcium in VSMCs decreases
(Bolz et al., 1999; Fukuta et al., 1999). The KCa

blockers tetrabutylammonium and charybdotoxin abol-
ished calcium decrease and hyperpolarization of VSMCs
but did not affect calcium increase and hyperpolariza-
tion in ECs (Bolz et al., 1999; Fukuta et al., 1999).
These observations suggest that the decrease of cal-
cium in VSMCs is due to the activity of KCa channels in
the ECs, which presumably close voltage-gated calcium
channels in the VSMCs by reducing the membrane
potential of the VSMCs (Nelson et al., 1990; Bolz et al.,
1999).

Another potentially important component in the
EDH-mediated response is the calcium-sensitive re-
ceptor (CaR or CaSR). CaR is a G protein-coupled
receptor activated by millimolar concentrations of
calcium, which results in the release of calcium from
intracellular stores via IP3R (for review, see Ward
et al., 2012). The role of CaR in the EDH-mediated
response was demonstrated in rat mesenteric arteries
where activation of CaR in ECs induced a hyperpolar-
ization of the VSMCs, which was abolished by the IKCa

inhibitor TRAM34 or by denudation of the endothelium
(Weston et al., 2005). The same group also demon-
strated that CaR and IKCa are both located in
noncaveolae fractions. Conversely, CaR does not coloc-
alize with SKCa channels (Weston et al., 2005). The
colocalization of CaR and IKCa might be involved in the
differential activation of IKCa and SKCa in the EDH-
mediated response (Dora et al., 2008).

3. Gap Junction Channels. The central role of gap
junction channels in the EDH-mediated response has been
observed for several decades with the use of nonspecific
blockers such as carbenoxolone, 18a-glycyrrhetinic acid,
octanol, D-mannitol, sucrose, or heptanol, which re-
duced the NO-independent relaxation in response to
vasodilators in numerous vascular beds (Kuhberger
et al., 1994; Yamamoto et al., 1998, 1999; Brandes
et al., 2000; Sandow and Hill, 2000; Dora et al.,
2003a). With the development of gap junction mimetic
peptides such as 37-43Gap 27, 40Gap27, 37-40Gap26, and
43Gap26, the role of specific connexin isoforms was
initially thought to be further clarified. Several reports
demonstrated an inhibitory effect of these connexin-
mimetic peptides on indomethacin- and L-NAME-
resistant relaxation to acetylcholine (Chaytor et al.,
1998, 2001, 2003, 2005; Dora et al., 1999; Sandow et al.,
2002; Ellis et al., 2009). It is noteworthy that the
37-43Gap 27, 40Gap27, and 37-40Gap26 were shown to
inhibit VSMCs hyperpolarization upon acetylcholine
stimulation, whereas they had no effect on the hyper-
polarization of ECs (Sandow et al., 2002; Chaytor et al.,
2003, 2005; Ellis et al., 2009). In contrast, the use of
43Gap 26, 40Gap 27, and 37,43Gap 27 in a different study
failed to inhibit the EDH-mediated response, which is in
line with other studies that have now called into
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question the specificity of the connexin mimetics [e.g.,
Table 4 (Mather et al., 2005; Dahl, 2007; Wang et al.,
2007)]. However, loading ECs of intact pressurized
mesenteric arteries with an antibody blocking Cx40
resulted in an impaired EDH-mediated dilation,
whereas loading of EC with antibodies against Cx37
or Cx43 had no effect on EDH-mediated response
(Mather et al., 2005). Lastly, the use of Cx40 KO mice
also provided possible evidence that in particular
vascular beds, the Cx40 isoform may be important
(Figueroa et al., 2003; Milkau et al., 2010).
Structurally, the presence of gap junction communi-

cation in the vessel wall has been reported by numerous
investigators (see above). Transmission electron micros-
copy as well as immunolabeling for different connexin
isoforms (mostly Cx37, Cx40, and Cx43) considerably
enhanced our knowledge on the location and the nature
of gap junctions within the vascular wall of arteries
presenting EDH-mediated responses. By use of trans-
mission electron microscopy, the presence of the typical
gap junction pentalaminar structure has been observed
between endothelial and smooth muscle layers as well
as between ECs in several vascular beds (Sandow and
Hill, 2000; Sandow et al., 2002, 2003b; Straub et al.,
2011; Billaud et al., 2012). Although the presence of
functional gap junctions between VSMCs has been
observed consistently in large vessels, their occurrence
in smaller arteries presenting EDH-mediated responses
is more debated (Little et al., 1995; Welsh and Segal,
1998; Yamamoto et al., 2001; Sandow et al., 2002; Looft-
Wilson et al., 2004a,b; Fanchaouy et al., 2005; Hakim
et al., 2008). There are reports of Cx37 and Cx43
immunostaining in VSMCs, with variable expression of
both isoforms depending on the vascular bed studied
(Yamamoto et al., 2001; Chaytor et al., 2003, 2005;
Sandow et al., 2003b). Consequently, the role of gap
junctional communication between VSMCs in the trans-
fer of hyperpolarization in the EDH-mediated response
is unclear. In contrast, the presence and the role of gap
junction communication between ECs in the EDH-
mediated response is well accepted, with Cx40 being
key in the conduction of the hyperpolarization along the
endothelial layer (Welsh and Segal, 1998; Emerson and
Segal, 2000; Yamamoto et al., 2001; Chaytor et al., 2003,
2005). Indeed, several reports using Cx40 KO mice
observed a decreased EDH-mediated response as well
as a decreased conduction of the hyperpolarization and
relaxation along the endothelial layer (de Wit et al.,
2000; Figueroa and Duling, 2008; Milkau et al., 2010).
In addition, the presence and the contribution of Cx37
and Cx43 at the EC junctions in the EDH-mediated
response have been reported, but their exact role is not
clear (Haddock et al., 2006; Sandow et al., 2006).
The presence of gap junctional communication at the

junctions between ECs and SMCs was also demon-
strated by measuring membrane potentials of both cells
types in vascular beds with and without EDH-mediated

responses (Yamamoto et al., 1998, 1999; Emerson and
Segal, 2000; Sandow et al., 2002; Haddock et al., 2006).
In these studies, there was a strong EDH-mediated
response upon acetylcholine stimulation, and the
resting membrane potentials of ECs and SMCs were
similar. In contrast, the rat femoral artery does not
present EDH-mediated response when stimulated with
acetylcholine, and the resting membrane potentials of
ECs and VSMCs are significantly different, strongly
suggesting an absence of gap junctional coupling
between both cell types (Sandow et al., 2002). At the
electron microscopy level, most of the gap junctions
between endothelial and smooth muscle layers are
organized in one single plaque that is smaller in size
compared with the plaques observed between ECs
(Little et al., 1995; Sandow and Hill, 2000; Dora et al.,
2003a; Sandow et al., 2003b).

