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Abstract: 
Janus kinase 3 (JAK3) is a non-receptor tyrosine kinases family of protein which is comprised of JAK1, JAK2, JAK3 and TYK2.  It 
plays an important role in immune function and lymphoid development and it only resides in the hematopoietic system.  
Therefore, selective targeting JAK3 is a rational approach in developing new therapeutic molecule.  In this study, about 116 JAK3 
inhibitors were collected from the literature and were used to build four-point pharmacophore model using Phase (Schrodinger 
module). The statistically significant pharmacophore hypothesis of AAHR.92 with r2 value of 0.942 was used as 3D query to search 
against 3D database namely Zincpharmer. A total of 2, 27,483 compounds obtained as hit were subjected to high throughput 
virtual screening (HTVS module of Schrodinger). Among the hits, ten compounds with good G-score ranging from -12.96 to -11.18 
with good binding energy to JAK3 were identified. 
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Background: 
Janus Kinases (JAKs) belongs to the family of non receptor 
tyrosine kinase consisting of JAK1, JAK2, JAK3 and TYK2 
which are activated after cytokine receptor activation. JAK 
activation results in phosphorylation of the STAT transcription 
factor members and translocated into a nucleus, binds DNA 
and promotes transcription [1-3]. The mutation or increased 
localized concentration of cytokines causes over activation of 
JAK-STAT signalling, which leads to various inflammatory 
diseases [4, 5], autoimmune disease [6], cancer [7, 8] and graft 
rejection [9]. Among the JAK family, JAK3 is abundantly 
expressed in hemopoietic cells and plays an important role in 
normal lymphocyte development and function, whereas JAK1, 
JAK2 and TYK2 are ubiquitously expressed in vertebrates [10, 

11]. 
  
The drug that is under the clinical trial for JAK3 inhibitor is 
tofacitinib for rheumatoid arthritis [12, 13] which was found to 
have adverse reactions due to less JAK3 selectivity [14, 15]. 
R348, another potent JAK3 inhibitor for inflammatory skin 
disease such as psoriasis, but there was no reported clinical 

trials [16].Therefore selective targeting of JAK3 may have a 
therapeutic benefit over broader JAK signaling inhibition for 
the treatment in various areas like oncology, organ 
transplantation and autoimmune diseases [17, 18]. 
 
In the present study, pharmacophore model was generated for 
Human JAK3 inhibitors using Phase module 3.5 (Schrödinger 
module). Subsequently an atom based 3D-QSAR model was 
obtained and database screening was done in search of novel 
lead compounds. The lead compounds were then docked with 
JAK3 to study the interaction of inhibitors with the protein. 
 
Methodology: 
Dataset 
A total of 116 JAK3 inhibitors were collected from the literature 
[1, 11, 19-22] and the pIC50 (pIC50 = -logIC50) values were 
calculated. The dataset contains different chemical classes, 
namely phenyl aminoprymidines, N-
phenylmethanesulfonamide, nitrile carboxamide, N-
cyanomethylbenzamide, 2-aminoethylketone, 2-
Benzimidazolyl-9-(chroman-4-yl)-purinone,  di-substituted 
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pyrimidine, tri-substituted pyrimidine and 5H-pyrrolo(2,3-b) 
pyrazine-2-phenyl ethers. The structures were drawn using 
Build panel of Maestro version 9.4 and prepared using LigPrep 
2.6 modules.  Different conformer was generated using rapid 
torsion search of Macromodel.  Energy minimization was done 
using OPLS 2005 with an implicit distance-dependent dielectric 
solvation treatment. 
 
The Generation of Pharmacophore hypothesis and 3D-QSAR 
model building 
The pharmacophore and 3D-QSAR model was generated using 
Phase version 3.5, Schrödinger suite 9.4 [23]. There are six built-
in pharmacological features in Phase, namely hydrogen bond 
receptor (A), hydrogen bond donor (D), hydrophobic group 
(H), negatively ionisable (N), positively ionisable (P) and 
aromatic ring (R). The pharmacophore model was developed 
using a set of pharmacophore features to generate sites for all 
the compounds. The alignment was measured using survival 
score [24] and the default values have been used for the 
hypothesis generation.   
 
