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Abstract
We propose a new approach for statistical shape analysis of 3D anatomical objects based on
features extracted from skeletons. Like prior work on medial representations [7,15,9], the
approach involves deforming a template to target shapes in a way that preserves the branching
structure of the skeleton and provides intersubject correspondence. However, unlike medial
representations, which parameterize the skeleton surfaces explicitly, our representation is
boundary-centric, and the skeleton is implicit. Similar to prior constrained modeling methods
developed 2D objects [8] or tube-like 3D objects [13], we impose symmetry constraints on tuples
of boundary points in a way that guarantees the preservation of the skeleton’s topology under
deformation. Once discretized, the problem of deforming a template to a target shape is
formulated as a quadratically constrained quadratic programming problem. The new technique is
evaluated in terms of its ability to capture the shape of the corpus callosum tract extracted from
diffusion-weighted MRI.

1 Introduction
The Blum skeleton [2] is a geometrical construct that provides a powerful set of features for
quantifying the symmetric properties of geometric objects, particularly those derived from
biomedical imaging. Although the skeleton, or medial axis, was originally described by
Blum [2] in the plane (defined as the set of connected curves formed by the centers of
maximal inscribed disks a 2D object), the concept and the definition of the skeleton
naturally extend to 3D. The skeleton of a 3D object, also called the medial scaffold, consists
of surfaces, which are formed by the centers of all maximal inscribed balls (MIBs) in the
object. We give a more formal definition in Sec. 2.1, and Fig. 1 provides an illustration.

The Blum skeleton is used frequently in image and shape analysis because it captures
important salient properties of natural objects [9]. For instance, the curvature of the skeleton
can be used to characterize how an object bends locally, particularly for tube-like or sheet-
like objects. Each point on the skeleton is associated with the radius of the corresponding
MIB, and the radius function provides a way to measure the local thickness of tube and
sheet-like objects. Since many of the commonly studied organs in the human body are sheet-
like or tube-like (cerebral cortex, many white matter tracts, myocardium, heart valves, etc.),
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such measures of thickness and bending are commonly sought in biomedical applications,
e.g., to characterize the effects of disease on organs and tissues. Even objects that are not
sheet-like (e.g., the hippocampus) have been analyzed using features derived from skeletons
[10,3].

The use of skeleton-derived geometric features in statistical shape analysis is complicated by
the fact that the composition of the medial axis/scaffold into curves and surfaces, known as
branching structure, is almost always different for multiple instances of a given class of
geometric objects (e.g., the hippocampi of different individuals). A very small deformation
to the boundary of an object, such as adding a bump on the surface, can change the medial
branching structure. This variability in branching makes it challenging to find
correspondences between medial axes/scaffolds of different instances and to apply the
standard tools of statistical shape analysis. In some cases, this challenge can be overcome by
pruning smaller branches heuristically until, for each instance, the medial axis/scaffold is
reduced to a common branching structure [3]. An alternative approach that allows features
derived from skeletons to be used for statistical shape analysis is based on the deformable
modeling framework. A template is deformed to optimally match each instance in a class of
objects, with deformations constrained to preserve the medial branching structure of the
template. The match between each deformed template and the instance it is approximating is
not perfect, but in many problems, the mismatch is on the order of the other errors involved
in imaging-based morphometry, and thus an acceptable price to pay for preserving
homology between skeleton-derived features. Such medially-constrained deformable
modeling methods can be divided into two rough groups: (1) methods that model the medial
axis/scaffold of the deformable template explicitly, and (2) methods that impose geometric
constraints on the boundary of the deformable template. In the first class are the the Pizer et
al. m-rep method [7], and derivative techniques such as continuous m-rep [15,12]. These
methods explicitly describe the medial scaffold of the deformable template, and derive the
boundary of the model algorithmically. Examples from the second class of methods include
symmetry-seeking tubular models by Terzopoulos et al. [13], skeleton-constrained 2D level
set methods [8], and linked-surface deformable modeling techniques (e.g., [16]).