With regard to all of these observations, the role of gap
junctions in the EDH-mediated response is clear. It is
noteworthy that a recent study highlighted the influence
of the methodology in the investigation of gap junctional
coupling in the EDH-mediated response by comparing
the EDH-mediated response in arteries in vivo and in
arteries mounted in a wire myograph or in a pressure
myograph using global Cx40 KO mice as well as mice
deficient in Cx40 specifically in ECs (Boettcher and de
Wit, 2011). The EDH-mediated response was completely
dependent on Cx40 in arteries mounted in a wire
myograph (isometric conditions), whereas the EDH-
mediated responses studied in a vessel mounted in
a pressure myograph (isobaric conditions) or in vivo were
not affected by the deletion of Cx40 (Boettcher and de
Wit, 2011). Although the role of Cx40 is clear in the EDH-
mediated response (Mather et al., 2005; Boettcher and de
Wit, 2011), it appears that the EDH-mediated response
is a highly sensitive mechanism [e.g., changes in post-
translational modification of connexins after artery
manipulation (Straub et al., 2010)] that requires careful
interpretation according to the methodology used.

4. Other Important Players in the Endothelium-
Dependent Hyperpolarization-Mediated Response.
Since the first demonstration of an EDRF/NO2 and
prostaglandin-independent component of endothelial
relaxation in the late 1980s, it was assumed that this
component was due to the release of a hyperpolarizing
factor from ECs (Taylor and Weston, 1988). Since then,
it is debated whether the endothelium-induced hyper-
polarization of VSMCs is induced by a diffusible factor
released by ECs and targeting VSMCs and/or is attrib-
utable to direct transfer of hyperpolarization from the
endothelium via myoendothelial gap junctions. How-
ever, several molecules such as arachidonic acid me-
tabolites and hydrogen peroxide (H2O2) have also been
suggested to constitute the endothelium-derived hy-
perpolarizing factor, EDHF.

a. Metabolites of arachidonic acids. Metabolites of
arachidonic acid such as epoxyeicosatrienoic acids have
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been shown to contribute to EDH-mediated response in
the late 1990s (Campbell and Harder, 1999; Fisslthaler
et al., 1999). Several authors were able to reproduce an
endothelium-dependent hyperpolarization of the VSMC
and/or arterial vasodilation by applying exogenous
arachidonic acid itself or its metabolites (Pinto et al.,
1987; Rosolowsky and Campbell, 1993; Oltman
et al., 1998; Campbell and Harder, 1999; Fisslthaler
et al., 1999). In parallel, inhibitors of the enzymes
involved in the arachidonic acid metabolism [phospho-
lipase A2, cytochrome P450 (P450)] are able to
significantly decrease EDH-mediated relaxation in
several vascular beds (Pinto et al., 1987; Rubanyi and
Vanhoutte, 1987; Rosolowsky and Campbell, 1993).
Given that the role of TRPV4 channels in the EDH-
mediated response had been discovered earlier (see
section III.B.2) but their gating was still unknown, the
discovery that arachidonic acid activates TRPV4
channels in ECs later helped understanding the role
of these lipid compounds in the EDH-mediated re-
sponse (Watanabe et al., 2003). Later work found that
arachidonic acid metabolites such as epoxyeicosatrie-
noic acids produced via cytochrome P450 could be an
endogenous activator of TRPV4, and thus an important
player in the EDH-mediated response in many vascu-
lar beds (e.g., Earley et al., 2005). It is now accepted
that arachidonic acid metabolites activate TRPV4 and
calcium influx in ECs, leading to the activation of KCa

channels and thus to hyperpolarization (Earley et al.,
2005; Vriens et al., 2005; Marrelli et al., 2007).
However, the exact isoform of KCa channels activated
in this case remains under debate and is likely
vascular bed-dependent (Campbell and Fleming,
2010; Dora, 2010; Feletou, 2011a). Activation of
arachidonic acid metabolism is thought to happen
after activation of the phospholipase A2 by diacylgly-
cerol produced by phospholipase C when GPCR (such
as muscarinic receptors) are stimulated (Saliez et al.,
2008; Ella et al., 2010). More recently, a study
demonstrated that TRPV4 is phosphorylated by PKA
in EC, a phosphorylation that seems to be required for
arachidonic activation of the channel in human
coronary arteries (Zheng et al., 2013b).
b. Hydrogen peroxide. Although it is not clear

whether H2O2 is a “true” EDHF, this reactive oxygen
species has also been suggested to be produced and may
be further released by the endothelium to contribute to
the EDH-mediated response. Supporting this hypothe-
sis, the addition of exogenous H2O2 or the combination
of xanthine and xanthine oxidase induces a typical
EDH-mediated dilation that is dependent on IKCa and/
or SKCa channels and that is characterized by VSMCs
hyperpolarization (Sobey et al., 1997; Pomposiello et al.,
1999; Matoba et al., 2000, 2002, 2003; Chaytor et al.,
2003; Matoba and Shimokawa, 2003; Miura et al., 2003;
Rabelo et al., 2003). In parallel, numerous studies using
H2O2-sensitive probes have demonstrated that H2O2 is

produced in arteries stimulated with agonists such as
acetylcholine, the calcium ionophore A23187, or bradykinin
(Matoba et al., 2000, 2003; Chaytor et al., 2003; Miura
et al., 2003). Functional experiments using catalase that
degrades H2O2 also resulted in a decreased EDH-
mediated dilation (Sobey et al., 1997; Pomposiello et al.,
1999; Matoba et al., 2000, 2002; Edwards et al., 2008).
In contrast, the evidence against H2O2 as an EDHF is
that, although exogenous addition of H2O2 is capable of
hyperpolarizing VSMCs (Beny and von der Weid, 1991;
Chaytor et al., 2003), catalase often failed to reduce the
smooth muscle hyperpolarization (Beny and von der
Weid, 1991; Matoba et al., 2002; Chaytor et al., 2003;
Gluais et al., 2005). However, research on this work is
ongoing.