A total of 116 molecules were ranked based on pIC50 values.  
Every 5th compound was chosen as a test set, so 19 were 
selected as a test set and remaining were used as training set to 
generate atom-based QSAR models. This type of test set 
selection procedure was employed to represent the range of 
biological activities similar to the training set molecule. To 
encompass the space occupied by the aligned training set 
molecules the rectangular grid was generated with the spacing 
of 1.2Å. Each model contains five or more partial least square 
(PLS) factors tend to fit the pIC50 values beyond their 
experimental uncertainty. The statistical parameters R2 
(coefficient of determination) and SD (standard deviation of 
regression) were calculated to evaluate the overall significance 
of the model. 
 
Virtual screening 
Virtual screening was carried out using ZincPharmer 
(zincpharmer.csb.pitt.edu ) which uses the pharmacophore to 
efficiently search the ZINC database of fixed conformers [25]. 
We also used constraints that included maximum of 0.7 Root 
Mean Square Deviation (RMSD), 10 rotatable bond cut-off and 
molecular weight range of 180–500 Dalton to get the best 
similarity hits from ZINC database. The hit compounds were 
subsequently subjected to the addition of hydrogen, removal of 
salt ionization and generation of low energy ring conformation 
using LigPrep. 
 
Protein Preparation 
The X-ray crystallographic structure of JAK3 complexes with 
inhibitor was downloaded from the PDB database (PDB ID: 
4HVD [26]) and prepared using the protein preparation wizard 
of Schrödinger Module by retaining the water molecule within 
5 Å of ligand. OPLS-2005 force field was used for energy 
minimization. Hydrogen atoms were added to the protein to 
correct ionization and tautomeric states of amino acid residues. 
The receptor grid was generated using Receptor Grid 
Generation Panel.  
 
Docking study 
The Virtual Screening Workflow in Maestro was used to dock 
and to score the lead-like compounds to identify potential 
ligands.  It provides the different level of docking precision, 

namely High Throughput Virtual Screening (HTVS), Standard 
Precision (SP) and Extra Precision (XP) [27-29]. We first carried 
out HTVS calculation, and then SP and finally XP mode for 
further refinement of good ligand pose.  The screened 
compounds were also filtered by Lipinski’s rule of five 
(QikProp version 3.6 [30]). And also XP docking was carried 
out for 116 ligands which were used to build the 3D-QSAR 
model. 
 
Post Docking Analysis 
The free energy of binding was calculated for the best scoring 
pose of the Glide-XP docking results using Multi-ligand 
bimolecular association with energetic (eMBrAcE) of the 
Macromodel module. It uses physics-based rescoring procedure 
to calculate binding energies between ligand and proteins using 
OPLS force field for docked conformation. For each ligand, the 
protein–ligand complex (Elig–prot), the free protein (Eprot), 
and the free ligand (Elig) were subjected to energy 
minimization in implicit solvent (water) using the OPLS_2001 
force field with a constant dielectric electrostatic treatment of 
1.0 Å. A conjugate gradient energy minimization protocol was 
performed. The energy difference mode was used for the 
calculation of Glide output and it was calculated using the 
following equation. 
  

▲E= Ecomplex – Eligand – Eprotein 
 
All computational and molecular modelling were done on the 
centOS Linux platform in HCL Intel Xeon Server with 4GB 
RAM and using the Maestro window of Schrödinger version 
9.4, LLC, New York 2012 and 2013. 
 

 
Figure 1: Superposition of co-crystallized ligand 2-Cyclopropyl-
5H-pyrrolo [2, 3-b] pyrazine-7-carboxylic acid ((S)-1, 2, 2-
trimethyl-propyl)-amide in experimental binding mode (in 
maroon) with redocked pose a) without water molecules 
(RMSD 1.68 Å) and b) with water molecules (RMSD 0.296 Å). 
 