Among these medially-constrained deformable modeling methods, few have sought to
adhere strictly to “true” 3D Blum medial geometry, which, we would argue, takes away
from the interpretability of the skeleton-derived features in shape analysis applications. For
instance, the original m-rep approach does not model medial scaffolds with multiple
branches as such; instead, it models complex objects using subfigures attached to the
boundaries of parent figures [7]. Coupled surface methods frequently model surfaces as
parallel or constrained to be a certain minimal distance apart [16], constraints that are not
directly related to how skeletons are defined. Continuous m-rep methods [15,12], which
describe the medial scaffold parametrically and derive the boundary by inverting the
skeletonization process, have been successful at creating 3D deformable models that adhere
to Blum geometry. However, they suffer from the inherent challenges that arise from trying
to explicitly parameterize medial scaffolds, which are, essentially, singularities. For
instance, near the free edges of the medial scaffold (see Fig. 1), inverse skeletonization is
asymptotic: an infinitesimal step along the medial scaffold maps to a big step on the
boundary. Behavior along creases (curves along which medial surfaces join) is also
asymptotic and challenging to model. Most difficult of all is to model endpoints of creases
parametrically. In fact, just one paper by Terriberry et al. [12] has claimed this capability,
and has only demonstrated it with a static example. To our knowledge, the ability to deform
templates adhering to 3D Blum geometry to target data has not been demonstrated for
templates with multiple branches.1
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The main contribution of this paper is to propose a new paradigm for Blum-adherent 3D
deformable medial modeling, which bridges these two classes of deformable modeling
techniques. Our goals are closest to those of m-rep methods (to allow statistical analysis of
skeleton-derived features across populations of objects), but our approach is closer to
symmetry-seeking models by Terzopoulos et al. [13] and skeletally coupled level sets by
Sebastian et al. [8]. It is the boundary of the deformable template that is modeled
parametrically, while the medial scaffold is defined implicitly. Similar to [13,8], constraints
are imposed on the boundary parameterization to ensure that deformation does not change
the medial branching structure of the template. Unlike [8], which is 2D, and [13], which
imposes tubular symmetries, our approach is used to model arbitrary 3D shapes, including
those with branching medial scaffolds. An additional contribution of this paper is to
formulate the problem deformable modeling with medial constraints as a quadratically
constrained quadratic programing (QCQP) problem, leading to efficient, albeit non-convex,
optimization.

2 Methods
2.1 3D Medial Geometry Background

We use the term object to refer to a set  ⊂ ℝn that is homologous to a closed ball and has a
smooth boundary, denoted ∂ . A ball B is a maximal inscribed ball (MIB) in  if B ⊂ 
and there exists no other ball B′ ⊂  such that B ⊂ B′. Every point on ∂  belongs to exactly
one MIB. The Blum [2] medial axis transform (MAT) of  is the transformation that maps
each point x ∈ ∂  to the center of the MIB containing x. The terms medial scaffold, medial
axis or skeleton are used to describe the range of this mapping, i.e., the set of centers of all
MIBs in . Generically, the medial scaffold consists of one or more surface patches. Curves
that are shared by multiple surface patches in the medial scaffold are called creases. The
remaining boundaries of these surface patches are called free edges (see Figure 1).

Each MIB in  is tangent to ∂  at one or more points. Thus, the MAT is a many-to-one
mapping. In fact, most MIBs in  are tangent to ∂  at two points. Centers of these bitangent
MIBs lie on the interiors of the surface patches that form the medial scaffold of . Centers
of MIBs tangent to ∂  at three points form the creases of the medial scaffold. Centers of
MIBs that are tangent to ∂  at only one point form the free edges of the medial scaffold.
These MIBs have a higher order of tangency with ∂ , i.e., the radius of such MIB is the
reciprocal the larger of the principal curvatures to ∂  at the point of tangency. As shown by
Giblin [4], two more types of MIB tangency occur generically, corresponding to junctions of
creases and free edges, and to crease-crease intersections.