The exact contribution of H2O2 in the EDH-mediated
response is still unclear and appears variable depending
on the vascular bed investigated. Recently, experiments
in culture ECs supported that H2O2 potentiates calcium
release from EC stores, probably via redox modification
of the IP3R (Edwards et al., 2008). The calcium release is
suggested to further activate KCa channels and induce
the EDH-mediated response (Sobey et al., 1997). The
source of H2O2 production is also variable according to
the literature, because NADPH oxidase, uncoupled
eNOS, and P450 have all been involved in H2O2

production in the EDH-mediated response (Shimokawa,
2010). It has been suggested that NADPH oxidase,
uncoupled eNOS, and P450 generate H2O2 indirectly by
first producing superoxide anion, which is further trans-
formed in H2O2 via superoxide anion dismutase, mostly
the soluble isoform Cu,Zn SOD (Morikawa et al., 2003).

The identification of a single solitary factor mediat-
ing the EDH response has been at the center of
multiple investigations in the past decades, and its
identity has been debated because it seems to be highly
dependent on the vascular bed and the species in
question, the preconstrictor used, or the methodology.
In addition, the necessity of the term “factor” is highly
debated “because it masks the real identity of the
signal(s) involved” (Feletou and Vanhoutte, 2013).

5. Altogether at the Myoendothelial Junction.
The importance of MEJ in the EDH-mediated response
has been reported by a number of investigators in the
past 20 years, and it is now well accepted that the
EDH-mediated signaling pathway is likely located at
the MEJ (Mulvany and Aalkjaer, 1990; Hwa et al.,
1994; Shimokawa et al., 1996; Sandow and Hill, 2000;
Berman et al., 2002). Whether the EDH-mediated
response requires an EDH factor or simple transfer of
hyperpolarization from the ECs to the VSMCs, the
presence of these close contacts between ECs and
VSMCs seems to be essential in the EDH-mediated
response since a lot of the molecular players described
above are present at the MEJ.

The potassium channel IKCa and to a lesser extent the
SKCa; the plasma membrane calcium channels TRPV4
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and TRPC3; the a2/a3 subunits of Na/K/ATPase; and
the gap junction proteins Cx37 and Cx40 have all been
detected at the MEJ in arteries (Isakson et al., 2006a;
Sandow et al., 2006, 2012; Dora et al., 2008; Ledoux
et al., 2008; Chadha et al., 2011; Bagher et al., 2012;
Senadheera et al., 2012; Sonkusare et al., 2012; Kirby
et al., 2013). Functionally, the presence of gap junctions
at the MEJ is thought to be key in the transfer of the
hyperpolarization from ECs to VSMCs (Edwards et al.,
2010). In parallel, the close apposition of the two cell
types at the MEJ is believed to be essential for the
accumulation of potassium released from EC via the
SKCa and the IKCa channels and the further activation
of KIR and Na/K/ATPase in the VSMC, inducing their
hyperpolarization (Edwards et al., 2010). With regard to
calcium, its dynamics at the MEJ are crucial in the
EDH-mediated response, because calcium concentration
is specifically increased at the MEJ (Dora et al., 2008;
Ledoux et al., 2008; Bagher et al., 2012; Sonkusare
et al., 2012). The presence of a source of calcium (ER) at
the MEJ, as well as the close localization of the calcium
release channels IP3R and the calcium-dependent IKCa

channels at the MEJ is also of importance in the EDH-
mediated response. Indeed, this aggregation at the MEJ
is crucial for the activation of IKCa by calcium release
from the ER via IP3R in presence of acetylcholine
(Isakson, 2008; Ellis et al., 2009; Sonkusare et al., 2012;
Kirby et al., 2013). Lastly, given the functional role of
TRP channels in the EDH-mediated response, it has
been suggested that TRPC3 and TRPV4 channels
present at the MEJ could either participate in the ER
replenishment or in the activation of the KCa channels
(Bagher et al., 2012; Senadheera et al., 2012; Sonkusare
et al., 2012)
Although the MEJ is a key region for EDH-mediated

response, the points of contact between ECs are
equally important in this response. Namely, the spread
of the hyperpolarization throughout the endothelium is
central to ensure a coordinated response along the
vascular bed (de Wit, 2010; Bagher and Segal, 2011).
Accordingly, SKCa, Cx37, Cx40, and Cx43 have been
evidenced at the points of contact between ECs
(Emerson and Segal, 2000; Isakson et al., 2006a;
Sandow et al., 2006, 2012; Dora et al., 2008; de Wit,
2010).
Structurally, it appears that caveolae play an im-

portant role in maintaining a functional EDH signaling
microdomain at both EC contacts and the MEJ, because
the EDH-mediated response is virtually abolished in
mesenteric arteries from Cav1 KO mice (Saliez et al.,
2008). In this study, the authors also observed an
impaired calcium homeostasis in ECs, possibly resulting
from a decreased activity of TRPV4, because the
function of TRPV4 channels in HUVECs was impaired
when cells were treated with Cav1 siRNA (Saliez et al.,
2008). In parallel, Cav1 KO mice also exhibit decreased
Cx37, 40, and 43 expressions at the MEJ (Saliez et al.,

2008). Lastly, TRPV4, Cx37, Cx40, Cx43, and SKCa are
localized in caveolae and also all colocalize and/or
coimmunoprecipitate with Cav1 (Graziani et al., 2004;
Absi et al., 2007; Saliez et al., 2008).

The importance of the MEJ in the EDH-mediated
response has also been highlighted in pathologic
conditions where their number increases along with
the degree of EDH-mediated relaxation (Sandow et al.,
2003a; Chadha et al., 2011). Additionally, IKCa chan-
nels and connexin expression at the MEJ is upregu-
lated in arteries of obese rats (Sandow et al., 2003a;
Haddock et al., 2011). In these studies, endothelium-
dependent relaxation tends to shift from a NO compo-
nent to an EDH component (Sandow et al., 2003a;
Haddock et al., 2011). Thus, it is tempting to speculate
that the increased number of MEJ in disease states
compensate for other dysfunction in the arterial wall
(Sandow et al., 2003a; Heberlein et al., 2009).