Results & Discussion: 
Structural Analysis of JAK3 
The available 3D structure of JAK3 in the PDB databank 
(www.rcsb.org) was analyzed to see the critical amino acid for 
JAK3 inhibitor. All the ligands in complex structures were 
found to interact with Glu903, Leu956 and Leu905 either by 
hydrogen bonding or hydrophobic interactions Table 1 (see 

supplementary material). For the present study, based on the 
resolution 4HVD (1.85 Å) was selected as target protein. 
 
JAK3 exhibits bilobed structure which is conserved among the 
catalytic domain of all protein kinases.  JAK3 is having N and C 
lobe, C helix, glycine rich loop or P-loop and hinge regions. It 
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also has additional helix between the residues 1029 to 1038 

Leu828, Phe833, Val836, Ala853, Lys855, Met902, Glu903, 
Cys909, Arg953, Leu956, Ala966 and Asp967.  JAK3 shares the 
high sequence similarity with JAK2 and JAK1. The sequence 
difference between JAK3 and JAK2 that are proximal to the 
catalytic cleft are Ser828, Leu838, Arg 916, Gln 988 Cys909 and 
Ala966 in JAK3 which is substituted by Gln, Met, Lys, Glu, Ser 
and Gly respectively in JAK2.  The two important differences 
are Cys909 and Ala966 which are in the ATP binding site of 
JAK3 [31]. 
 
Validation of docking 
Water molecules are considered as an important factor in the 
docking process, i.e. the binding affinity of the ligand molecule 
is improved and stabilized by hydrogen-bonded network of 
water molecules with protein [32-35]. We have carried out two 
methods of protein preparation for the target protein 4HVD: 
one by removing all water molecules and other by retaining 
water molecules within 5 Å of ligand. Further, the results of XP 
docking was validated by re-docking the co-crystallized ligand 
(2-Cyclopropyl-5H-pyrrolo [2, 3-b] pyrazine-7-carboxylic acid 
((S)-1, 2, 2-trimethyl-propyl)-amide) to the binding site of JAK3.  
The protein structure prepared by retaining water molecules 
within 5 Å of ligand has generated lowest RMSD (0.296 Å) than 
without water molecules (1.68 Å) when superimposed with 
experimental structure (Figure 1).  Hence, the target protein 
JAK3 was prepared with water molecules to find the best 
pharmacophore hits.  
  
Determination of Common Pharmacophore 
In order to identify common pharmacophores, the collected 
dataset was divided into active (pIC50>7.2), inactive (pIC50<5) 
and moderatively active (pIC50 between 5 and 7). In Phase, 
common pharmacophores are identified from a set of variants. 
For defining variants, the maximum number of sites to be 
included in the hypothesis was selected as 5 and a minimum 
number of sites to be 4. With the above said criteria, 28 
compounds were matched out of 30 active compounds. Among 
the 12 variants listed out, seven was found to have common 
pharmacophore (ADHR 3, DHRR 3, AHRR 18, ADRR 6, AAHR 
73, AADH 4 and AADR 8). Then 115 pharmacophores were 
subsequently scored by scoring with respect to active and 
inactive using default score. The scoring procedure provides a 
ranking of the different hypothesis, allowing us to make 
rational choice. The scoring algorithm includes the alignment of 
site points and vectors, volume overlap, number of ligands 
matched, selectivity, relative conformational energy and 
activity. A total of 14 hypotheses survived the scoring processes 
which were used to build an atom based QSAR model. 
  
