
Automatic Prostate MR Image Segmentation with Sparse Label
Propagation and Domain-Specific Manifold Regularization

Shu Liao1, Yaozong Gao1, Yinghuan Shi1, Ambereen Yousuf2, Ibrahim Karademir2, Aytekin
Oto2, and Dinggang Shen1

1 Department of Radiology and BRIC, University of North Carolina at Chapel Hill,
dgshen@med.unc.edu
2 Department of Radiology, Section of Urology, University of Chicago

Abstract
Automatic prostate segmentation in MR images plays an important role in prostate cancer
diagnosis. However, there are two main challenges: (1) Large inter-subject prostate shape
variations; (2) Inhomogeneous prostate appearance. To address these challenges, we propose a
new hierarchical prostate MR segmentation method, with the main contributions lying in the
following aspects: First, the most salient features are learnt from atlases based on a subclass
discriminant analysis (SDA) method, which aims to find a discriminant feature subspace by
simultaneously maximizing the inter-class distance and minimizing the intra-class variations. The
projected features, instead of only voxel-wise intensity, will be served as anatomical signature of
each voxel. Second, based on the projected features, a new multi-atlases sparse label fusion
framework is proposed to estimate the prostate likelihood of each voxel in the target image from
the coarse level. Third, a domain-specific semi-supervised manifold regularization method is
proposed to incorporate the most reliable patient-specific information identified by the prostate
likelihood map to refine the segmentation result from the fine level. Our method is evaluated on a
T2 weighted prostate MR image dataset consisting of 66 patients and compared with two state-of-
the-art segmentation methods. Experimental results show that our method consistently achieves
the highest segmentation accuracies than other methods under comparison.

1 Introduction
Prostate cancer is the second leading cause of cancer death for American males. It is
estimated by the American Cancer Society that in year 2012, around 241,740 new cases of
of prostate cancer will be diagnosed, and around 28,170 men will die because of prostate
cancer. Image guided radiation therapy (IGRT), as a noninvasive approach, is one of the
major treatment methods for prostate cancer, and accurate prostate segmentation is a critical
step in IGRT.

The T2 weighted magnetic resonance image (MRI) is one of the most commonly used
prostate image modalities to perform treatment planning in IGRT due to its superior soft
tissue contrast. There are many novel prostate MR image segmentation algorithms proposed
in the literature, and they can be broadly classified into two main categories, namely multi-
atlases based segmentation methods [1,2] and deformable model based segmentation
methods [3,4]. Multi-atlases based segmentation methods generally have two main steps.
First, atlases (i.e., training images with segmentation groundtruths) are registered to the
target image. Second, label fusion is performed with the registered atlases to obtain the final
segmentation result of the target image. The most commonly used label fusion techniques
include majority voting (MV), STAPLE based methods [5,6], the SIMPLE algorithm [7],
and the non-local mean based label propagation [8,9]. Deformable model based methods
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first construct a shape prior from available training images. Then, the prostate in the target
image is segmented by fitting the deformable model onto the prostate boundary with both
shape and appearance constraints. Representative deformable model based methods include
the active appearance model (AAM) based methods [3] and probabilistic spatial constrained
deformable model based methods [4].

Although many prostate MR image segmentation methods have been proposed, there are
still two existing main challenges. The first challenge exists in all prostate image modalities,
which is the large inter-subject prostate shape variation. It brings difficulty for multi-atlases
based and deformable model based methods to accurately segment the prostate if prostate
shape in the target image is significantly different from prostate shapes in the atlases. The
second challenge is that the image appearance inside the prostate can have very large
variations, which brings difficulty in learning effective image appearance features to capture
all the anatomical properties of the prostate. These two challenges are also illustrated by
Figure 1.