Several reports observed that the calcium released by
the ER in EC and the calcium entering via TRP channels
seem to be selectively involved in the hyperpolarization
of ECs and appear not to induce NO generation from
eNOS (e.g., Sonkusare et al., 2012). This fits well with
the demonstration that eNOS and Hba are closely
localized at specific regions in the EC [i.e., the MEJ
(see above)] where they regulate the amount of NO
generated and released (Straub et al., 2012). With Hba
being expressed only in MEJs from resistance arteries
and not conduit arteries, it is tempting to suggest that
the Hba “allows” for EDH to occur by binding any NO
produced by eNOS activation after localized calcium
release. Further studies will be required to tease this
potentially important mechanism apart.

The studies described above involve a number of ion
channels that are located in close proximity at the MEJ
working in tandem to communicate a specific response
in a spatially and temporally restricted manner (Fig. 8).
Because the EDH-mediated response involves proteins
that are 1) polarized to theMEJ, 2) accumulate in caveolae,
and 3) are closely located to each other as demon-
strated by coimmunoprecipitation or double immuno-
labeling, the EDH-mediated response is likely mediated
by a signaling microdomain so as to regulate cellular
communication in the blood vessel wall.

IV. Vesicular Communication: The
Exocytosis Microdomain

Thus far, we have discussed communication in-
volving diffusion of signals across the membrane or
through plasma membrane channels. We now turn to
the process of exocytosis, which allows for the storage
and movement of signaling molecules in specialized
vesicles. In the vascular wall, exocytosis provides ECs
with a mechanism of rapid response to changes in the
microenvironment to potentiate thrombosis, hemostasis,
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or an inflammatory response. The secretory vesicles of
the endothelium, known as Weibel-Palade bodies
(WPB), were originally discovered as the storage depot
of von Willebrand factor (vWF) (Weibel and Palade,
1964). Since their initial discovery via electron micros-
copy, WPBs have also been found to store and release
P-selectin (Bonfanti et al., 1989; McEver et al., 1989),
interleukin-8 (Utgaard et al., 1998; Wolff et al., 1998),
endothelin-1 (Ozaka et al., 1997; Russell et al., 1998),
angiopoietin-2 (Fiedler et al., 2004), tissue-type plasmin-
ogen activator (Huber et al., 2002), and other proteins
that play important roles in the signaling pathways of
inflammation, hemostasis, and tissue repair (for review,
see Rondaij et al., 2006b; Valentijn et al., 2011).

A. Components of Exocytosis Signaling Microdomains

Exocytosis of the WPBs takes place in a series of
discrete steps. The process starts with the synthesis
of the WPBs, which is mostly driven by the presence of
vWF. Once the vesicle has been formed, interactions
with the cytoskeleton either keep the WPBs in the

perinuclear space or move them to a more peripheral
position. To have its contents released into the
extracellular space, the vesicle is primed and then
fused to the plasma membrane. Upon secretion of its
contents, the WPB dissociates from the membrane
(Fig. 9). These steps require the coordinated move-
ments of several key proteins organized into signaling
microdomains.

1. von Willebrand Factor. von Willebrand factor is
a 2050-amino acid-long protein synthesized as a prepro–
vWF precursor protein in the ER and transported to the
Golgi, where pro-vWF assembles in ultra-large multi-
mers (Sadler, 1998). The vWF multimers are stored in
WPBs, which act to transport and release vWF into the
lumen of blood vessels. Once released, vWF multimers
anchor themselves to the ECs where they are proteo-
lyzed by ADAMTS13 (Dong et al., 2002). The vWF
allows platelets to adhere to ECs and can travel via
blood to sites of blood vessel injury and attach to
exposed collagen fibers. These functions ascribe vWF an
important role in the responses of ECs, which cause
coagulation, form thrombi, and repair damaged tissue
(for a detailed review on vWF, see Lenting et al., 2012;
De Ceunynck et al., 2013).

2. Synthesis of Weibel-Palade Bodies. The presence
of vWF drives the synthesis of WPBs, as shown by the
reduced number of WPBs in animal models lacking vWF
and in humans with von Willebrand disease, a condition
where the protein is mutated or not produced (Denis
et al., 2001; Haberichter et al., 2005). In parallel, a study
in dogs with von Willebrand disease showed that
formation of WPBs was restored upon administration of
vWF (Haberichter et al., 2005). Although the WPB is an
EC-specific structure in vivo, the presence of vWF is
enough to induce the formation of cigar-shaped organ-
elles similar to WPBs in other cell types in vitro, such as
monkey kidney CV-1 cells (Wagner et al., 1991; Voorberg
et al., 1993).

The WPBs originate from clathrin and clathrin
adaptor-protein 1-coated vesicles, filled with vWF multi-
mers, that bud from the trans-Golgi network [TGN (Lui-
Roberts et al., 2005; Zenner et al., 2007)]. The WPBs lose
these clathrin/AP-1 protein coats as they mature (Lui-
Roberts et al., 2005; Zenner et al., 2007), and the vWF
contained within them becomes highly multimeric so it is
able to efficiently anchor platelets once secreted into the
lumen (Wagner and Marder, 1984).

The physiologic importance of proper WPB synthesis
can be observed in the various disease states associ-
ated with release of immature, altered, or higher levels
of vWF. In humans, several genetic mutations have
been shown to affect the biosynthesis of vWF by
altering its multimerization in the Golgi and its
tubular packing in the WPB. In addition, the re-
cruitment of other proteins stored within the vesicles is
altered in these genetic disorders (for review, see
Valentijn et al., 2011).

