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Following reports by ENCyclope-
dia Of DNA Elements (ENCODE; 

GENCODE) Consortium and others, it 
is now fairly evident that the majority 
(70–80%) of the mammalian genome 
has the potential to be transcribed into 
non-protein-coding RNAs (ncRNAs). 
Critical to our understanding of genetic 
processes is the mechanism by which 
ncRNAs exert their roles. Accordingly, 
ncRNAs are shown to regulate the 
expression of protein-coding loci (i.e., 
genes) at the transcriptional as well as 
post-transcriptional stages. We recently 
reported on a widespread transcription at 
the DNA enhancer elements in myogenic 
cells. In our study, we found certain 
enhancer RNAs (eRNAs) regulate chro-
matin accessibility of the transcriptional 
machinery at loci encoding master regu-
lators of myogenesis (i.e., MyoD/MyoG), 
thus suggesting their significance and 
site-specific impact in cellular program-
ming. Here, we examine recent discov-
eries pertinent to the proposed role(s) 
of eRNAs in regulating gene expression. 
We will highlight consistencies, discuss 
confounding observations, and consider 
a lack of critical information in a way to 
prioritize future objectives.

Introduction

With the advent of high-throughput 
sequencing, studies have taken a com-
prehensive approach in cataloguing 
regulatory genomic elements and the tran-
scriptome in various cell types; as well as 
defining the relations between the global 
transcriptional activity and chromatin 
architecture.1-5 These studies have unrav-
eled a complex and surprising description 

of the human genome that has challenged 
the views on the non-protein-coding com-
partment (equivalent to ~98% of the entire 
genome). Of note is the observation that 
the genome is pervasively transcribed with 
a greater proportion of long non-coding 
RNAs (lncRNAs), rather than protein-
coding transcripts, showing cell type-
specific expression.3,5,6 Subcategorized 
under lncRNAs are transcripts originat-
ing from regulatory enhancer elements 
(i.e., eRNAs). By knockdown approach, 
studies demonstrate the prominence of 
lncRNA as well as eRNAs in regulating 
gene expression and cellular program-
ming.7-12 Genome-wide techniques are 
used to annotate enhancers, their connec-
tivity, and mature transcripts. According 
to these studies (as they will be discussed 
herein), eRNAs display perplexing fea-
tures, distinct from the rest of the tran-
scriptome. These observations suggest 
that despite the collected data, there is 
much to be discovered about eRNAs that 
would precisely depict their molecular 
mechanism, including detailed biochemi-
cal characterization, processing (i.e., splic-
ing, editing), co-factor identification, and 
genome-wide distribution.

Enhancers

Although we will briefly highlight 
key features of DNA enhancer ele-
ments, readers are referred to exten-
sive reviews on this topic published 
elsewhere.13-17 Conventionally, transcrip-
tional enhancers were shown to increase 
the expression of protein-coding genes in 
reporter-expression assays.18,19 Since then, 
endogenous enhancers, estimated to be in 
tens-of-thousands in metazoans, are being 
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discovered through distinct chromatin 
signature, ablation, and cloning strategies. 
These enhancers control the expression 
of genes over a relatively large genomic 
distance, occasionally reaching mega-
bases.13-17 Specifically, enhancers are bind-
ing sites for multiple transcription factors 
(TFs) that, to a large extent, are con-
served, despite evolutionary divergence at 
regions flanking these binding sites.2,20,21 
Furthermore, depending on their activity 
status, enhancer sites are more sensitive to 
endonucleases and are modified at distinct 
nucleosome residues (lysine-4 methyla-
tion and lysine-27 acetylation on histone 
H3), thus distinguishing them from sur-
rounding regions and other transcribed 
loci.13,16,22-24 Active enhancers are also 
occupied by RNA polymerase II (PolII), 
though this observation was originally 
thought to be the result of indirect con-
nectivity to proximal regulatory regions in 
chromatin immunoprecipitation (ChIP) 
studies. Nonetheless, enhancers are also 
sites of transcription,25-30 thus raising 
questions on the relevance of eRNAs in 
cellular processes.

Enhancer sites are further classified in 
two configurations: (1) Typical enhanc-
ers (< 1 kb) associated with housekeeping 
genes and (2) super-enhancers (enhancer-
clusters or chromatin regulatory beacons; 
ranging in number from 200–1000 in 
certain cell types), which are generally 
confined near key developmental genes.31-

