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Elastic anisotropy of experimental analogues
of perovskite and post-perovskite help to
interpret D00 diversity
Akira Yoneda1, Hiroshi Fukui2,3, Fang Xu1, Akihiko Nakatsuka4, Akira Yoshiasa5, Yusuke Seto6, Kenya Ono7,

Satoshi Tsutsui8, Hiroshi Uchiyama8 & Alfred Q. R. Baron3,8

Recent studies show that the D00 layer, just above the Earth’s core–mantle boundary, is

composed of MgSiO3 post-perovskite and has significant lateral inhomogeneity. Here we

consider the D00 diversity as related to the single-crystal elasticity of the post-perovskite

phase. We measure the single-crystal elasticity of the perovskite Pbnm-CaIrO3 and post-

perovskite Cmcm-CaIrO3 using inelastic X-ray scattering. These materials are structural

analogues to same phases of MgSiO3. Our results show that Cmcm-CaIrO3 is much more

elastically anisotropic than Pbnm-CaIrO3, which offers an explanation for the enigmatic

seismic wave velocity jump at the D00 discontinuity. Considering the relation between lattice

preferred orientation and seismic anisotropy in the D00 layer, we suggest that the c axis of

post-perovskite MgSiO3 aligns vertically beneath the Circum-Pacific rim, and the b axis

vertically beneath the Central Pacific.
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S
ince the discovery of the transition from perovskite (Pv) to
post-perovskite (pPv) in MgSiO3 (refs 1,2), pPv-MgSiO3 has
been considered to be a major component of the D00 layer

just above the core–mantle boundary (CMB). Seismological
observations of the D00 layer are difficult to interpret as they
suggest both non-uniform response at the layer boundary and
non-uniform anisotropy inside the layer3–5. With this background,
elastic anisotropy or single-crystal elasticity of pPv-MgSiO3

has been the focus of theoretical calculations6–10. However, no
experimental data are available on the single-crystal elasticity of
pPv-MgSiO3, because it is unstable at ambient pressure.

Cmcm-CaIrO3 or pPv-CaIrO3 has been frequently selected as a
representative analogue of pPv-MgSiO3 (refs 11–13). According
to the phase diagram14, pPv-CaIrO3 is the stable phase at ambient
conditions and Pv-CaIrO3 is the high-temperature and low-
pressure phase. Here we report the first experimental data on
single-crystal elasticity of Pv and pPv structures in a
homogeneous chemical composition of CaIrO3.

Results
Characterization of single-crystal specimen. Figure 1a,b shows
single crystals of Pv-CaIrO3 and pPv-CaIrO3 used in the present
study. The Pv-CaIrO3 sample was synthesized at 2 GPa and
1,450 �C for 15 h in a piston cylinder apparatus at Okayama
University. We produced many grains with size of a few tens of
microns, although most of them turned out to have multiple
domains. We examined more than 20 grains using a four-circle
X-ray diffractometer at Yamaguchi University and selected a
quasi-single-domain crystal with size of B20 mm. Its lattice
constants were determined as a¼ 5.3527(1), b¼ 5.5969(5) and
c¼ 7.6804(6) Å, which yields density (r) of 8,091 kg m� 3. The
pPv-CaIrO3 sample was synthesized by slow cooling from
1,000 �C in CaCl2 flux15. It had a pine-needle shape with length of

a few 100 microns and width of a few 10s of microns. Its lattice
constant and densities were respectively a¼ 3.145(2),
b¼ 9.861(6), and c¼ 7.297(5) Å, and r¼ 8,211 kg m� 3, which
are consistent with literature values16.

Inelastic X-ray scattering measurement and results. Figure 1c,d
compare experimental velocities obtained from the inelastic X-ray
scattering (IXS) spectra with velocities calculated from the opti-
mized elastic constants. The details of the IXS measurement are
described in the Methods section for the measurement of IXS at
SPring-8 BL35XU; one of the important advantages of IXS
compared with Brillouin scattering is its geometrical freedom
(see Supplementary Methods). The analytical procedures for
determining single-crystal elastic constants are described in
the Methods section for data analysis for elastic constants.
The measurement data are summarized in Supplementary
Tables 1 and 2.