Therefore, we are motivated to propose a new prostate MR image segmentation method to
address the two main challenges mentioned above. Specifically, the most salient anatomical
features to aid segmentation are learnt by subclass discriminant analysis (SDA), which is a
discriminant subspace learning method. SDA simultaneously maximizes the inter-class
distances and minimizes the intra-class variations of the learnt features. Based on the learnt
features, a hierarchical segmentation framework is proposed. In the coarse level, a multi-
atlases based sparse label propagation method is proposed to estimate the prostate likelihood
of each voxel in the target image, which provides a rough labeling of prostate and non-
prostate voxels. Then, voxels with high segmentation confidence can be determined based
on the likelihood map. In the fine level, voxels with high segmentation confidence in the
target image are served as labeled domain-specific samples, while voxels with low
segmentation confidence are served as unlabeled domain-specific samples. These labeled
and unlabeled domain-specific samples reflect the prostate anatomical properties in the
target image more precisely than those from atlases, and thus they can be used as input for
the semi-supervised manifold regularization method to refine the final segmentation result.
A prostate MR image dataset consisting of 66 patients is used to evaluate our method, and
further compare it with the two state-of-the-art prostate segmentation methods. Experimental
results show that our method consistently achieves the highest segmentation accuracies than
other methods under comparison.

2 Method
The proposed method can be summarized by Figure 2. Details of each component in Figure
2 is explained below.

2.1 Discriminant Feature Learning with SDA
As illustrated in Figure 1, using voxel intensity alone is insufficient to distinguish voxels
belonging to the prostate and non-prostate regions. Therefore, it is of essential importance
for designing highly discriminant voxel signatures. In the ideal case, discriminant voxel
signatures should exhibit large inter-class distances and small intra-class variations for
different tissue types, which is also known as the linear discriminant analysis (LDA) [10].
LDA aims to project the original signature to a feature subspace such that the projected
features can maximize the separation of different classes measured by the Fisher-Rao's
separation criterion.

In this paper, the Gabor wavelet function was used to extract the original feature signature.
Specifically, given N training images Ii (i = 1, …, N), each image Ii is convolved with 50
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Gabor wavelet kernels ψj (j = 1, …, 50), to obtain the resulting feature maps . In each
feature map, the multi-resolution patch-based representation [9] with patch sizes K1 = 5, K2
= 9, and K3 = 13 are used as signature for each voxel x, denoted as f(x).

Note that the original signature f(x) may contain many redundant and noisy features. We
aim to project the original signature to a discriminant subspace such that the projected
features can maximize the inter-class distances and minimize the intra-class variations.
Specifically, P voxels are drawn from the training images (e.g., Figure 3 (a)), denoted as x1,
…,xP. Each voxel xk (k = 1, …, P) has an anatomical label lk, with lk = 1 if xk belongs to the
prostate and lk = 0 otherwise. We can learn the most discriminant features based on LDA
[10] by finding projection vectors w which can maximize the Fisher-Rao's criterion:

(1)

where SB and SW denote the between class scatter matrix and the within class scatter matrix
defined by Equations 2 and 3, respectively.

(2)

where C denotes the number of classes (i.e., C = 2 in our prostate segmentation problem), μi
denotes the sample mean of class i, and μ denotes the global mean of all the samples.

(3)

where ζi denotes the set of voxels belonging to class i, and f(xk) is the multi-resolution patch
signature of voxel xk.

The most discriminant direction w to project the original features can be obtained by
selecting the eigenvectors with the largest eigenvalues of (SW)−1SB.

The basic assumption of LDA in defining SB by Equation 2 is that samples belonging to the
same class are generated from a unimodal Gaussian distribution. This assumption generally
does not hold for voxels belonging to the prostate and non-prostate regions due to the
complex anatomical structure composition in MR images (e.g., in peripheral zones, central
zones, rectum, and bladder). In this case, voxels belonging to the same class may exhibit
significantly different distributions in the feature space and LDA is no longer applicable.
Another limitation of LDA is that it can only project the original feature to a subspace with
at most C − 1 dimensions since the rank of SB can be at most C − 1. In binary medical image
segmentation problems (i.e., C = 2 in our problem), LDA can only derive 1-dimensional
feature, which is unlikely to well separate voxels belonging to different regions. Figure 3 (b)
shows the projected 1D feature with LDA on the drawn samples shown in Figure 3 (a), and
it can be observed that samples belonging to the prostate and non-prostate regions cannot be
satisfactorily separated.