2.2 Derivation of Medial Constraints on the Boundary
We begin by deriving a constraint on the boundary of a deformable template that ensures
that the branching structure of the template’s medial axis is preserved under deformation.
We say that two points x1, x2 ∈ ∂  are medially linked if they belong to the same MIB in ,
or, equivalently, MAT(x1) = MAT(x2). Our method is based on the fact that transformations
of  that preserve medial links also preserve the branching structure of the medial scaffold.
More formally,

Theorem 1—Let  be an object in ℝ3. Let Φ : ℝ3 → ℝ3 be a bijective and differentiable
transformation. Let  = {x ∈ ℝ3 : Φ−1(x) ∈ }. Suppose that Φ “preserves medial links”,
i.e., for any two points x1, x2 ∈ ∂ , the points Φ(x1) and Φ(x2) are medially linked in  if

1Sun et al. [11] developed a myocardium model with three surfaces joining along a crease, but they did not model the myocardium as
a closed surface, which simplified Blum geometry at crease endpoints.
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and only if x1 and x2 are medially linked in . Then the MAT of  is homeomorphic to the
MAT of .

Proof: We outline the proof due to limited space. The proof involves constructing a
mapping Ψ between the MAT of  and the MAT of , as follows. Let m be a point on the
MAT of , then let X ∈ ∂  be the non-empty set of points where the MIB centered at m is
tangent to ∂ . Let X′ = {x ∈ ℝ3 : Φ−1(x) ∈ X}. If X has only one element, let Ψ(m) be the
center of the MIB containing the sole point in X′. If X has multiple elements, any two of
them are medially linked, and thus any two elements in X′ are medially linked. Thus, there
exists an MIB that is tangent to ∂  at all points in X′. Let Ψ(m) be the center of that MIB.
Proof by contradiction can be used to show that Ψ is bijective and continuous.

Next, we write down the sufficient conditions for transformation Φ to preserve medial links.
It is a trivial fact that a ball with center m ∈  and radius R is tangent to ∂  at the point x if
and only if m = x − R N, where N is the unit outward normal to ∂  at x. It is also simple to
show that such a ball is a MIB in  if ∀y ∈ ∂ , ||y − m|| ≥ R. From these observations, we
conclude that two points x1, x2 ∈ ∂  are medially linked if and only if there exists R > 0
such that x1 – R N1 = x2 – R N2 and ||y – (x1 – RN1)|| ≥ R for all y ∈ ∂ .

2.3 Medially-Constrained Model Fitting – Continuous Formulation
We first formulate the problem of fitting a medially-constrained template to a target object
in the continuous case. In the following section, the continuous problem is discretized and
solved numerically. Let the object  be a template, whose MAT has the desired branching
structure, and let  be a target object. The goal is to deform , making it as similar as
possible to , while maintaining the branching structure of the MAT of  after deformation.

Let U be some parametric domain (e.g., the unit sphere), and x : U → ∂  be a smooth
bijective map that provides a global parameterization of ∂ . Let  ⊂ U × U be the set of all
parameter value pairs (u, v), such that u ≠ v and x(u) and x(v) are medially linked in . Let

 be the set of diffeomorphic transformations of ℝ3 and let  be the set of all bounded
continuous positive real-valued functions on . For any Φ ∈ , let  = {x ∈ ℝ3 : Φ−1(x) ∈

}, let xΦ(u) = Φ(x(u)), and let NΦ(u) be the unit outward normal vector to ∂  at xΦ(u).
Let μ be some measure of dissimilarity between two objects in ℝ3 (e.g., mean closest-point
distance) and let ρ be some measure of irregularity of a transformation (e.g., bending
energy). The continuous medially-constrained deformable modeling problem seeks to find a
transformation Φ* ∈  that satisfies

(1)

subject to the following two conditions:

(2)

(3)

The constraints (2,3) guarantee that xΦ(u) and xΦ(v) are medially linked, and hence the that
Φ preserves the branching structure of the MAT of  under deformation. Conversely, any Φ
∈  that preserves the branching structure of the MAT of  under deformation must satisfy
(2,3). Since transformations that preserve MAT branching do exist, we conclude that the
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minimization problem above is not over-constrained and solutions can be found, in theory.
In practice, however, we must discretize and simplify the problem to find solutions.