Table 1 summarizes the results of elastic constants and gives
isotropic averages. The values are reasonably consistent with the
theoretical results17 except for a few discrepancies. The high-
pressure phase of pPv-CaIrO3 is less compressible than Pv-
CaIrO3 whereas the theoretical prediction suggests the opposite
relation. In addition, isotropic averages of VP and VS are
significantly larger for pPv-CaIrO3 than for Pv-CaIrO3

according to the present results. Figure 2 compares the present
results and theoretical calculations for the velocity surfaces of Pv-
CaIrO3 and pPv-CaIrO3. We see fairly good agreement between
the two results for pPv-CaIrO3, although we recognize significant
differences between them for Pv-CaIrO3. Figure 3 shows the
compatibility of the elastic constants with compression data18.
The present data are consistent with the compression data for Pv-
and pPv-CaIrO3; the theoretical result for Pv-CaIrO3, however,
yields a different slope from the others.
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Figure 1 | Specimen and measurement data. Left and right columns refer to Pbnm- and Cmcm-CaIrO3, respectively. (a,b) Photographs of single crystals

used. The horizontal edge lengths are B5 mm and B800 mm, respectively, for a and b. (c,d) Overall picture for the experimental data and analytical

fitting. Black lines indicate the direction of wave propagation in the crystal, and blue triangles and red circles are experimental velocities and recalculated

values after least-squares analysis. The vertical direction is positive z direction, while horizontal leftward and rightward directions are positive x and y

directions, respectively. Note that the difference between experimental and recalculated velocities is less than 5%. The misfit uniformly distributed

indicates untwinned crystal specimens.
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Discussion
Figure 4 presents stereo projections of elastic wave velocities for
Pv and pPv structures of CaIrO3. It shows that the ranges of
variation of VP, the average of VS values, and the difference in VS

values are B600, B300 and B500 m s� 1 for Pv-CaIrO3 and
B1,000, B800 and B1,100 m s� 1, for pPv-CaIrO3, respectively.
We see that pPv-CaIrO3 has approximately double the anisotropy
of Pv-CaIrO3 in terms of the elastic wave velocity. For example,
anisotropy in the polarization shear wave velocity is B30% in
pPv-CaIrO3 while it is only B15% in Pv-CaIrO3.

From Fig. 4d,e for pPv phase, the b axis is found to be the
direction of the lowest VP, while the highest Vs is between the a

and c axes. These pronounced features of the pPv elasticity are
understandable as alternate stacking of compliant and stiff
layers perpendicular to the b axis; the stiff layer has the largest
shear wave constant and lowest longitudinal wave constant
between a and c axes. We recognize similarity between a and c
axes in pPv-CaIrO3 elasticity, while the a axis is slightly stiffer
than the c axis in terms of both longitudinal and shear wave

Table 1 | Single-crystal elastic moduli of Pbnm- and Cmcm-CaIrO3.

C11 C22 C33 C12 C23 C31 C44 C55 C66 KR KH GH VP VS

Pbnm
(Pv)

235 (6) 278 (6) 286 (11) 132 (6) 138 (11) 120 (10) 87 (4) 60 (2) 79 (2) 173 (6) 174 (6) 72 (2) 5,776 (54) 2,976 (42)

248 359 319 204 162 115 79 42 97 195 202 68 6,001 2,892

Cmcm
(pPv)

378 (4) 255 (11) 360 (5) 104 (7) 137 (9) 73 (6) 76 (5) 56 (2) 85 (3) 178 (4) 179 (4) 84 (1) 5,955 (46) 3,201 (27)

388 241 386 121 149 85 67 46 64 186 189 98 5,913 2,990

Several isotropic moduli and velocities are shown on the right-hand side. The upper two rows are for Pbnm or Pv structure, while the lower two rows are for Cmcm or pPv structure. In each case, the first
row gives the present experimental results with accuracy and the second row the theoretical results obtained by Tsuchiya and Tsuchiya17. The unit is ‘GPa’ except for velocities which have a unit of
‘m s� 1’ in the last two columns. The numbers in parentheses correspond to fitting error in the least square analysis.
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Figure 2 | Velocity surface of Pbnm- and Cmcm-CaIrO3. Upper (a) and

lower (b) plots correspond to Pbnm- and Cmcm-CaIrO3, respectively. Black

lines are drawn for the present results, while blue lines are drawn for

the results obtained by Tsuchiya and Tsuchiya17. Upper lines correspond

to the P-wave velocity, and lower lines to the S-wave velocity. Open circles

‘o’ and crosses ‘þ ’ for VS specify in-plane and out-of-plane particle

motions.
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Figure 3 | Comparison of compression curves. Upper (a) and lower