Therefore, we assume that samples belonging to the same class can belong to different
clusters in the feature space. Specifically, for voxels belonging to class i (i.e., only two
classes in binary segmentation problem), they can be further partitioned into Hi clusters (i.e.,
subclasses). Following this assumption, we propose the usage of subclass discriminant
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analysis (SDA) [12] to learn the most discriminant features. Specifically, we redefine SB by
Equation 4

(4)

where pij = Pij/Q denotes the weight of the jth subclass of class i, with Pij denoting the
number of samples of the jth subclass in class i and Q denoting the total number of samples.
μij is the sample mean of the jth subclass in class i. Hi denotes the number of subclasses in
class i. Equation 4 aims to maximize the separability of subclasses belonging to different

classes. Also, in Equation 4, , which resolves the
rank deficiency problem. The number of subclasses Hi of each class i is automatically
determined by affinity propagation clustering [13] on samples belonging to each class i.

The SDA discriminant feature extraction procedure can be summarized by Algorithm 1. The
dimension of the final features extracted by SDA is determined as the least subset of
eigenvectors which occupy more than 95% of the variance similar to [10]. Figure 3 (c)
shows the scatter plot of the first two dimensions of the projected features with respect to the
drawn voxel samples shown in Figure 3 (a)

Algorithm 1. Discriminant Feature Extraction by SDA

Input: Drawn training voxel samples x1, …, xP, with their multi-resolution patch

signature f(xi) (i = 1, …, P) and anatomical label li.

Output: Projected signature f̂ (xi)(i = 1, …, P), and projection matrix M.

1. Compute the within class scatter matrix SW by Equation 3.

2. Perform affinity propagation to cluster voxel samples belonging to the prostate region into H1 subclasses and voxel
samples belonging to the non-prostate region into H2 subclasses.

3. Compute the between class scatter matrix SB by Equation 4.

4. Perform eigen-analysis on (SW)−1SB to obtain its most significant eigenvectors forming matrix V, and diagonal matrix
Λ containing the largest eigenvalues.

5. Let M = Λ−1/2VT.

6. Calculate the projected feature signature f̂ (xi) = M f (xi)(i = 1, …, P).

7. Return f̂ (xi)(i = 1, …, P), and M.

by SDA. It can be visually observed that SDA can separate voxels belonging to the prostate
and non-prostate regions more effectively than LDA.

2.2 Coarse Level: Multi-atlases Based Sparse Label Propagation
After learning the feature projection matrix M by Algorithm 1, we can calculate the

signature  of each voxel x in the target image Inew as , where f(x) is the
original feature signature of x. The extracted features are then integrated with a multi-atlases
based sparse label propagation framework to roughly estimate the prostate likelihood map in
the target image.

Given N aligned training images (i.e., atlases)  with Inew and their

segmentation groundtruths , the principle of label propagation [8,9] can be illustrated by

Figure 4. For each voxel , its prostate likelihood is estimated by the voxels 
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around the neighborhood of x, namely the candidate voxels. The contribution of each 

is represented by a graph weight wi(x, y), and its corresponding label  in  can be
propagated to voxel x with weight wi(x, y). In this paper, the multi-resolution fast free-form
deformation (FFD) with the localized mutual information (LMI) registration algorithm [2]
was used. Then, the prostate likelihood Snew(x) in Inew can be estimated by label propagation
[9] as defined in Equation 5:

(5)

where Ni(x) denotes the set of neighboring voxels of x in image , and it is defined as a W ×

W × W window centered at voxel x.  if voxel y belongs to the prostate region in ,

and  otherwise.