Fig. 8. The endothelium-dependent hyperpolarization microdomain. The
EDH response starts with the activation of IP3R at the ER in EC by
a GqPCR [for example, muscarinic (M3), BK, or the calcium sensing
receptor (CaR)]. The calcium released from the ER activates the calcium-
sensitive potassium channels SKCa at the EC-EC junctions and IKCa at
the MEJ, which induces hyperpolarization of the EC. In parallel, the
calcium release from the ER activates the capacitive entry of calcium at
both the EC-EC junctions and the MEJ via TRPV4 channels, which
sustains the opening of the IKCa and SKCa channels. The activation of
SKCa and IKCa at the plasma membrane of ECs activates the efflux of
potassium and its accumulation in the extracellular space between the
VSMCs and the ECs. This potassium accumulation further activates the
sodium/potassium ATPase (Na/K/ATPase) at the plasma membrane of
VSMC, producing hyperpolarization and relaxation of the VSMC by
closing the voltage-gated calcium channels (VGCC). The hyperpolariza-
tion of EC can also be transferred to the adjacent ECs and VSMCs via gap
junctions channels located at the MEJ and at the EC-EC junctions. Wavy
arrows indicate hyperpolarization.
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3. Direct Protein-Protein Interactions of the Weibel-
Palade Bodies. After the WPB leaves the TGN, it
moves to the outer regions of the cell. As the WPBs
mature, they recruit proteins important in the exo-
cytosis process to the membranes. This includes small
monomeric G proteins of the Rab family (members of
the Ras superfamily of proteins) and vesicle soluble
N-ethylmaleimide sensitive factor (NSF) protein receptor
proteins (v-SNAREs). These components in conjunction
with additional proteins help the vesicles attach to the
membrane.
The Rabs are a family of over 60 members of small

GTPases that help to control membrane identity and
actions of intracellular vesicles; each secretory vesicle
of the cell hosts a unique set of Rab family members
(for review, see Stenmark, 2009). Rab proteins found in
association with the WPBs are Rab3b (Bierings et al.,
2012) Rab3d (Knop et al., 2004), Rab27a (Hannah
et al., 2003), Rab3a, Rab15, Rab33a, and Rab37
(Zografou et al., 2012). Rab27a can either inhibit the
secretion of WPBs by associating with its effector
MyRIP (myosin VIIA and Rab interacting protein),

thus anchoring WPBs to actin filaments and keeping
them from attaching to the plasma membrane (Night-
ingale et al., 2009) or activate the secretion of WPBs
by associating with an alternate effector, Slp4-
a (synaptotagmin-like protein 4), which links the se-
cretory granules to the plasma membrane (Gomi et al.,
2005). Rab27a is central to the process of vesicle
secretion, because the ratio of fractional occupancy of
Rab27a by Slp4-a and MyRIP plays a role in deter-
mining the balance for or against exocytosis (Bierings
et al., 2012). Furthermore, Rab27a may work in con-
junction with Rab15 to help control exocytosis; Zografou
et al. (2012) recently showed that simultaneous knock-
down of the two Rabs using siRNA in HUVECs leads to
a greater reduction in vWF secretion compared with
knockdown of either Rab individually. Their experi-
ments further showed that Munc13-4, an already
known effector of Rab27a, colocalized with Rab15 at
WPBs. Taken together, this information suggests that
the three proteins Rab27a, Rab15, and Munc13-4 likely
work in tandem to help regulate exocytosis of vWF
(Zografou et al., 2012).

Fig. 9. The exocytosis microdomain. (A) Epinephrine induces increased cAMP via Gs protein-coupled receptors, resulting in the activation of RalA by
RalGDS. The exocytosis of the Weibel-Palade bodies present at the PM is activated, whereas the progression of the WPBs located in the perinuclear
region is inhibited by the presence of a more prominent peripheral actin rim. This process is accompanied by an increase in barrier function. (B) Upon
activation of GqPCR in ECs by agonists such as histamine or thrombin, there is an increase in [Ca2+]i, which associates with CaM. The Ca2+-CaM
further binds to the amino terminus of Ral GDS, which leads to the dissociation from the inhibitory beta-arrestin and to activation of RalA. This whole
process allows WPB migration to the surface and concurrently decreases the strength of the barrier function between ECs. (C) RalA promotes fusion of
the membrane by increasing PLD activity. Rab27a helps to determine when exocytosis will occur via its ratio of fractional occupancy by MyRIP and
Slp4a. (D) The V-SNARE VAMP3 and the t-SNAREs syntaxin4 and SNAP23 interact to pull the two membranes in close proximity for fusion to occur.
Munc18 acts to inhibit the SNAREs from binding prematurely. (E) vWF is released into the lumen, where it can bind to and attract platelets in addition
to exerting effects on neighboring ECs. (F) NSF/a-SNAP bind to SNAREs to facilitate their disassembly.
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RalA, a small GTP-binding protein, is another central
actor in the process of exocytosis that has been shown to
cosediment with WPBs in density gradients (de Leeuw
et al., 1999). RalA helps to promote exocytosis in two
ways: 1) it promotes fusion of the membranes by
increasing phospholipase D1 activity (Vitale et al.,
2005) and 2) it interacts with components of the exocyst
(Moskalenko et al., 2002). The exocyst is an octameric
protein complex consisting of Sec and Exo protein
subunits (Hsu et al., 1996; TerBush et al., 1996)
identified as having a role in vesicle tethering and
fusion in nonendothelial cells (Grindstaff et al., 1998;
Bao et al., 2008; Grote et al., 2000). However, to our
knowledge, this complex has not been well character-
ized in ECs. In neutrophil, RalA is activated by its
exchange factor, Ral guanine-nucleotide dissociation
stimulator (RalGDS), which acts to promote the loss of
the bound GDP and the uptake of GTP. This small
protein is kept inactive by its attachment to b-arrestin,
which uncouples from RalGDS upon stimulation of
a GPCR, leaving the exchange factor in an active state
(Bhattacharya et al., 2002) (Fig. 9). Downregulation of
RalGDS expression using siRNA in HUVECs leads to
a significant increase in the number of WPBs remaining
in the cell after thrombin and noradrenaline stimula-
tion, showing the importance of the exchange factor in
the exocytosis process (Rondaij et al., 2008). Therefore,
the RalGDS/b-arrestin complex is an important compo-
nent of the signaling microdomain because of its role in
linking GPCR activation with WPB exocytosis.
SNAREs are a family of transmembrane proteins that

fuse to both vesicle (v-SNARE) and target (t-SNARE)
membranes; they are defined by an extended coiled-coil
stretch known as the “SNARE motif” (Jahn and
Fasshauer, 2012). The three SNAREs that are known
to target WPBs to the endothelial cell membrane are
syntaxin 4 (t-SNARE) (Matsushita et al., 2003; Fu et al.,
2005), SNAP-23 (t-SNARE), and VAMP3 (v-SNARE)
(Pulido et al., 2011). When the vesicle is shuttled to the
target membrane with the help of myosin and actin, it is
aligned in such a way that the SNAREs from both
membranes assemble in a a-helix to the forming bundle,
and these helices “zipper” pull the membranes together
(Fig. 9) (Sutton et al., 1998; Stein et al., 2009). This
zippering model has been more fully characterized at
neuronal synapses, but the players are analogous to
those in the endothelium. Other proteins within the
signaling microdomain potentially help to hold the
SNAREs in a stabilized state before the zippering
interaction, which facilitates exocytosis at a rate much
faster than kinetics of the zippering would allow from
a nonprimed state (Pobbati et al., 2006). Although this
stabilized complex has not been clearly shown in ECs,
complexes of SNAP23, syntaxin4, and VAMP3 have
been coimmunoprecipitated, showing that at least these
SNAREs interact to promote exocytosis (Pulido et al.,
2011).

