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Abstract
Research in recent years has provided some evidence of temporal non-stationarity of functional
connectivity in resting state fMRI. In this paper, we present a novel methodology that can decode
connectivity dynamics into a temporal sequence of hidden network “states” for each subject, using
a Hidden Markov Modeling (HMM) framework. Each state is characterized by a unique
covariance matrix or whole-brain network. Our model generates these covariance matrices from a
common but unknown set of sparse basis networks, which capture the range of functional activity
co-variations of regions of interest (ROIs). Distinct hidden states arise due to a variation in the
strengths of these basis networks. Thus, our generative model combines a HMM framework with
sparse basis learning of positive definite matrices. Results on simulated fMRI data show that our
method can effectively recover underlying basis networks as well as hidden states. We apply this
method on a normative dataset of resting state fMRI scans. Results indicate that the functional
activity of a subject at any point during the scan is composed of combinations of overlapping task-
positive/negative pairs of networks as revealed by our basis. Distinct hidden temporal states are
produced due to a different set of basis networks dominating the covariance pattern in each state.
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1 Introduction
Resting state fMRI[1] has emerged as a powerful tool in understanding the effect of mental
illnesses on brain function[2]. Functional connectivity or strength of synchronous activity
between regions of interest is an important measure that could reveal disease-related
changes in brain physiology. Correlation values are widely used as a measure of
connectivity but estimation is restricted to a single value obtained from the entire duration of
the scan. This could lead to loss of potentially valuable information, since recent exploratory
work seems to indicate significant temporal variation in the correlation between regions [3–
5]. Using a sliding window framework, the authors reported the presence of repetitive
patterns of whole-brain network activity. However sampling the correlation values may not
be very reliable due to high estimation error from the smaller windows. Hence, in this paper,
we propose modeling the fMRI time-series directly, avoiding explicit sampling of the
correlation values.

In this paper, we present a novel method that uses a HMM framework to discretize the
temporal variation into a temporal sequence of hidden states. These hidden states could be
cognitive processes like introspection, memory consolidation or arising due to unknown
external or internal triggers or stimuli[6]. Within each state, the fMRI time-series data is
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modeled as observations sampled from a multi-variate Gaussian. Each state is characterized
by a mean vector value and a unique covariance matrix or whole-brain network. We assume
a relatively small number of underlying regions or processes drive the variation in the fMRI
signals, introducing subtle changes in the covariance matrices, from which these hidden
states can be identified. We model these underlying co-varying regions as a set of sparse
rank-one basis matrices, such that non-negative combinations of these basis matrices act as
priors for each of the HMM covariance matrices. These basis matrices are unknown and are
learned from the data. Thus, our method is a joint framework that solves for the basis
vectors as well as the hidden states simultaneously.

The rest of the paper is organized as follows. In section 2 we discuss our generative model
in detail. In section 3 we describe the performance of our method on a simulated dataset. We
apply our algorithm to resting state fMRI data, and the results are described in section 4. We
wrap up with our conclusions and future work in section 5.

2 Approach
2.1 Hidden Markov Model

We begin by describing the first-order HMM framework. Let , be the
fMRI time-series of a subject s, where p is the number of ROIs and T is the total number of
time-points per subject. The superscript s denotes subject index, and the subscript t denotes
time-index. Since resting state fMRI is acquired without any control over the subject's
stimulus or environment, it is reasonable to assume that the subject wanders in and out of
various cognitive states during the duration of the scan. Hence, we will assume that every
time-point belongs to one of a finite number N of states. Each state is associated with an
occurrence probability δi, and every pair of states i, j is associated with a transition
probability Πij of moving from state i to state j. We are interested in describing these states
quantitatively, as well finding the optimal sequence of states for each subject. A schematic
diagram of an HMM with N = 3 states is shown in Fig 1.

We model the “emission” probabilities by a Gaussian distribution. Let  be
a random variable denoting the state assignment for subject s at time t. Then, given the state
assignment , we let , i.e.,

(1)

where | · | denotes determinant. The log-likelihood of the data as a function of the variables
is

(2)

where Ni is the number of time-points that exist in state i, and Si is the sample covariance
matrix computed using all the time-points assigned to state i.