33 Super-enhancers (~3–50 kb) are bind-
ing sites for unusually high levels of TFs, 
Mediator complex, and PolII. Segments 
of super-enhancers are found to be tran-
scribed, whose eRNA levels correlate 
with the expression of nearby genes.8,31 As 
compared with typical enhancers where 
simple one-to-one promoter-connectivity 
is shown to drive gene expression,13,34 the 
significance of super-enhancer modules 
is not clear. Yet, given the high levels of 
Mediator complex at super-enhancers 
and the prominent role of Mediator com-
plex in transmission of transcriptional 
instructions and 3D organization of the 
genome,35-38 it could be proposed that 
super-enhancers serve as genomic con-
nectivity centers where appropriate regu-
latory networks are structurally organized 
in factories for coordinated expression. 
In fact, recent PolII-assisted chromatin 

connectivity mapping has revealed that, 
depending on the cellular context, SOX2 
and OLIG1 loci (including their super-
enhancers) are directly connected to 
distinct developmental networks.6,31,32 
Overall, in addition to operating as infor-
mation hubs,39 it may well be that super-
enhancers are structural centers that 
stabilize the transcriptional architecture 
and perform as major ports for integrating 
developmental networks.

eRNA Synthesis  
and Biochemical Properties

eRNAs are detected in most cell types 
examined, and as mentioned above, 
originate from enhancers with a distinct 
chromatin signature.3,8,16 Aside from this 
distinction, molecular components gov-
erning the transcription of eRNAs thus 
far appear comparable to genes, includ-
ing the contribution of transcriptional 
machinery (PolII), Mediator complex, 
nuclear receptors (estrogen receptor and 
Rev-Erbs), and transcription factors 
(Klf4; Egr1; FoxA1; MyoD, p53) in driv-
ing eRNAs transcription.8,9,11,12,40,41 To 
catalog nascent eRNAs and determine 
their rate of synthesis, scientists have used 
Global Run-On with Sequencing (GRO-
Seq).11,12,40 Accordingly, nascent eRNAs 
contains a 7-methylguanylated cap with 
a rate of synthesis and levels comparable 
to the nearest protein-coding transcripts. 
Moreover, enhancers have the potential 
to maintain bidirectional RNA synthe-
sis, much similar to occurrences found 
around transcriptional start sites (TSS) of 
genes.40,42 Still, the data regarding polyad-
enylation at 3′ end processing of eRNAs 
have been less clear. A report by Kim et 
al. (2010) suggests that rapidly inducible 
eRNAs are not polyadenylated (based 
on RNA-Seq data and circularization 
experiments), whereas studies examin-
ing steady-state and/or developmentally 
regulated eRNAs imply that eRNAs are 
subject to polyadenylation.8,10,29 Although 
it is quite conceivable that eRNAs differ in 
their post-transcriptional processing, gen-
eralization on this matter requires closer 
inspection as it will unravel key character-
istics relevant for future studies.

There are reasons to suspect that the 
processing of eRNAs differs from the rest 

of transcriptome. One observation is that 
despite matching PolII occupancy signals 
at enhancers and genes in ChIP-Seq data, 
mature eRNAs are barely detectable in 
total RNA-Seq data sets, whereas nascent 
eRNAs levels (in GRO-Seq) are as high 
as nearby mRNAs.8,12,29,40 Another is the 
difficulty in cloning regulatory RNAs 
(including eRNAs) for characterization 
(our unpublished observations). These 
data suggest that eRNAs are either unsta-
ble for steady-state accumulation or not 
readily processed for sequencing/cloning 
with current protocols. Either way, with 
advances in molecular techniques, these 
questions should be addressed in the near 
future.

Proposed Molecular 
Mechanism(s)