Munc18 is one such factor thought to interact with
SNARE proteins to render the zippering model more
efficient and decrease the time required for fusion. An
inhibitory role has been ascribed to Munc18, because
its binding to syntaxin isoforms keeps the SNARE in
a closed conformation (Dulubova et al., 1999; Misura
et al., 2000), but its function remains somewhat
elusive. It has been suggested that a modification of
Munc18, such as phosphorylation by PKC, is necessary
before WBP exocytosis can occur (Fu et al., 2005). This
suggests that Munc18 may play a role beyond pure
inhibition and instead contribute to the stability of the
SNARE complex before exocytosis.

Disassembly of the SNARE complex is required before
the vesicle can be released from its membrane attach-
ment. N-Ethylmaleimide sensitive factor (NSF) is an
ATPase that binds to SNARE complexes to facilitate the
disassembly of the “zippered” bundles (Zhao et al.,
2012). Because NSF lacks a direct binding domain for
members of the SNARE family, it connects to the
complex via an effector, the a-soluble NSF attachment
protein (a-SNAP) (Clary et al., 1990). Six NSF assemble
together at the plasma membrane, and each NSF
hexamer requires three a-SNAPs to mediate binding
to the SNAREs (Wimmer et al., 2001). Once the NSF/
aSNARE complex is formed, the NSF hydrolyzes ATP,
providing the energy necessary for the disassembly of
the SNARE complex (Whiteheart et al., 1994). In-
terestingly, a-SNAP may do more than just mediate
the disassembly of SNAREs, because Ga proteins were
recently shown to work in conjunction with a-SNAP to
aid in the exocytosis process. Indeed, Rusu et al. (2013)
provided strong evidence through the use of HUVECs
and knockout animal models that Ga12 subunits interact
with a-SNAP to promote the docking and fusion of
WPBs. Ga12 binding sites for a-SNAP were mutated and
evaluated for promotion of exocytosis by testing for
a direct interaction between the two (Rusu et al., 2013).
They further showed that Ga12 and Gaq subunits may
regulate actin polymerization via activation of RhoA (a
Ras-related GTPase), which leads to WPB docking,
providing a direct link between GPCR activation and
SNARE complex formation (Rusu et al., 2013).

4. Importance of Cellular Structure. Cytoskeletal
elements are important to the exocytotic process because
they facilitate the transport of WPBs from the TGN to
more peripheral locations and eventually to the plasma
membrane (Manneville et al., 2003). The cytoskeleton is
also integral to the idea of the exocytotic machinery
being organized into a signaling microdomain, because
it serves as the scaffolding, which keeps the exocytosis
complex confined to a specific area of the cell. Micro-
tubules are polarized within the ECs, with the “minus”
ends oriented perinuclearly and the “plus” ends extend-
ing toward the cell periphery; these microtubules help
to move the WPBs over long distances (Nightingale
et al., 2009). Motor proteins of the kinesin family help
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facilitate movement in the plus-end direction, and
dynein motors facilitate movement in the minus-end
direction (Rondaij et al., 2006a). Actin combines with
cross-linking proteins and with myosin II motors to form
stress fibers (Burridge, 1981). Stress fiber components
rearrange to either cause cell retraction or a strength-
ening of the cortical actin rim in response to different
mediating pathways of exocytosis, providing structural
changes that affect WPB movement and interaction
with the membrane (Vischer et al., 2000).
The role of actin in exocytosis of WPBs has been given

much attention. Many studies concluded that the actin
filaments function as a physical barrier to prevent
secretion (Doreian et al., 2008; Berberian et al., 2009;
Bittins et al., 2009; Deng et al., 2009), whereas others
proposed a different, although not mutually exclusive,
idea that the stress fibers interact directly with the
WPBs to anchor them in the cell until their complete
maturity is reached (Desnos et al., 2003; Waselle et al.,
2003; Hume et al., 2007; Nightingale et al., 2009).
Recently, Nightingale et al. (2011) proposed a new
function for actin in WPB exocytosis: after fusion of the
WPB with the membrane, actin filaments and myosin II
are recruited to form a ring around the base of the WPB.
They believe that this ring acts to exert force at the base
of the open granule, pushing vWF out into the lumen
(Nightingale et al., 2011). The same group further
demonstrated that myosin Va (MyoVa), an actin de-
pendent motor, is capable of binding MyRIP, which, as
described in section IV.A.3, works in unison with
Rab27a to anchor WPBs in the periphery until they
are fully matured (Fukuda and Kuroda, 2002; Desnos
et al., 2003; Nightingale et al., 2009). In their study,
Rojo Pulido et al. (2011) showed that knockdown of
MyoVa in HUVECs using siRNA leads to a significant
increase in the amount of immature vWF released after
histamine stimulation (Rojo Pulido et al., 2011). They
further demonstrated that Rab27a, MyRIP, and MyoVa
are colocalized and coprecipitate in HUVECs (Rojo
Pulido et al., 2011). This indicates that MyoVa is
responsible for holding WPBs at the membrane until
they are fully matured and ready for exocytosis (Rojo
Pulido et al., 2011), at which point the Rab27a switches
from MyRIP to the exocytosis activator Slp4-a, as
detailed in section IV.A.3.
The lipid composition of the plasma membrane

appears to be crucial in the exocytotic process, as
illustrated by the specific changes in the phospholipid
composition of the plasma membrane that occur before
exocytosis takes place in ECs. For example, there is an
increase in phosphatidic acid (PA) in HUVECs upon
histamine-induced exocytosis of WPBs (Disse et al.,
2009). The increased in PA observed was caused by
recruitment to the membrane and activation of phospho-
lipase D1 (PLD1), an enzyme that hydrolyzes phospha-
tidylcholine to produce PA (Disse et al., 2009). The
central role of this enzyme in WPB exocytosis was