2.2 Sparse Dictionary Learning for Positive Definite Matrices
We hypothesize that a relatively small number of ROIs change their co-variance pattern
from state to state. Similar to the basis learning formulation proposed in [7, 8], let B = [b1,
b2, … , bK], , bk ∈ Rp be a set of K basis vectors such that each vector bk reflects
the membership of the ROIs to the basis network k. If |bk(i)| > 0, ROI i belongs to the basis

Eavani et al. Page 2

Inf Process Med Imaging. Author manuscript; available in PMC 2014 April 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



vector k, and if bk(i) = 0 it does not. If two ROIs in bk have the same sign, then they are
positively correlated and opposing sign reflects that they are anti-correlated. Therefore, the

rank-one matrix  reflects the covariance behavior of basis k. In addition, we constrain
these basis networks to be much smaller than the whole-brain network by restricting their l1-
norm to a constant value λ.

We would like to approximate the matrices  representing the HMM states by a non-
negative combination of a these basis networks. Thus, we want

(3)

where diag(ci) denotes a diagonal matrix with values ci along the diagonal. In practice,

another term αIp is added to the  matrix to make it positive definite. Here Ip is the identity
matrix of size p × p, and α is a small, fixed (= 0.1) value.

We quantify the approximation between Σi and  using the Kullback-Liebler divergence:

(4)

The KL divergence described above quantifies the amount of information lost when a

Gaussian distribution with covariance matrix  is instead modeled by covariance matrix Σi.

A low value of  indicates a good approximation between the two matrices.

Therefore, we are interested in minimizing the KL-divergence for all the pairs . This
amounts to maximizing the function

(5)

where C = [c1, c2, …, cN] and Ni is defined as before in equation 2.

We are interested in finding HMM states that are distinct primarily due to differences in
their covariance matrices Σi. Clustering data solely based on covariances is a challenging
problem. However, if we assume that the matrices are generated from a common underlying
basis B (as described above), we may be able to separate the clusters by forcing the
coefficients ci to be distinct, or equivalently, requiring that the inner product 〈ci, cj〉, i ≠ j be
small. This constraint can be imposed by making the term CT C resemble the identity matrix.
Thus, we would like to maximize

(6)

where IN is the identity matrix of size N × N.

2.3 Joint Framework: HMM + Sparse Dictionary Learning
As mentioned earlier, a joint framework causes the HMM to converge to hidden states with
distinct covariance matrices. Combining the three objectives in equations 2, 5 and 6 amounts
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to imposing a prior on the covariance matrices Σi with prior variables B and C. We would
like to maximize the joint log-likelihood

(7)

where v1 and v2 are user-defined scalar parameters that control the amount of coupling
between the HMM and priors. The constraints on the variables are given by

(8)

2.4 Joint Optimization Strategy
We use Expectation-Maximization[11] to obtain a local maximum. In the Expectation step
the posterior marginals  and

 are efficiently computed using the Baum-
Welch[9] algorithm. These values are used as weights for the log-likelihood function. In the
Maximization step the weighted log-likelihood function maximized with respect to each of
the variables.

The joint log-likelihood is jointly non-concave, but individually concave w.r.t the variables

, B and C. Hence we will adopt a block optimization strategy that repeatedly solves

for one variable (e.g. B) while holding the others fixed (e.g. C and ) until a local
optimum is reached.

The optimal values for  and  have closed form expressions given by

(9)

where

(10)

The optimization w.r.t the variables B and C is a constrained maximization problem without
closed form solutions. We use the spectral projected gradient (SPG) solver with an efficient
projection method, similar to the algorithm proposed in [10] to solve for B and C separately.

Matrices B and C are initialized randomly. The state transition matrix Π and occurrence
probabilities δ are initialized as Πii = 0.5, Πij = 0.5 * (N − 1), i ≠ j, δi = 1/N for i, j = 1, 2, …,
N. Mean vectors μi and covariance matrices Σi are initialized by using random selection of
data points. After the local optima for the unknowns are found using EM, the optimal state
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sequence for each subject can be found using the Viterbi algorithm [12]. The overall strategy
is summarized in Algorithm 1.

2.5 Choice of Free Parameters
Parameters v1 and v2 control the effect of the prior variables B and C on the model. v1 = v2 =
0 reduces the model to a standard HMM. Observe from Equation 9 that the optimal value of
Σi at every M-step is a weighted average of the sample covariance matrix Si and the

approximation . The weight is controlled by the free parameter v1. The v2 parameter
controls the orthogonality constraint on the coefficient vectors ci. For all our experiments in
this paper, we set v1 = v2 = 1. Parameter λ controls the amount of sparsity in the basis
vectors and can be set based on known clinical information, for e.g., the average size of a
sub-network, like the default mode network(DMN) or the fronto-parietal network.