Recent discoveries support a role for 
eRNAs in promoting gene expression 
through chromatin accessibility, PolII 
recruitment, and enhancer-promoter 
contacts (EPCs). Common to these find-
ings is the correlation between the levels 
of eRNAs and those of nearby mRNAs. 
Using RNA interference (RNAi), experi-
ments show that targeted depletion of 
eRNAs results in significant reduction 
of nearby mRNAs in cultured cells and 
mice.8-12 Furthermore, this reduction 
occurs at the transcriptional stage, where 
PolII occupancy is noticeably reduced at 
genes; and eRNA depletion culminates in 
the loss of EPCs.8,9,12 In line with the latter 
observations, recent findings demonstrate 
that certain eRNAs directly associate 
with the Mediator complex to facilitate 
EPCs and augment mRNA transcription, 
whereas other experiments underscore 
the binding of specific eRNAs to Rad21+ 
Cohesin complex to stabilize chromatin 
looping and transcription.9,12 These obser-
vations are consistent with co-recruitment 
of the Mediator and Cohesin complexes 
for steady-state mRNA synthesis.37,43-45 
Nonetheless, the model regarding the 
direct role(s) for eRNAs in shaping EPCs 
may not hold for several reasons. First, 
eRNA depletion by transcriptional inhi-
bition indicates that PolII holoenzymes 
may reinforce EPCs.12,40 Second, a simple 
all-or-none contact does not explain the 
dose-response impact of eRNAs on gene 
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expression observed in RNAi experi-
ments. Perhaps analogous to an internal 
combustion system, proximity of the gas 
tank (i.e., enhancer) to the engine (i.e., 
promoter/gene) could only dictate agil-
ity in signal transmission. A “throttle” 
(i.e., eRNAs), which unlocks the gate 
for flow of reactive elements (i.e., PolII), 
dictates the rate of acceleration. In this 
context, designated enhancers have previ-
ously been shown to open chromatin for 
transcriptional activity at distinct pro-
moters.46-49 In our recent published study, 
we asked whether the emanating eRNAs 
facilitate transcription by exposing proxi-
mal regulatory regions to PolII complex. 
Specifically, we focused on two eRNAs 
upstream of MYOD1, corresponding to 
a region classified as the abovementioned 
super-enhancer.8,31 By RNAi, we reported 
that while an eRNA (i.e., CERNA) controls 
chromatin accessibility and transcription 
at MYOD1, another (i.e., DRRRNA) oper-
ates to expose regulatory regions at another 
region, MYOG.8 Certainly, similar obser-
vations regarding transcriptional activity 
have been reported at other enhancer/gene 
combinations.9,10,12 Overall, these results 
demonstrate the specificity of enhanc-
ers/eRNAs and re-emphasize similarities 
to the “throttle” analogy, which satis-
fies the refractory nature of nucleosomes 
to transcription, role of enhancers in 
TSS specification, and dose-dependent 
enhancement of PolII occupancy and 
transcription.50-52 Third, interactome data 
reveal that although EPCs are develop-
mentally dynamic, the connections in 
transient networks (e.g., TNFα) are static 
and stably formed even before the induc-
tion of eRNAs.12,40,53 Fourth, according to 
PolII-mediated chromatin connectivity 
mapping, a significant fraction of EPCs 
occur interchromosomally (i.e., between 
chromosomes), suggesting an interac-
tome that is far more complex than a 
simple in cis contact afforded by eRNA-
assisted looping model.6 Lastly, a com-
parison between evolutionarily divergent 
enhancers suggests an intricate regulatory 
function beyond the frequently observed 
higher-order chromatin configurations 
in metazoans.20,54-59 Given the above con-
siderations, enhancers/eRNAs regulate 
transcription by establishing chroma-
tin accessibility and PolII recruitment; 

and may not be directly responsible for 
the formation of EPCs, while it is PolII 
and its associated macromolecular com-
plexes that may define the transcriptional 
architecture.38 These observations hint 
at a step-wise eRNA-mediated transcrip-
tion activation events conceptualized in 
Figure 1.

Hierarchy Within  
Regulatory Networks

eRNA synthesis occurs prior to, 
and regulates the activation of genes in 
developmental regulatory networks. For 
example, chromatin marks associated 
with active enhancers are first observed 
at the core enhancer (CE) of MYOD1 
before its transcriptional activation, and 
depletion of CERNA results in a signifi-
cant reduction of MyoD transcript.8,44 
Similarly, an eRNA (ncRNA-a7) acti-
vates SNAI1, a gene belonging to a family 
of TFs with roles in mesodermal deter-
mination and epithelial–mesenchymal 
transition (EMT).10 These data invoke 
an interesting hypothesis that certain 
eRNAs are at the top of the hierarchy 
within certain transcriptional regulatory 
networks. If so, this notion suggests that 
failure to activate, or mutations within, 
critical eRNAs leaves limited capabili-
ties for TFs and results in disorders.33,60-64 
Therefore, one investigative priority 

would be to resolve the targets of eRNAs 
genome-wide.

Conclusions and Perspectives

Latest data reaffirm the widespread 
transcription of the mammalian genomes, 
and that enhancers are among the tran-
scribed regions. Thus far, evidence sug-
gests that enhancers/eRNAs promote 
mRNA transcription by establishing chro-
matin accessibility at specified loci and 
over a large genomic space, resulting in 
PolII/Mediator/Cohesin complex recruit-
ment and culminating in the formation of 
transcription networks. A question arising 
from these observations is “why would 
more complex biological systems evolve an 
enhancer-based regulatory system?” In the 
view of the positive relationship between 
the genome size and biological complexity, 
one can anticipate a superior governing 
and adaptive power of sequence-specific 
regulation rather than a more primitive 
TF-based system in multicellular and 
multilineage organisms.21,56,65-67 This way, 
coordinated spatiotemporal regulation 
of distinct transcriptional networks is 
organized and fine-tuned while utilizing 
similar protein components to drive com-
plexity.6,57-59,68-70 Notwithstanding remark-
able advances made thus far, a great deal is 
yet to be discovered about eRNAs, includ-
ing their regulatory networks, biochemical 

Figure 1. Emerging roles of eRNAs in establishing chromatin accessibility and the subsequent for-
mation of EPCs. (A) eRNA synthesis at an enhancer and its targeting to a defined regulatory region 
(i.e., Promoter). (B) eRNA-mediated chromatin accessibility and the subsequent recruitment of fac-
tors for transcription and the stabilization of EPCs.
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characteristics, structure–activity rela-
tionship, and precise molecular mecha-
nisms that make them key transcriptional 
integrators.71
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