further evidence using shRNA to reduce the expression of
PLD1, which resulted in a reduced secretion of vWF upon
histamine stimulation (Disse et al., 2009). PLD1 is
commonly thought as a general promoter of membrane
fusion because of its role in producing fusogenic cone-
shaped lipids such as PA (Roth, 2008). Depending on cell
type and activation pathway, PLD1 requires activation
by one or more factors, including small GTPases such as
those of the ADP-ribosylation factor, Rho families as well
as RalA, RalGDS, or protein kinase C (for review, see
Jenkins and Frohman, 2005). Thus, RalA and RalGDS
not only play a role in the exocytosis process itself, as
discussed in section IV.A.4, but are additionally associ-
ated with WPBs and help to increase PLD1 activity
(Rondaij et al., 2008). Taken together, this information
suggests that RalA could serve as an upstream activator
of PLD1, causing its movement to the membrane and the
subsequent generation of PA-enriched domains, which
could aid in the membrane fusion process.

In addition to PA, annexin-A2 has been found to
promote the formation of microdomains with increased
cholesterol content, which correlates with sites of
exocytosis in chromaffin cells (Chasserot-Golaz et al.,
2005). Likewise, expression of annexin-A2 has been
shown via immunofluorescence in the cytoplasm and at
the plasma membrane in HUVECs (Knop et al., 2004).
Functionally, when HUVECs were depleted of the
annexin-A2 along with its main protein partner
S100A10, secretion of vWF was decreased (Knop et al.,
2004). This suggests that annexin-A2 is necessary for
EC exocytosis, possibly because of its role in formation
of cholesterol-rich microdomains as demonstrated in
other cell types.

B. Activation Pathways for Exocytosis

Exocytosis of vWF from ECs can be triggered by
many events such as hypoxia, ischemia, or acute
injury. Exocytosis in response to a biologic stimulus
is often induced via activation of GPCR through the
binding of ligands such as histamine (Hamilton and
Sims, 1987), thrombin (Levine et al., 1982), serotonin
(Schluter and Bohnensack, 1999), epinephrine (Vischer
and Wollheim, 1997), and vasopressin (Kaufmann
et al., 2000). The components of the GPCRs are of par-
ticular importance, because they bind to downstream
signaling effectors such as heterotrimeric G protein
complexes, kinases, and arrestins (Rasmussen et al.,
2011; Katritch et al., 2012). Depending on the nature of
the Ga protein coupled to a GPCR, exocytosis of WPBs
can be activated via a calcium-dependent pathway (if
the stimulated GPCR is coupled to a Gq protein) or via
a cAMP-dependent pathway (if the stimulated GPCR is
coupled to a Gs protein).

1. Calcium-Dependent Activation of Exocytosis.
Calcium’s ability to stimulate exocytosis has been
demonstrated experimentally using Ca2+ ionophores,
which were sufficient to promote the release of vWF
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(Loesberg et al., 1983; van den Eijnden-Schrauwen
et al., 1997). In parallel, experiments in HUVECs using
the caged Ca2+ chelator DM-nitrophen showed that the
cell capacitance increases upon elevation of intracellular
calcium via photolysis, which is indicative of exocytosis
(Zupancic et al., 2002). Calmodulin inhibitors and
intracellular calcium chelators are also able to decrease
thrombin-induced exocytosis of vWF in HUVECs (Birch
et al., 1992; van den Eijnden-Schrauwen et al., 1997).
The blocking effect of calmodulin inhibitors was
explained recently using a peptide that mimics the
calmodulin-binding domain present in the N terminus
of RalGDS, showing that RalGDS association to
calmodulin is crucial for RalA activation (Rondaij
et al., 2008). When HUVECs are treated with the
mimetic peptide, RalA activation is inhibited along with
WPB exocytosis initiated by thrombin (Rondaij et al.,
2008). Thus, it appears that calcium indirectly activates
RalGDS by binding to calmodulin, further activating
RalA and WPB exocytosis.
Thrombin and histamine stimulation, angiotensin

II (Ge et al., 2007), sphingosine-1-phosphate (S1P)
(Matsushita et al., 2004), and ATP/ADP (Vischer and
Wollheim, 1998) all cause increases in [Ca2+]i via
GPCR activation, which is a prime potentiator of
exocytosis (Tse et al., 1997), but there is also evidence
for extracellular calcium involvement. For example,
influx of extracellular calcium via the T-type calcium
channels Cav3.1 occurs upon stimulation of pulmonary
microvascular ECs with thrombin, resulting in a pro-
coagulant endothelial phenotype (Wu et al., 2003). In
a more recent work, the same group linked exocytosis
to external calcium influx via Cav3.1 using the Cav3.1
channels blocker mifbefradil and by direct targeting
with shRNA, which both inhibit thrombin-induced
vWF secretion in pulmonary microvascular ECs (Zhou
et al., 2007a). In this study, the authors also showed
that there is differential regulation of exocytosis
between microvessels and conduit arteries in the
pulmonary circulation, with exocytosis being entirely
calcium dependent in smaller vessels, whereas exo-
cytosis is regulated by two distinct pathways involving
calcium or cAMP in larger vessels (Zhou et al., 2007a).
This flexibility is thought to be a result of different
populations of WPBs and might allow for a faster or
slower response to inflammation (Zhou et al., 2007a).
Further evidence for the relevance of T-type calcium
channels in mediating exocytosis is that the mRNA of
Cav3.1 in EC is increased upon Ang II stimulation
(Wang et al., 2006).
The sphingolipid S1P is similar to thrombin and

histamine in that it can potentiate inflammation in the
vasculature via exocytosis of vWF and angiopoietin 2
from WPBs (Matsushita et al., 2004; Jang et al., 2009).
Matsushita et al. (2004) showed that S1P-mediated
exocytosis of WPBs occurs in part via PLCg but also
involves extracellular calcium, because both PLC

inhibitors and calcium-free media blocked S1P-induced
secretion of vWF from human aortic ECs. Given that the
receptor was pertussis toxin sensitive, the authors
concluded that the S1P must act via a Gi-linked receptor
(Matsushita et al., 2004).