Building and Validation of 3D-QSAR 
An atom based 3D-QSAR model was generated for the 
pharmacophore hypothesis. The best QSAR model was 
identified and validated by predicting activities of 19 test set 
compounds. Regression was constructed for a series of model 
with the increasing number of Partial Least-Square (PLS factor). 
As the number of PLS factors increased, the statistical 
significance and predictive ability of the model was also 
incrementally increased up to 7. It was found that AAHR.92 has 
higher R2 value (0.9422), predictive power q2 value  of 0.6023, 
Pearson R value of 0.8178 and lower Standard Deviation (SD) of 
0.2666 Table 2 (see supplementary material). Larger the value 

of F (186) with the smaller value of p (8.8e-47) indicates a 
statistically significant regression model with high degree of 
confidence. The small value of SD of 0.2666 and Root-Mean-
Square-Error value (RMSE) of 0.6472 indicates that the data 
used for the analysis of the QSAR model was good even though 
QSAR model was generated using the different set of chemical 
class compounds. Besides all these, the best QSAR model 
should have high predictive ability, so the best model should 
have a high cross validated correlation coefficient. The q2 value 
is more reliable since it is obtained by external validation of the 
test set model. AAHR.92 has q2 value of 0.60 indicates the 
goodness of the model. A graph of actual versus predicted 
pIC50 value of the test and training set is shown in Figure 2.   
 
The selected pharmacophore hypothesis included the following 
features (Figure 3): the hydrogen bond acceptor (sphere with 
arrow A2 and A3), hydrophobic group (H9 green sphere) and 
the aromatic ring (R15 circle). The alignment generated by the 
best pharmacophore model for active and inactive compound is 
shown in Figure 4. The key pharmacophore element of the 
AAHR.92 hypothesis: the aromatic ring (R15), which is mapped 
into the benzene ring of benzimidazole or azobenzimidazole of 
all active compounds, the hydrogen bond acceptor (A2 and A3) 
features are in N of prymidine, N and O of Purinone and O of 
the chroman ring and the hydrophobic groups are featured on 
alkyl substituent.  
  

 
Figure 2: A graph of actual vs predicted pIC50 value of the test 
and training set of AAHR.92 
 

 
Figure 3: Pharmacophoric features of active ligands 
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Figure 4: Alignment of active a) and inactive ligands; b) to the pharmacophore model AAHR.92 
 

 
Figure 5: Structure of lead compounds 
 
Virtual Screening 
AAHR.92 was used to search 3D database for structures that 
match the pharmacophoric features of the model. A total 
2,26,248 compounds were retrieved as hits from ZincPharmer 
and were placed through virtual screening workflow. A total of 
107 compounds with XP docking score ranged between -12.96 
and -9.00 were obtained.   Finally, we selected 10 ligands which 
have good interaction with active site of JAK3 and are shown in 
Table 3 (see supplementary material) and Figure 5.  

The pharmacophore model was developed using pyrimidine, 
pyrrolo pyrimdine, pyrolopyrazine, purinone with chromane 
substitution and naphyl ketone.  The best ten lead compounds 
were found to have these groups. CP-690550 (Tofacitinib) a 
potent JAK3 inhibitor was also included as a reference 
compound in the docking protocol. The docking score and 
binding energy of CP-690550 was found to be -9.86 and -150.29 
respectively.  
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The Chemical name of the leads are, lead 1:  2-{[4-(2-amino-6-
methoxypyrimidin-4-yl)-1H-pyrrolo[2,3-b]pyridin-6-
yl]amino}ethanol, lead 2:  4-(2-amino-6-methoxypyrimidin-4-
yl)-N-(2-methoxyethyl)-1H-pyrrolo[2,3-b]pyridin-6-amine, lead 
3:     N-(1,3-dihydroxy-2-methylpropan-2-yl)-2-[(5-hydroxy-4-
oxo-2-phenyl-4H-chromen-7-yl)oxy]acetamide, lead 4:  4-(2-
amino-6-isopropoxypyrimidin-4-yl)-N-methyl-1H-pyrrolo[2,3-
b]pyridin-6-amine, lead 5:  N~4~,N~4~-diethyl-6-[6-
(methylamino)-1H-pyrrolo[2,3-b]pyridin-4-yl]pyrimidine-2,4-
diamine, lead 6:      N-[4-(2-amino-6-methoxypyrimidin-4-yl)-
1H-pyrrolo[2,3-b]pyridin-6-yl]glycine, lead 7:       N4-(3-
methoxypropyl)-N6-(5-quinolyl)pyrimidine-4,5,6-triamine,   
lead 8: 1-Hydroxypyrene beta-D-Glucuronide Methyl Ester, 
lead 9: N-benzyl-N-isopropyl-2-[[(7S)-7-methyl-5,6,7,8-
tetrahydrobenzothiopheno[2,3-d]pyrimidin-4-yl]oxy]ace   and 
lead 10:   (2S)-N-(3-acetylphenyl)-2-[(3,5-dimethylisoxazol-4-
yl)methylamino]-2-phenyl-acetamide.   
 