2.4 Medially-Constrained Model Fitting – Discrete Formulation
In the discrete implementation, we model the boundary of the deforming template as a
triangular mesh, i.e., a piecewise linear surface with triangular elements. We consider this
mesh to be an approximation of a continuous boundary surface, and impose medial linkage
constraints (2,3) on tuples of mesh vertices, along with additional constraints on mesh
quality. We then deform the mesh to maximize similarity with a target object as well as
mesh regularity.

Encoding Medial Links—Let Nb be the number of vertices in the mesh describing the
boundary of the deforming template, and let xi denote the position of each vertex i ∈ [1, Nb].
Medial links between vertices are encoded by assigning a medial link index Mi ∈ ℕ to each
vertex. Any two vertices i, j such that Mi = Mj are considered medially linked. Some of the
vertices are not medially linked to any other vertex (corresponding to free edges of medial
scaffolds) and some vertices are medially linked to more than one vertex (corresponding to
creases on the medial scaffold). Furthermore, the mesh is constructed in such a way that
each triangle on the mesh is linked to exactly one other triangle as follows: if vertices (i, j, k)
form a triangle, then there exists exactly one other triangle (i′, j′, k′) in the mesh for which
Mi = Mi′, Mj = Mj′ and Mk = Mk′.

How can such meshes be constructed? The approach we use is to take a reference object
whose medial scaffold has the desired branching structure. We then define a coarse triangle
mesh on the medial scaffold, with vertices sampled along creases and free edges (Fig. 2a).
Each triple of connected points is included as a triangular face twice, facing in different
directions. The result is a mesh of spherical topology that is infinitely thin, as if shrink-
wrapped around the medial scaffold. We then “inflate” the resulting mesh onto the boundary
of the reference object (Fig. 2b). The medial link index of each vertex on the coarse inflated
mesh is just the index of the vertex on the coarse medial mesh from which it originated.
Lastly, we apply Loop subdivision [6] to the inflated coarse mesh, resulting in a finer mesh
(blue object in Fig. 2b). It is simple to adjust the Loop subdivision scheme to generate
medial link indices consistent with the encoding above.

General Problem Formulation—Once a mesh conforming to the above requirements is
created, the problem of deforming it to target objects is defined as a constrained
optimization problem. The general form of the problem is

(4)

where f is the objective being minimized, and gc are constraint functions, Nv is the number
of variables and Nc is the number of constraints. The objective function captures the
dissimilarity between the deforming mesh and the target object, as well as the irregularity of
the deforming template. The constraints incorporate conditions derived from (2) and (3) that
ensure that vertices with the same medial link index are medially linked, and well as
additional conditions that ensure mesh quality. The vector of variables ξ includes the vertex
coordinates xi, as well as a large number of additional “helper” variables introduced in order
to make all constraints quadratic. The terms forming the objective and the constraints are
described in the next few paragraphs.

Yushkevich and Zhang Page 5

Inf Process Med Imaging. Author manuscript; available in PMC 2014 April 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Medial Linkage Constraints—We impose constraints to ensure that any two vertices (i,
j) for which Mi = Mj satisfy discrete versions of the conditions of medial linkage (2) and (3).
Let k = Mi = Mj. The first condition has the form xi – RkNi = xj – RkNj, where Rk is included
as an additional variable in the optimization (analogous to R in the continuous case), and Ni
is the approximation of the unit normal vector to the boundary at xi. The computation of Ni
requires taking a square root, which would make the constraint non-quadratic. Instead of
computing Ni directly, we add it as an additional variable in the optimization, and impose
additional constraints on Ni that are quadratic:

where (x,1)i and (x,2)i are a pair of non-parallel vectors in the tangent plane to the boundary
at xi. Such a pair of vectors can be approximated as weighted sums of vertices in the one-
ring neighborhood of i using a scheme described by Loop [6], with the weights dependent
only on the valence of the vertex i.