(b) plots correspond to Pbnm- and Cmcm-CaIrO3, respectively. The lattice

constants a, b, and c are shown in blue, green and red respectively. Solid

and dotted lines are drawn for the present data and Tsuchiya’s theoretical

data17, respectively, while symbols are the compression data.
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constants. The elasticity of Pv-CaIrO3 resembles that of
Pv-MgSiO3 under lower-mantle conditions more than under
ambient conditions (Fig. 5). Elasticity of Pv- and pPv-CaIrO3

under ambient conditions seems to be a good indicator of that of
Pv- and pPv-MgSiO3 under lowermost mantle conditions; a
conversion factor of 2.2–2.4 is found between them.

We interpret the D00 diversity observed seismologically in terms
of the single-crystal elasticity of Pv and pPv-CaIrO3. Significant
anisotropy of the seismic wave velocity has been observed in the
D00 layer, while the lower mantle above the D00 layer is nearly
isotropic with a high degree of confidence19. Therefore, we
plotted the velocity difference between anisotropic pPv and
isotropic Pv both for CaIrO3 under ambient conditions and
MgSiO3 under mantle conditions (Fig. 6). From the plots
for VP and slower VS, we see that any velocity change over the
D00 discontinuity is possible both for P and S waves depending
on the lattice preferred orientation (LPO) characteristics of the
pPv phase.

The seismic wave phases used in the D00 study (S, ScS, Sdiff)
travel nearly horizontally in the D00 layer4. Therefore, the two
polarized S waves are classified as SH and SV, whose polarizations
are in the horizontal and vertical directions, respectively. In
seismological study, vertically transverse isotropy (VTI) and the
tilted transverse isotropy have been assumed to explain S-wave
polarization anisotropy in the D00 layer4.

According to seismological studies, the region of the Circum-
Pacific rim is interpreted as having VTI with VSH4VSV, while the
region of the Central Pacific has complicated VTI without any
fixed relation between VSH and VSV

4. Polarization anisotropy is
not recognized beneath the Atlantic Ocean, or the region is
considered as having VTI with VSHEVSV. On the other hand,
from the polarization pattern in the a–b plane of the faster VS plot
(Figs 2b and 7), we can expect that VSH4VSV in the D00 layer if
the c axis of pPv aligns vertically. Similarly, if the b axis aligns
vertically, the magnitude relation between VSH and VSV can be
complicated.
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Figure 4 | Velocity surface of Pv- and pPv-CaIrO3. Stereo projections of elastic wave velocities for Pv- and pPv-CaIrO3 based on the present results.

The crystallographic directions, a, b, and, c, are identical in each plot as shown in (a). The unit of scale bars is m s� 1. (a–c) VP, average of two VS values,

and difference between two VS values, respectively, for Pv-CaIrO3. (d–f) Same as a, b, and c but for pPv-CaIrO3.
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We can summarize the above conclusion in an alternative way:
For the c axis vertical case, horizontal wave propagation
directions lie in the a–b plane, for which the in-plane shear
mode (SH) has consistently higher wave speeds (Figs 2b and 7). If
instead the b axis is vertical, horizontal wave propagation
directions lie in the a–c plane, for which neither the in-plane
(SH) nor the out-of-plane (SV) is consistently faster for all such
propagation directions (Figs 2b and 7).

The dominant slip system of pPv-CaIrO3 was determined as
[100](010) from shear deformation experiments11. Since the slip
system of pPv-MgSiO3 has not yet been determined, we assumed
that it is similar to that of pPv-CaIrO3

11. This assumption leads to
LPO of pPv-MgSiO3, in which the b axis aligns vertically along
the lateral flow in the D00 layer. The LPO pattern is consistent
with the complicated polarization S-wave anisotropy beneath the
Central Pacific (Figs 2b and 7).

Although the texture development during Pv–pPv transition in
MgSiO3 has not yet been clarified, we expect the c axis alignment
of pPv-MgSiO3 immediately after the phase transition from Pv-
MgSiO3 from analogy with the case for MgGeO3

(ref. 20). If the c axis aligns vertically, we expect VTI with
VSH4VSV, which is consistent with the seismic feature beneath
the Circum-Pacific rim.