Post Docking Scoring 
In the present work, the post docked scoring approach, namely 
eMBrAcE was used to evaluate the molecular docking of JAK3 
with inhibitors Table 4 (available with authors). The Multi-
ligand Bimolecular Association with Energetics (MBAE) of the 
best active compounds 64 and 105 was found to be -145.34 and -
172.38 respectively.  The binding energy of the least active 
compound 46 was found to be -67.43. The MBAE energy of the 
lead compounds ranged from -80.78 to -157.68 (Table 3). 
 
ADME Analysis 
Lipinski’s rule of five is based on the physicochemical 
properties of drugs and candidate drugs in clinical trials to 
evaluate drug likeness. The rule includes molecular weight, 
logP, Hydrogen bond donor and acceptor. The molecules that 
pass through the Lipinski’s rule of five are expected to be active 
after oral administration in human. The percentage of the 
human oral absorption of selected lead compounds was found 
to be 52 to 100%. For selected lead compounds, the partition 
coefficient (QPlogPo/w) and water solubility (QPlogS) was 
within the permissible range of -2.0 to 6.5 and -6.5 to 0.5 
respectively. All the pharmacokinetic parameters analysed 
were found to be within the permissible range Table 5 (see 
supplementary material). 
 
Conclusion: 

JAK3 is an important component associated with sensitivity 
towards cytokine signalling and its deficiency is associated 
with severe combined immunodeficiency phenotype. JAK3 
inhibitors are immunomodulatory agents with 
immunosuppressive, anti-inflammatory, anti-allergic, anti-
thrombotic and anti-leukemic properties. The preclinical trial 
drug tofacitinib found to have an inhibitory effect also on JAK1 
and JAK2. The identification of selective JAK3 inhibitor may 
effectively act as immunomodulatory agent. In this study, 
pharmacophore based virtual screening and molecular docking 
approach was carried out to identify JAK3 inhibitor. A series of 
phenylaminopyrmidines, napthylketones, di and tri-substituted 
pyrmidines and pyrole pyrazines compounds were used for 
3D-QSAR analysis. A four-point pharmacophore model 
AAHR.92 was developed which comprises of two hydrogen 
bond acceptor, one hydrophobic group and aromatic ring. 
AAHR.92 was used as 3D query and a total of 2,26,248 
compounds were obtained as hit. These compounds were taken 
for high throughput virtual screening.  Finally, ten lead 

compounds with good docking score (-12.96 to -11.18) and 
ADME properties were identified. All the lead compounds 
were within the acceptable range defined for human use, 
thereby indicating their potential as drug-like molecules. 
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Supplementary material: 
 
Table 1: Analysis of active site residues of JAK3 from co-crystal structures with inhibitors 

PDB ID L828 F833 V836 A853 M902 E903 G908 R953 L956 A966 D967 L905 

1YVJ N N HP N HP HB HP HB HP N HP HB 
3LXK HP N HP HP N HB N N HP HP N HB 

3LXL HP N HP HP N HB N N HP N N HB 

3PJC HP HP HP N N HB N N HP N N HB 

4HVD HP N N HP N HB N N HP N N HB 
4HVG HP N N HP N HB N N HP N N HB 

4HVH HP N N HP N HB N N HP N N HB 

4HVI N N HP HP N HB N N HP N N HB 

3ZC6 HP N HP HP N HB HP N HP N N HB 
4I6Q HP N N HP N HB N N HP N N HB 

 
Table 2: Statistical Parameter of the 3D-QSAR AAHR.92 

SD:  standard deviation of the regression; F: variance ratio; P: significance level of variance ratio; RMSE:  root mean square error; q2: squared value 
for the predicted activities; P R: Pearson R value for the correlation between predicted and observed activity for the test set; R2: squared value of the 
regression  
 