2. Cyclic AMP Activation of Exocytosis. The regu-
lation of vWF secretion by cAMP was first evidenced in
HUVECs in the late 1990s by two different groups
(Vischer and Wollheim, 1997; Hegeman et al., 1998). In
both studies, the authors were able to measure an
increase in cAMP concomitant with vWF secretion
after stimulation with epinephrine and the adenylate
cyclase activator forskolin (Vischer and Wollheim,
1997; Hegeman et al., 1998). In parallel, pharmacolog-
ical blockers of the cAMP pathway completely abol-
ished vWF secretion (Vischer and Wollheim, 1997;
Hegeman et al., 1998). Other agonists are now known
to activate WPBs exocytosis in a cAMP-dependent man-
ner, including serotonin (Schluter and Bohnensack,
1999) and vasopressin (Kaufmann et al., 2000), all of
which induce vWF secretion independently of a rise in
[Ca2+]i. The exocytosis of WPBs caused by an increase
in cAMP is partly due to a PKA-dependent signaling
pathway, which leads to the activation of RalA (de
Leeuw et al., 1999; Rondaij et al., 2004, 2008). Exo-
cytosis can also be activated independently of PKA
activity through a cAMP-induced activation of Rap1
(Ras-related protein 1) mediated by the guanine nu-
cleotide exchange factor Epac (van Hooren et al., 2012).
It is noteworthy that activation of both Rap1 and RalA
pathways may be coordinated, allowing both pathways
to contribute to the exocytotic process in a synchronous
fashion (van Hooren et al., 2012).

3. Differential Activation of Weibel-Palade Bodies
Exocytosis by Calcium and cAMP. Although both
calcium- and cAMP-mediated pathways lead to release
of vWF from WPBs in ECs, there are subtle differences
that may have important consequences. The two
pathways lead to different rearrangements of cytoskel-
etal elements as demonstrated by Vischer et al. (2000)
in HUVECs, where stress fibers are rearranged
differently upon activation of cAMP or calcium path-
ways. Namely, histamine and thrombin, which both
activate calcium-mediated exocytosis, induced the
formation of more prominent stress fibers that aligned
in a parallel, longitudinal fashion, whereas the myosin
II was redistributed to underlying stress fibers
(Vischer et al., 2000). However, when cAMP was
increased via forskolin or IBMX, there was a rapid
disappearance of stress fibers, and the peripheral actin
rim became more prominent at the basis of WPBs
(Vischer et al., 2000). The secretion of vWF in response
to Ca2+-elevating agonists was inhibited in HUVECs
treated with the microtubule disrupters colchicine or
nocodazole but was potentiated when treated with the
actin disrupter cytochalasin E (Vischer et al., 2000). How-
ever, the secretion of vWF in response to cAMP-elevating
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agonists is not affected by either treatment (Vischer
et al., 2000; Manneville et al., 2003; Nightingale et al.,
2009;).
Interestingly, calcium- and cAMP-dependent path-

ways lead to differential WPB exocytosis. Specifically,
vWF depletion of almost all WPBs is observed when an
increase in Ca2+ occurs, whereas an increase in cAMP
leads to a clustering of WPB in the perinuclear space
with only the most peripherally located vesicles re-
leasing their contents (Cleator et al., 2006). This
perinuclear clustering of WPBs seen with increased
cAMP is due to movements facilitated by the dynein-
dynactin complex (Rondaij et al., 2006a).
These different responses also lead to opposite

consequences on the barrier function of endothelial
cells: increased Ca2+ leads to the disassembly of tight
and adherens junctions via RhoA activation (van Nieuw
Amerongen et al., 2000; Wojciak-Stothard et al., 2001),
whereas activation of Rap1 through a cAMP-dependent
pathway leads to improved barrier function due to
promotion of cell-cell contacts mediated by VE-cadherin
(Cullere et al., 2005; Fukuhara et al., 2005; Kooistra
et al., 2005). The differing responses in cytoskeletal
rearrangement and barrier function could play a role in
determining the effects of the exocytotic process in
response to different stimuli. Although the machinery
involved in getting the content of WPBs to the lumen is
similar, cAMP-mediated WPB release is slower (.10
minutes), whereas calcium-dependent WPB release is
rapid (,5 minutes) (Vischer et al., 2000; Rondaij et al.,
2004). Taken together, these differences provide mech-
anisms by which ECs can use the same process of
exocytosis to bring about proper physiologic change in
response to varying triggers.
Although there are many molecular players and

different modes of activation in this complex choreog-
raphy, and although the details of the entire pathway
are still elusive, it is known that the components work
closely together to form a macromolecular complex to
ensure proper coordination of the exocytosis pathway.
From the activation of a GPCR to the fusing of the
vesicle at the membrane, this process is tightly
regulated by a dependence on several protein-protein
interactions and polarization of the individual compo-
nents to a specific cellular location, making the
multiple proteins involved in the exocytotic process
part of an important signaling microdomain involved
with cellular communication.

V. Conclusion

In the vascular wall, cells have to act in a highly
coordinated manner to ensure proper function. To do
this, cellular communication must be present and highly
regulated. Behind this tight regulation lies a highly
coordinated intracellular machinery organized as sig-
naling microdomains where the second messenger

calcium is of utter importance. In this review, we
described and defined examples of intracellular proteins
that act in an orchestrated manner to ensure proper
intercellular communication.

The signaling microdomains described in this review
are the results of considerable work using pharmaco-
logical and molecular tools coupled, in a majority of
cases, to high-resolution microscopy. However, in some
instances, it was difficult for us to evaluate whether
two or more proteins are part of the same signaling
microdomain. The main reason for this was the lack of
correlation between observed functional data coupled
to detection of the proximity of the different proteins
involved. Recently, several technical advances have
been made in the field, allowing scientists to observe
the function of a single protein. For example, the
scanning ion conductance microscopy (Lab et al., 2013),
measurements of elementary calcium events (Sonkusare
et al., 2012), or evaluation of the proximity of proteins
directly in tissues (Gullberg et al., 2003) considerably
enhanced our understanding of signaling microdo-
mains. The expansion of these, as well as several other
unique molecular techniques, will certainly open even
more possibilities in the future to understand how
cellular interactions regulate their ability to efficiently
communicate.
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