Employing this conceptual scheme, we evaluated the feasibility
of the LPO model of pPv in the D00 layer. The volume ratio
between (Mg, Fe)SiO3 Pv and (Mg, Fe)O ferropericlase (Fp) is
0.67:0.33 for the lower mantle21. We also used this ratio for (Mg,
Fe)SiO3 pPv and Fp in the D00 layer. This means that the
anisotropy resulting from pPv LPO should be weakened by
approximately two-thirds in the D00 layer assuming isotropy of
Fp. The observed polarization anisotropy of the S-wave velocity is
B3% at most4. Therefore, pPv in the D00 layer is expected B4.5%
anisotropy to account B3% anisotropy observed in the D’’ layer.
This requirement is easily satisfied by partial LPO of pPv
(Table 2).

Figure 8 summarizes the present idea for seismic anisotropy
and LPO structure in the D00 layer. The VTI of the vertical c axis
and that of the vertical b axis can be interpreted as transformation
LPO and deformation LPO, respectively. It is noted that isotropic
pPv-MgSiO3 is a reasonable interpretation for the seismic feature
beneath the Atlantic Ocean; an alternative interpretation may be
the VTI of the vertical a axis because of less lateral polarization
anisotropy than in other cases (Table 2). The difference between
beneath the Pacific and Atlantic may be attributed to differences
in temperature, chemical composition and strain rate. The
proposed LPO behaviour for pPv-MgSiO3 obtained from the
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present mineral physics perspective is consistent with seismic
observation.

To summarize, we presented a new data set of Pv and pPv-
CaIrO3 single-crystal elasticity by means of IXS at SPring-8. We
used the present results to interpret seismic wave anisotropy in
the D00 layer, and proposed a model of pPv LPO in the D00 layer
consistent with seismic observations and mineral physics
experiments on analogue materials. The present model may
allow sophisticated discussion of global mantle convection, which
is triggered by heating at the core–mantle boundary and
modulated by lateral flow in the D00 layer.

Methods
Measurement of IXS at SPring-8 BL35XU. The small size and black colour of the
present samples limit the techniques that can be used to investigate the elastic
properties. In particular, the crystal sizes are too small to employ GHz ultrasonic
methods22 or resonant ultrasound spectroscopy23, where both need crystals larger
than 100 mm. In addition, the crystal opacity makes it difficult to apply Brillouin
scattering. Therefore, IXS with an X-ray beam diameter of B70mm was employed.
Each specimen was attached to glass fibres (B100 mm in diameter) using manicure
resin and mounted on the four-circle goniometer installed at BL35XU of SPring-8
(ref. 24). The incident X-ray beam energy was 17.794 and 21.747 keV for Pbnm-
CaIrO3 and Cmcm-CaIrO3 measurements, respectively.

The IXS technique25,26 allows us to determine the elastic properties of a
material by measuring the energies of acoustic longitudinal and shear phonon
modes. When this information is combined with the precise reciprocal space
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position (momentum transfer) for each measurement, we can determine the sound
velocity27,28. If measurements are made in many different directions, the velocity
information can be combined with the density, allowing all the elastic constants of
a material to be determined. In the present work, the two-dimensional, 4� 3,
analyser array of BL35XU is especially advantageous as it allows access to 12
different directions of momentum transfer simultaneously.

The IXS is applicable on opaque materials; it is the most important advantage of
IXS against Brillouin scattering. Further characteristics and procedures of the IXS
measurements are summarized in Supplementary Figs 1–5.

Data analysis for elastic constants. A least-squares fit to Christoffel equation
was then used to determine the elastic constants29. Pv-CaIrO3 and pPv-CaIrO3

have orthorhombic symmetry and thus nine independent elastic constants. The six

diagonal elastic constants (C11, C22, C33, C44, C55, C66) is related to nearly
independent phonon modes propagating along crystallographic axes, while the
three off-diagonal constants (C12, C23, C31) can be determined from combination of
a few measurements. We carefully planned the measurement to acquire sufficient
data to constrain all nine elastic constants. Using the analyser array, we obtained
B40 and B60 mode energies for Pv-CaIrO3 and pPv-CaIrO3, respectively.
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