Note that we have not yet defined any constraint on Rk for vertices that are not medially
linked to any other vertex. In the continuous case, we did not have to deal with such points,
since MIBs that have a single point of tangency with the boundary are limit cases of MIBs
with double tangency [2,4]. In the discrete case, we need to deal with these vertices
explicitly. Recall from Sec. 2.1 that the radius of a singly tangent MIB is the reciprocal of
the larger principal curvature of the boundary at the point of tangency. This leads to the
constraint Rk · κi,2 = 1, where κi,2 is the approximation of the larger principal curvature at xi,
and k = Mi. The approximation of κi,2 is not quadratic but, as we did above for the normal
vector, we introduce additional variables and constraints to the optimization problem to keep
all constraints quadratic. The added variables are the elements of the first fundamental form,
the elements of the shape operator, and the principal curvatures. We omit the details due to
space limitations.

The condition that mirrors (3) has the form , where k = Mi, for all
pairs of vertices i and j. These constraints are quadratic in the variables x, N and R.

However, there are  constraints, which does not scale well for larger meshes.
Fortunately, in practice, if often suffices to relax this constraint just to the vertices j that are
in the one-ring neighborhood of i. Analogous relaxation of a global non self-intersection
condition is used in continuous m-reps (i.e., positive medial-boundary Jacobian condition)
[15].

Mesh quality constraints—For the approximations of the unit normal and principal
curvature on a triangular mesh to be accurate, the triangular elements must not be
degenerate. We introduce additional constraints on the minimal angle of each boundary
triangle, and on the minimum dihedral angle between adjacent triangles. As before, we
introduce additional variables into the optimization problem, such as the area of each
triangle, the unit normal to each triangle, and the length of each edge, and relate these
variables to each other and the vertex coordinates using quadratic constraints.

Similarity to Target Shape—The objective function f consists of a similarity and
regularization terms. The similarity term is based on the iterative closest point (ICP)
algorithm. At the beginning of optimization, we match each vertex in the template mesh to
the closest point on ∂ , the boundary of the target object . We also match points on ∂  to
the closest locations on the template. We then minimize the sum of squared distances
between the matched points. Specifically, for each vertex i, let yi be the point on  that is

Yushkevich and Zhang Page 6

Inf Process Med Imaging. Author manuscript; available in PMC 2014 April 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



closest to xi at the start of the optimization. Likewise, for a set of Ns regularly sampled

points zj on ∂ , let  be the closest point on the template mesh, not necessarily a vertex.

Let {xij,1, xij,2, xij,3} be the triangle containing , and let wj,1, wj,2, wj,3 be the barycentric

coordinates of  in it. We formulate the objective function as

(5)

where ρ is the regularization term, discussed below. As in ICP, the matching and
optimization are alternated for several iterations until convergence.

Regularization—Regularization is implemented using Loop subdivision surfaces. Recall
that the template mesh is initially generated by Loop subdivision from a coarse mesh. We
define the regularization penalty to be the residual between the deforming template mesh
and the best approximation of the deforming mesh by a Loop subdivision surface.
Specifically, let x̂q be the vertices in the coarse mesh, for j ∈ [1, Nq]. Applying Loop
subdivision creates a new set of vertices, with the coordinate of the i-th vertex in the
subdivided surface given by Σq∈Q(i) Wiq x̂q, where Q(i) is the set of vertices in the coarse
mesh that contribute to the coordinates of the i-th vertex, and Wiq are the coefficients from
the subdivision scheme, which depend only on the structure of the coarse mesh. We add the
vertices x̂q as additional variables to the optimization problem. We then define the

regularization penalty as the total squared residual ,
where λρ is the weight given to the regularization term (set to 1 in our experiments). Since
Loop subdivision surfaces are smooth, penalizing the residual to the closest fitting Loop
subdivision surface imposes smoothness on the template.