The most straightforward way to determine wi(x, y) is to directly compute the Euclidean
distance between the feature signatures of x and y as similar to [9]. However, the graph
weight wi(x, y) determined in this way may be sensitive to outliers and may not be able to
effectively identify the most appropriate candidate voxels for label propagation. Therefore,
we are motivated to estimate the graph weight wi(x, y) based on a group sparse

representation framework. Specifically, signatures  of voxels  are reshaped into

column vectors and organized into a matrix 

where  and  are matrices with candidate voxels belonging to the prostate
and non-prostate regions in the ith training image, respectively. We aim to reconstruct the

signature  of each voxel  by the group sparse representation of columns of A.
The sparse coefficient vector βx associated with x is organized as

 where

 is the coefficient vector corresponding to . The graph weight wi(x, y)

is set to the corresponding element in  for voxel  where  denotes the optimal
solution for minimizing Equation 6:

(6)

where ∥ · ∥1 denotes the L1 norm, and λ is the parameter controlling the global sparsity.
Equation 6 can be optimized by using Nesterov's method [14].

The group sparsity constraint (third term) enforced in Equation 6 plays the role of atlas
selection, as it tends to give more emphasis to candidate voxels from atlases similar to the
target image, and effectively excludes outlier candidate voxels from atlases which are
significantly different from the target image. On the other hand, the sparsity constraint
(second term) further assigns more weights to the candidate voxels from atlases with similar
feature signatures to the reference voxel in the target image.

Note that the estimated prostate likelihood map may still not be able to accurately delineate
the prostate boundary as illustrated by a challenging example shown in Figure 5. The main
reason is that the population information alone cannot fully reflect the anatomical details of
the underlying patient. On the other hand, voxels with the highest segmentation confidence
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(i.e,. with high or low prostate likelihood values) can generally be classified correctly as
shown in Figure 5 (c), which can be actually served as additional training samples to reflect
the domain-specific knowledge of the target image. In this paper, voxels with prostate
likelihood value Snew(x) ≥ 0.85 are determined as domain-specific prostate samples, while
voxels with prostate likelihood value 0 < Snew(x) ≤ 0.15 are used as domain-specific non-
prostate samples. Other voxels in the target image can be used to serve as unlabeled domain-
specific samples.

2.3 Fine Level: Semi-supervised Manifold Regularization
As described in Section 2.2, if the prostate shape and appearance information in the target
image is significantly different from those in atlases, the segmentation result can be
inaccurate. The origin of this problem is that population information from atlases alone is
insufficient to represent the anatomical properties in the target image. Figure 5 (a) shows an
example of the poor segmentation result obtained by the coarse level sparse label
propagation.

Although the likelihood map estimated in the coarse level may not be able to accurately
locate the prostate boundary, voxels with the highest segmentation confidences can be
reliably identified and served as labeled domain-specific samples as described in Section 2.2
and shown in Figure 5 (c). Other voxels in the target image can be served as unlabeled
domain-specific samples to encode the manifold configuration information in the feature
space. These voxels provide more relevant and direct anatomical information to guide the
segmentation process than voxels from atlases. In this paper, semi-supervised manifold
regularization method based on the Laplacian Regularized Least Squares (LapRLS) [15] is
used to integrate such information.

Specifically, given t labeled domain-specific training voxels  (i = 1, …, t), with

anatomical label vi = 1 if  is determined as prostate samples and vi = 0 otherwise, and also

h unlabeled domain-specific training voxels  (j = 1, …, h), LapRLS can be formulated as
the optimization problem in Equation 7:

(7)

where  denotes the discriminant feature representation of voxel .  denotes the
reproducing kernel Hilbert spaces (RKHS), and Φ is a mapping function in  to map a
discriminant feature representation to a prostate likelihood value.

, and L is the graph
Laplacian of all the training samples computed based on the heat kernel [15]. γA and γI are
weighting parameters of the second and third terms.