The number of basis vectors K and the number of HMM states N can be chosen based on
how the estimated values for Σi, B and C generalize. To assess generalizability, we will
resort to Monte-Carlo split-sample cross-validation. All the other parameters being held
fixed, for every value of K and N, the dataset is split into two halves. The model is trained
on one half, and using the parameters Σi, B, C computed from this half, the weights  are
computed for the second half. This procedure is repeated multiple times and the average
cross-validated log-likelihood is computed. The optimal choice of the parameters is
considered to be the value at which the average log-likelihood does not significantly change.
In this paper we will only examine the case when K = N.

3 Validation Using Simulated Data
3.1 Data

We used NetSim [13] to generate time-series data in order to evaluate our method. This
software takes as input the underlying network configuration(s) and temporal state
sequences. It returns realistic BOLD time series while incorporating neural lag (50 ms),
variability in Hemodynamic Response Function (0.5 s) and thermal noise(1% of signal
power).

At any point in time and in any subject, the data is generated from one of the three network
configurations, characterized by the covariance matrices shown in Figure 2. Our simulation
consists of 15 nodes arranged in three subnetworks, which are positively correlated within
each other (color scale red shown in Figure 2). The between-network connections vary with
time - they are either zero (green), or negative (blue). Fifty temporal state sequences are
used as input - the mean duration for each state was 40s (~13 TRs). The data was generated
by applying Gaussian noise with mean zero as the stimulus at nodes 1,6 and 11. This ensures
that the resulting data has mean value close to zero for all the nodes. The basis networks and
the temporal state sequences was input to NetSim. This resulted in BOLD time series data
for 50 “subjects”, with TR=3s and 120 time-points each.

3.2 Results on Simulated Data
Figure 3a shows the results of the Monte-Carlo cross-validation procedure on the simulated
data as N is varied. The average cross-validated log-likelihood with increases with
increasing K = N, showing that the HMM clusters generalize well. The other parameters are
fixed at v1 = v2 = 1 and λ = 0.2. The gain in generalizability is reduced after K ~ 3 or 4.

The rank-one basis matrices , k = 1, 2, …, K computed for K ∈ {1, 2, 3, 4, 5} are
shown in Figure 3b. Each row corresponds to a fixed value for K. The values of the other
parameters were fixed at v1 = v2 = 1 and λ = 0.2. It is evident that our algorithm effectively
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recovers the network basis. Our basis clearly identifies the clustering of the nodes into sub-
networks and the anti-correlated relationship between them. Also, observe that each time K
is increased by one, the method incrementally adds to the previous basis.

The comparison between the performance of our method with the HMM alone is shown in

Figure 4. Figure 4a shows the estimated covariance matrices  for N = K = 3, when
only the HMM is used (top) and with the priors (bottom). Clearly, our method accurately
estimates the underlying covariance matrices for all three states. Due to the lack of a
significant difference in the mean vectors, the HMM alone performs poorly, with little or no
difference between the three states. The optimal state-paths output by the Viterbi algorithm
are also compared with the ground truth for both cases using the Rand Index (Figure 4b).
Our method is able to achieve close to 90% clustering accuracy, while the HMM alone fails.

4 Application to Resting State fMRI Data
4.1 Data

BOLD fMRI was acquired with a Siemens 3 Tesla system using a whole-brain, gradient-
echo echo planar sequence with TR/TE = 3000/32 ms, voxel resolution = 3×3×3 mm and
number of time-points = 120. We used data from 420 normal participants, with age range
15.9 ± 3 years.

Pre-processing—Functional images were motion corrected, spatially smoothed (6mm
FWHM) and temporally altered to retain frequencies 0.01–0.1 Hz. Several sources of
confounding variance, including six motion parameters and mean whole-brain, WM, CSF
time-courses were regressed out. The residual time course for each subject was transformed
to standard MNI anatomical space. We used 160 regions of interest (ROIs) described by
Dosenbach et al. [14], which were derived from a meta-analysis of a large sample of task-
based fMRI studies. Each ROI was a non-overlapping 10mm diameter sphere, and was
categorized by Dosenbach et al. as belonging to one of six networks, including: default-
mode, cingulo-opercular, fronto-parietal, sensorimotor, occipital or cerebellar. The mean
time-series of each ROI is extracted from the registered fMRI image. The time-series is
demeaned and scaled to have an average variance value of unity.