Numerical Solution—The optimization problem for deformable modeling with
preservation of medial links involves a large number of variables (xi, Ni, Rk, κi,2, x̂j and
several others) and a large number of constraints. However, the constraints and the objective

function are quadratic in the variables, i.e., have the form  and

, where the matrices A0 and Ak are sparse. Although the matrices Aq are not
positive definite, and thus a global solution can not be guaranteed, the optimization problem
can be solved efficiently using interior point methods. Our implementation uses the Ipopt
method [14].

3 Experiments and Results
Corpus Callosum Tract Shape Analysis

The goal of this experiment is to demonstrate that the proposed deformable model can
accurately capture the shape of the corpus callosum (CC) across a cohort of subjects. To
demonstrate this, we first automatically label the CC using atlas-based segmentation, and
then fit a deformable medial model to each segmentation, allowing subsequent shape
analysis using skeleton-derived features. We focus on the CC because its shape in 3D is
non-trivial, and because skeleton-derived features have proved useful for joint analysis of
microscopic and macroscopic properties of sheet-like white matter tracts extracted from
diffusion MRI [17]. We use diffusion tensor imaging (DTI) data from 51 subjects (ages 29–
82, mean 70.0±7.1, 30 females and 21 males) in the IXI brain MRI database (http://
biomedic.doc.ic.ac.uk/brain-development). We label the CC in each subject using atlas-
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based segmentation, with the IXI aging DTI template [17] serving as the atlas. Specifically,
we register each subject to the template using the DTI-TK deformable registration algorithm
[18], then use the resulting deformation field to map the binary segmentation of the CC from
the atlas into the subject space.

Deformable medial modeling proceeds as follows. We manually construct an initial CC
mesh that encodes medial links between boundary vertices. We then fit this mesh to the
boundary of the CC segmentation in the IXI atlas using our ICP algorithm, creating a
template that satisfies medial linkage conditions. Fitting this template to each subject is
performed in three steps. First, the template is initialized close to the subject’s CC by
applying the deformation computed by DTI-TK to its vertices. This deformation does not
preserve medial linkage conditions. Second, we apply the ICP algorithm to fit the deformed
template to the subject’s CC segmentation, obtaining a mesh that closely fits the CC shape
and satisfies medial linkage conditions. Finally, we refine the fitted mesh using one level of
Loop subdivision, and perform one more stage of ICP-style fitting, obtaining a dense mesh
satisfying the medial linkage conditions and closely matching the subjects’ CC
segmentations. The meshes have the same number of vertices and triangles, which enables
point-wise statistical analysis of MAT-derived features. We use the radius values Rk at the
vertices of the fitted meshes as a thickness feature, and use a general linear model to test the
cross-sectional hypothesis that the thickness of the CC decreases as age increases. To
control for multiple comparisons, we use cluster-level permutation testing [5].