Based on the Representer Theorem [15], Φ can be represented as an expansion of kernel
functions over both the labeled and unlabeled samples:

(8)

Once the kernel function K is determined, the optimal parameters αi (i = 1, …, t + h) in
Equation 8 which yield the optimal mapping function Φopt to minimize Equation 7 can be
obtained by Equation 9:
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(9)

where J = diag(1, …, 1, 0, …, 0) is a (t + h) × (t + h) diagonal matrix with the first t
diagonal entries as 1 and the rest as 0. K is the (t + h) × (t + h) Gram matrix with

. Y is a (t+h) dimensional label vector with Y = [v1, …, vt, 0, …, 0],
and α* = [α1, …, αt+h].

After estimating α*, the optimal mapping function Φopt can be obtained by Equation 8. The

final segmentation result can be obtained by applying Φopt to the feature signature  of

each voxel z in the target image, and classified it to the prostate region if ,
and classified to the non-prostate region otherwise. Figure 5 (d) shows the estimated prostate
boundary refined by the fine level semi-supervised manifold regularization, and it can be
observed that the prostate boundary has been accurately located, which implies the
importance of incorporating domain-specific appearance information for classification.

3 Experimental Results
Our method was evaluated on a prostate T2 weighted MR image dataset consisting of 66
images taken from 66 different patients in the University of Chicago Hospital, and 9 prostate
MR images taken from 9 different patients other than those 66 patients were used as atlases.
All MR images were also taken from different MR scanners. For each image, its manual
segmentation groundtruth is provided by a clinical expert. The parameters of our method
were set as follows by cross validation: W = 15, λ = 10−4, γA = 10−6, and γI = 10−7. The

Gaussian RBF kernel  was used in the

fine level, with kernel parameter .

The following preprocessing procedure was performed: The N3 bias correction algorithm
[16] was first performed, followed by the histogram equalization procedure. Three different
evaluation measures are used: Dice ratio, Hausdorff distance, and the average surface
distance (ASD). Our method was also compared with the two state-of-the-art multi-atlases
based segmentation methods proposed by Klein et al. [2] and Coupe et al. [9].

Table 1 lists the average Dice ratio, minimum Dice ratio, mean Hausdorff distance, and
mean ASD, along with respective standard deviations (SD), across all the patients for
different approaches.

It can be observed from Table 1 that by using the coarse level (CL) only, the segmentation
accuracy of our method is slightly higher than Klein's method. By integrating CL with the
salient features extracted by SDA, the segmentation accuracy can be further improved,
which reflects the contribution of SDA. Finally, by incorporating the fine level (FL) semi-
supervised manifold regularization framework, the segmentation accuracy can be
significantly boosted up, which is particularly reflected by the minimum Dice ratio.

Figures 6 and 7 show the Dice ratio between the estimated prostate volume and the
segmentation groundtruth of each patient with our method by using the CL only, SDA
derived features with CL, and further integrated with FL. It can be observed that the
segmentation accuracies consistently and progressively increase for all the patients, which
illustrates the contribution of each component.
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Figure 8 shows some typical segmentation results by our method, and it can be observed that
the estimated prostate boundaries by the proposed method are very close to the groundtruth,
which implies the effectiveness of our method.

The proposed method takes around 2.9 mins on average to segment a 3D prostate MR
image. All the experiments were conducted on an Intel Xeon 2.66-GHz CPU computer with
MATLAB implementation.