4.2 Results on fMRI Data
Figure 6 shows the six rank-one basis matrices obtained from our method. The ROIs are
sorted according to their Dosenbach[14] network labels. It is easy to observe that our
method is fairly accurate in identifying the general clustering of the ROIs, since most ROIs
belonging to a basis network are assigned the same Dosenbach labels. For example, all the
ROIs belonging to the cerebellum are clustered in basis 1. Same is the case with occipital
cortex (basis 3), default mode (basis 4), sensori-motor (basis 5) and fronto-parietal (basis 6).

We looked at two sub-networks in particular - the fronto-parietal network (“dorsal
attentional network”) and the cingulo-opercular network (“ventral attentional network”).
Both are task-positive networks that activate when the subject is in an “extrospective” state,
and it is well-established that activation of either of these networks causes the default mode
network (DMN) to deactivate [1]. This behavior is captured in basis 6, which shows the anti-
correlated nature of the fronto-parietal network and default mode. The anti-correlation
between the cingulo-opercular network (COP) and the DMN is captured across multiple
basis networks (1, 4 and 6).

We also note that the most amount of overlap between the basis networks occurs at the COP,
with different aspects of it positively correlating with the cerebellum, sensori-motor and
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fronto-parietal networks(in basis 1, 5 and 6 respectively) and negatively correlating with the
default mode and occipital networks (in basis 1 and 3). The fact that these correlation/anti-
correlation relationships are split amongst the basis networks suggests that they have
different temporal behavior.

The covariance matrices Σi are shown in Figure 7. Due to the page limit only the four of the
six covariance matrices are shown. It is clear that the states are separated based on the
dominant basis networks. The cingulo-opercular network is most active in states 1 and 2,
positively correlating with the cerebellum and negatively correlating with the DMN. State 2
shows greater activity in the occipital network. The sensori-motor network is active in state
3. State 4 is dominated by the anti-correlated pair of the fronto-parietal network and the
DMN. The average duration the subjects existed in each of these states was between 12 and
20 time-points.

5 Conclusion
To our knowledge, this is the first attempt at resolving functional connectivity in resting
state fMRI data into discrete temporal states, each associated with a distinct connectivity
pattern. Each subject is assigned a sequence of states, which can then be used for group
comparisons.

Our basis learning formulation provides sparse and possibly overlapping components
without having to use strong constraints like orthogonality or independence of the basis.
Further more, our basis decomposition only allows non-negative combinations of basis
vectors, making the resulting basis more interpretable. These properties make our method
better suited than spatial or temporal ICA [15] for decomposing brain activity into
interpretable components.

Hidden Markov Models have been used in the context of fMRI, but primarily for task-based
experiments [16][17]. In our method the emphasis is on finding hidden brain-states when an
external stimulus is not provided to the subject. The HMM is strongly driven by the
differences in the covariance matrices of these hidden brain states.

As a part of our future work, we hope to analyze the effect of model selection on our method
is greater detail. A thorough examination of the functional interpretability of the basis
vectors and HMM states is needed. As an additional validation step, this method can be
applied to task-fMRI to recover the stimulus sequence.
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Fig. 1.

Schematic of an HMM with N = 3. Left shows the temporal sequence 
associated with a subject s. Each  could be one of N states (right).
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Fig. 2.
Simulated data: Ground truth correlation matrices (left) and 50 randomly generated temporal
state sequences was input to NetSim [13]. The resulting time-series form the input to our
method.
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Fig. 3.
(a) Monte-Carlo cross-validation log-likelihood for simulated data (b) Basis vectors for K ∈
{1, 2, 3, 4, 5}. Each row corresponds to a fixed value for K.
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Fig. 4.
(a) Covariance matrices Σi for HMM only (top) and our method (bottom) (b) Cross-
validated Rand Index vs. N for both cases
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Fig. 5.
Monte-Carlo cross-validation log-likelihood for fMRI data. The log-likelihood is greatest for
K = N ∈ {2, 3, 4, 5}. The generalizability is variable for N ∈ {6, 7} and begins to fall after N
= 7, showing that our model begins to over-fit the data after this value. Thus, from the given
data, we are able to obtain N = 6 distinct HMM states.
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Fig. 6.
Rank-one basis matrices for fMRI data. The Dosenbach [14] labels are given on the left.
Abbreviations Cer: Cerebellum, COP: Cingulo-opercular network, DMN: Default-mode
network, FPN: Fronto-Parietal network, Occ: Occipital network, SM: Sensori-motor
network.
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Fig. 7.
Four HMM States obtained from resting state fMRI data. Abbreviations Cer: Cerebellum,
COP: Cingulo-opercular network, DMN: Default-mode network, FPN: Fronto-Parietal
network, Occ: Occipital network, SM: Sensori-motor network.
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