Table 3: Molecular Docking Analysis of the Lead Compounds 

Lead ZINC Database ID XP Score Glide Energy Interacting Residues MBAE E RMSD 

Lead 1 ZINC72419848 -12.96 -72.20 Glu903, Leu905, Tyr904 -125.12 0.610 

Lead 2 ZINC72145366 -12.94 -72.97 Glu903, Leu905, Tyr904 -131.82 0.320 

Lead 3 ZINC08991673 -12.81 -71.11 Glu903, Leu905,ASH967 -125.29 053 

Lead 4 ZINC72162601 -12.47 -66.80 Glu903, Leu905 -105.36 0.602 

Lead 5 ZINC72157582 -12.28 -69.345 Glu903, Leu905 -81.278 0.554 

Lead 6 ZINC72418290 -12.13 -71.60 Leu905,ASH967 -80.78 0.610 

Lead 7 ZINC40757269 -11.40 -71.81 Leu905,ASH967 -116.22 0.571 

Lead 8 ZINC44963631 -11.18 -79.84 Asn954, Lys855 -157.68 0.39 
Lead 9 ZINC03280240 -11.19 -79.34 - -135.23 0.359 

Lead 10 ZINC63631329 -11.18 -63.48 Leu905 -137.99 0.63 
CP-690550 (Tofacitinib) -9.86 -92.23 Glu903, Lys855 -150.28  

 
Table 4: (Available with authors) 
 
Table 5: ADME properties of Lead Compounds 

Lead QPlog Po/wa QP logSb QPlog HERGc QPlog BBd QPP MDCKe % Human Oral Absorptionf 

1 0.94 -2.85 -4.93 -1.79 47.39 69.27 

2 1.85 -3.53 -5.17 -1.32 175.39 84.03 

3 1.31 -3.71 -5.19 -2.42 30.50 64.50 

4 2.37 -4.16 -5.28 -1.22 176.46 87.08 

5 2.52 -4.15 -5.03 -1.24 179.57 88.10 
6 1.45 -3.39 -3.34 -2.30 3.91 52.57 

7 2.49 -3.95 -6.18 -1.04 448.43 94.52 

8 4.85 -5.9 -4.44 -0.29 2536.76 100 
9 2.28 -4.38 -6.07 -1.57 88.70 81.66 

10 2.49 -3.95 -6.18 -1.04 448.43 94.59 

a) Predicted octanol/water partition co-efficient log P (acceptable range: -2.0 to 6.5); b), Predicted aqueous solubility; S in mol/L acceptable range: -
6.5 to 0.5); c) Predicted  IC50 value for blockage of HERG K+  channels (acceptable range: below -6.0).; d) Predicted Blood Brain Barrier permeability 
(acceptable range: -3 to1.2); e) Predicted apparent MDCK cell permeability in nm/s; f Percentage of human oral absorption (<25% is poor and >80% 
is high). 

PLS factor SD R2 F P RMSE q2 P- R 

1 0.8153 0.4188 62 9.622e-12 0.8514 0.312 0.5656 

2 0.6687 0.6135 67.5 2.83e-18 0.862 0.2947 0.5702 

3 0.5649 0.7274 74.7 1.234e-23 0.7327 0.4904 0.7146 
4 0.4209 0.8505 118 2.046e-33 0.7018 0.5325 0.7545 

5 0.3588 0.8926 136.3 3.226e-38 0.6529 0.5953 0.8164 

6 0.2666 0.9422 162.5 5.186e-43 0.6674 0.5772 0.7911 
7 0.2342 0.9559 214.2 8.8e-47 0.6472 0.6023 0.8178 