4 Conclusion
In this paper, we propose a new prostate MR image segmentation method. The most
discriminant feature signatures for each voxel are learnt by the subclass discriminant
analysis (SDA) to aid segmentation. SDA aims to find a discriminant feature subspace
which simultaneously maximizes the inter-class distance and minimizes the intra-class
variations. The learnt features are integrated with a hierarchical segmentation framework. In
the coarse level, a sparse label propagation method is proposed to propagate the population
information from atlases to the target image. The estimated prostate likelihood map can
reliably identify voxels with the highest segmentation confidences to serve as labeled
domain-specific samples of the target image, and voxels with low segmentation confidences
are served as unlabeled domain-specific samples to describe the underlying manifold
configuration in the feature space. A semi-supervised manifold regularization method is
proposed to construct the domain-specific classifier, and it is used to refine the final
segmentation result in the fine level. Our method has been evaluated on a prostate MR
image dataset consisting of 66 patients and compared with two state-of-the-art multi-atlases
based segmentation methods. Experimental results demonstrate that our method consistently
achieves the highest segmentation accuracy among the methods under comparison.
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Fig. 1.
Illustrations of large inter-subject shape and appearance variations of prostate in MR images,
where the manual segmentation groundtruths are highlighted by the red contours. Note also
the large inhomogeneous image appearances within the prostate region.
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Fig. 2.
Flow chart of our method, where all rectangles highlighted in red denote the main
contributions of the proposed method
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Fig. 3.
(a) A typical example of sampling voxels drawn from a training image. Samples belonging
to the prostate and non-prostate regions are highlighted by small red circles and green
crosses, respectively. (b) shows the scatter plot of 1D discriminant feature learnt by LDA,
where the horizontal axis represents the projected value of the features. For easy
visualization, the projected data points are uniformly distributed along the vertical axis. (c)
shows the scatter plot of the top two most discriminant feature learnt by the SDA algorithm.
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Fig. 4.
The schematic illustration of multi-atlases label propagation. In this example, N atlases with
their segmentation groundtruths highlighted by red contours are available. For the reference
voxel highlighted by the yellow dot in the target image, its prostate likelihood can be
estimated by comparing its feature signature with those of the neighboring candidate voxels
within the green squares in the atlases. The contribution of each candidate voxel y in the ith
atlas during label propagation is determined by the graph weight wi(x, y).
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Fig. 5.
Demonstration on how our method works on a challenging example. (a) shows the estimated
prostate boundary (yellow contour) by using sparse label propagation in the coarse level,
with the groundtruth prostate boundary overlayed (red contour), and (b) is the corresponding
prostate likelihood map. Voxels highlighted with yellow in (c) are determined as domain-
specific prostate samples, and voxels highlighted with green in (c) are determined as
domain-specific non-prostate samples. (d) shows the estimated prostate boundary (yellow
contour) by applying the fine level domain-specific manifold regularization, with the
groundtruth prostate boundary overlayed (red contour).
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Fig. 6.
Dice ratio between the estimated prostate volume and the groundtruth of the first 33 patients
by using coarse level (CL) segmentation only, SDA derived feature with CL, and finally
integrated with the fine level (FL) segmentation.
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Fig. 7.
Dice ratio between the estimated prostate volume and the groundtruth of the rest of the 33
patients by using coarse level (CL) segmentation only, SDA derived feature with CL, and
finally integrated with the fine level (FL) segmentation
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Fig. 8.
Exemplar segmentation results obtained by the proposed method, where each row represents
the segmentation results of a particular patient. Here, the estimated prostate boundary is
highlighted in yellow, and the groundtruth prostate boundary is highlighted in red.
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Table 1

The comparison of different methods with different evaluation metrics. The last three rows show the
segmentation accuracy of our method with coarse level (CL) sparse label propagation only, CL based on the
features derived by SDA, and finally integrated with domain-specific manifold regularization in the fine level
(FL), respectively. The best results are bolded.

Method Mean Dice + SD (in %) Min Dice (in %) Mean Hausdorff + SD (in mm) Mean ASD + SD (in mm)

Klein et al. [2] 81.8 ± 4.3 47.3 11.7 ± 3.2 2.8 ± 1.2

Coupe et al. [9] 78.4 ± 3.6 34.2 15.8 ± 3.6 4.1 ± 1.5

CL 82.6 ± 4.8 51.4 10.6 ± 3.3 2.6 ± 1.4

SDA+CL 85.1 ± 4.1 63.2 9.6 ± 2.7 2.4 ± 1.2

SDA+CL+FL 88.3 ± 2.6 84.6 7.7 ± 2.1 1.8 ± 0.9
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