Results—The results of the fitting are illustrated in Fig. 3. The template meshes initially
fitted to subject CC segmentations have 410 vertices and 816 triangles. The corresponding
constrained optimization problem has 11320 variables, 10116 equality constraints and 3744
inequality constraints. The Jacobian of the constraints is 99.91% sparse, and the Hessian of
the Lagrangian is 99.95% sparse. Optimization was successful in 50 of the 51 subjects,
converging to a local minimum of f and satisfying all the constraints within the tolerance of
10−8. In one subject, it failed to satisfy the constraints in the 200 steps allowed. For the rest
of the subjects, each ICP iteration required an average of 16.5 optimization steps to
converge, taking an average of 42 s on a single 2.2GHz Intel CPU core. The number of ICP
iterations was fixed at 5 for each subject. After fitting, the root mean squared (RMS)
distance from the fitted template boundary to the boundary of the subject’s CC segmentation
was 0.89 ± 0.04 mm on average, and the average distance from the segmentation to the
template boundary was 1.16 ± 0.05 mm. The subdivided meshes fitted at the last stage have
1634 vertices, 3264 triangles, 42712 variables, 38988/14832 equality/inequality constraints,
99.98% Jacobian and 99.99% Hessian sparsity. ICP required an average of 21.5
optimization steps and 297 s to converge. 2 The RMS template-to-segmentation and
segmentation-to-template distances were 0.70 ± 0.04 mm and 0.92 ± 0.05 mm, respectively.
Statistical analysis using an a priori cluster T-score threshold of t = 2.0 and 10000
permutations revealed one significant cluster (p = 0.04) where age correlated negatively with
thickness, located in the anterior of the CC (the genu). Such a finding is consistent with the
literature, e.g., [1].

Proof of Concept for Branching Medial Scaffolds
While the medial scaffold in the CC template has only one surface, the strength of the
method is that it is as easily applied to scaffolds with branches. In this pilot experiment, we
fit a “fin-like” medial scaffold illustrated in Fig. 2 to a target shape. The target shape is
produced by warping the reference shape in Fig. 2 based on a landmark transformation. The

2Computation time is dominated by solving sparse systems, and in theory, time should scale with the number of non-zero elements in
the sparse matrices, which is less than 4× for the refined mesh. The 9× increase in time may be due to memory limitations.
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ICP algorithm is then used to fit the template to the target shape. Fig. 4 shows the template
in relation to the target object before and after the fitting. The medial scaffold of the fitted
model is also shown.

4 Discussion and Conclusions
We presented a new way to fit deformable models to surface and image data with
preservation of medial branching structure. The method shows promise for modeling objects
whose medial scaffolds have multiple branches, although additional experiments are needed
to establish its utility for modeling complex branching shapes in medical imaging data, e.g.,
the myocardium. The scalability of the method is limited by the need to solve very large
sparse linear systems, but for many anatomical structures, meshes having on the order of
1000 vertices should be sufficient to meet modeling needs. The number of empirical
parameters in the method is small and performance on real-data is robust, making the
method practical for shape analysis applications.
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Fig. 1.
Left: the medial axis of a 2D object, with examples of MIBs tangent to the boundary at one,
two and three points. Right: an illustration of a 3D object, half of which has been cut away
to reveal the medial scaffold. The medial scaffold consists of surface patches that join along
crease curves and terminate at free edge curves.
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Fig. 2.
Illustration of the template building process. a. The boundary of a reference object
(transparent white surface), its medial scaffold (opaque cyan surfaces), and the coarse mesh
formed by points sampled from the creases and free edges of the medial scaffold (green
points and yellow tubes). b. The coarse mesh inflated onto the boundary of the reference
object (green points and yellow tubes) and a fine mesh obtained by applying Loop
subdivision [6] to the coarse mesh.
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Fig. 3.
Results from CC fitting experiment. The top two rows show two examples (third-worst and
third-best fitting quality) of templates fitted to atlas-based CC segmentations. The columns
show the target surface, the template fitted using ICP, the last-stage fitted subdivided
template, and the medial scaffold of the latter. The bottom row shows the Procrustes mean
of the fitted models, its medial scaffold (computed by applying ICP-style fitting to the
Procrustes mean), and the t-statistic map for the age-related thinning hypothesis. The
significant cluster (p = 0.04) is outlined.
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Fig. 4.
Fitting a medially constrained template with a fin-like medial scaffold to a target object. The
boundary of the target object is rendered as a dark gray wireframe in all three views. a. The
template before the fitting, colored by the radius value Rk. b. The template after fitting. c.
The medial scaffold of the fitted template.
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