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Abstract
Lipopolysaccharide is a highly acylated saccharolipid located on the outer leaflet of the outer
membrane of Gram-negative bacteria. Lipopolysaccharide is critical to maintaining the barrier
function preventing the passive diffusion of hydrophobic solutes such as antibiotics and detergents
into the cell. Lipopolysaccharide has been considered an essential component for outer membrane
biogenesis and cell viability based on pioneering studies in the model Gram-negative organisms
Escherichia coli and Salmonella. With the isolation of lipopolysaccharide-null mutants in
Neisseria meningitides, Moraxella catarrhalis, and most recently in Acinetobacter baumannii, it
has become increasingly apparent that lipopolysaccharide is not an essential outer membrane
building block in all organisms. We suggest the accumulation of toxic intermediates, misassembly
of essential outer membrane porins, and outer membrane stress response pathways that are
activated by mislocalized lipopolysaccharide may collectively contribute to the observed strain-
dependent essentiality of lipopolysaccharide.

Introduction
Gram-positive bacteria contain a cytoplasmic membrane surrounded by a layer of
peptidoglycan; in contrast, Gram-negative bacteria contain a cytoplasm surrounded by what
appears to be three layers: an inner membrane, a layer of peptidoglycan and an outer
membrane [1,2]. The outer membrane (OM) of Gram-negative bacteria is an asymmetric
bilayer with an inner leaflet consisting of phospholipids and an outer leaflet consisting of
lipopolysaccharide (LPS). Much of what we know about LPS derives from early work
beginning in the 1960s on Escherichia coli and Salmonella typhimurium. Using a newly
developed analytical technique to allow separation of the inner membrane (IM) from the
OM [3], Osborn and coworkers established that LPS fractionates to the OM [4].
Remarkably, LPS was subsequently shown to be localized exclusively on the outer leaflet of
the OM [5–7]. At the same time, the site of (bio)synthesis of LPS was determined to take
place at the inner membrane [8]. Work done by Osborn, Raetz, and others first established
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steps in the biosynthesis of LPS [9–14] and, more recently, the details of LPS transport from
its site of synthesis to the cell surface have begun to be uncovered [15]. LPS was shown to
be essential and LPS-defective mutants were hypersusceptible to antibiotics [16–18]. The
picture that has emerged from the sum of these studies is that individual LPS molecules
interact with one another on the cell surface mediated through divalent cations to form a
permeability barrier, which prevents entry of small hydrophobic compounds, such as
antibiotics, bile salts and detergents, and thus allows Gram-negative bacteria to survive in
harsh environments [19–22]. Because the proper assembly of LPS on the cell surface is
required to create an effective permeability barrier, genes involved in biosynthesis and
assembly (biogenesis) of LPS have become targets for the design of novel classes of
antibiotics [23,24].

Historically, interest in developing inhibitors of LPS biosynthesis was predominantly based
on the view that LPS was an essential structural component necessary to create an OM. LPS
is a large detergent-like molecule comprising three regions; a highly acylated di-GlcNAc
backbone (lipid A) connected to a polysaccharide containing repeating sugars (O-antigen)
linked through a highly conserved oligosaccharide Kdo/heptose core (Figure 1A). The
minimal LPS structure supporting a functional OM and cell viability in enteric bacteria was
shown to be Kdo2-lipid A [14,25]. However, our understanding of the importance of LPS in
the physiology of Gram-negative bacteria became clouded by the discovery that certain
genera do not require LPS to assemble an OM and survive. Remarkably, certain strains of
Neisseria can live when their lpxA gene encoding the first enzyme in LPS biosynthesis is
inactivated, thus depleting these organisms of LPS [26]. One early hypothesis to explain
how these strains of Neisseria could survive was that capsular polysaccharide was a
structural substitute for LPS and became essential in these LPS-deficient strains [27].
However, the ability to construct double mutants lacking both lpxA and capsule expression
in N. meningitidis disproved this theory [28]. Subsequently viable strains of Moraxella and
Acinetobacter completely lacking LPS were isolated and characterized [29,30]. Taken
together, these studies called into question the generality of the conclusion drawn from the
classic experiments in E. coli and Salmonella. Clearly the assumption that LPS is simply
required as a structural component of the outer leaflet of the OM in all Gram-negative
bacteria cannot be correct. The essentiality of LPS varies considerably, depending not only
on the genera of Gram-negative bacteria but also on the species, and in some cases, even on
the particular strain background. This review will consider alternate explanations to account
for strain-dependent LPS essentiality in Gram-negative bacteria and discuss the underlying
implications for developing antibiotics targeting LPS.

LPS synthesis and assembly pathways in E. coli
The LPS biosynthesis/transport pathway spans three compartments of Gram-negative
bacteria [14]. In E. coli, the Kdo2-lipid A domain is synthesized inside the cytoplasm [11–
13]. After sequential addition of sugars to produce the lipid A-oligosaccharide core at the
cytoplasmic membrane, this molecule is flipped onto the periplasmic face of the inner
membrane by an ABC transporter (MsbA) before the O-antigen is added [31–36]. In the
canonical (Wzy-dependent) O-antigen pathway in E. coli, O-antigen biosynthesis begins in
the cytoplasm with the sequential addition of three to five monosaccharides onto the
undecaprenyl monophosphate carrier lipid (Und-P) to make the O-antigen repeat subunit.
This oligosaccharide subunit is transported to the periplasmic face of the IM by Wzx and
polymerized en bloc by Wzy to form a mature O-antigen polysaccharide chain containing as
many as 40 to 200 repeat units. This polysaccharide must then be transferred to the lipid A-
core acceptor by the O-antigen ligase WaaL [14] prior to transit through the periplasm to the
cell surface via the Lpt pathway [36] (Figure 1B). The Lpt pathway consists of seven
proteins that form a trans-envelope structure containing an IM complex (LptB/F/G/C)
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required to extract LPS from the IM, a bridge (LptA) between the IM and the OM to permit
transit across the aqueous periplasmic compartment, and an OM translocon (LptD/E) to
allow the large detergent-like LPS molecule to pass through the OM to its final destination
on the cell surface [37–54] (Figure 1C).

The loss of LPS biosynthesis from a given organism has deep-seeded consequences for the
assembly of other components of the cell envelope. Syntheses of O-antigen, peptidoglycan,
secondary cell wall polymers and outer-membrane proteins (OMPs) are impacted by the
absence of LPS [14,15]. While LPS itself maybe not be required for viability, the extent to
which the essential functions of the cell envelope are compromised by the loss of LPS could
ultimately determine whether LPS is essential in any given strain.

Inhibition of LPS biosynthesis could cause accumulation of cell envelope
components in inappropriate compartments

Inhibition of LPS biosynthesis (e.g. LpxC deletion, the first committed step of LPS
biosynthesis) depletes levels of the oligosaccharide lipid A core within the IM. The lack of
oligosaccharide lipid A core acceptor available for O-antigen transfer can potentially cause
unligatable Und-PP O-antigen precursors to accumulate. Accumulation of such precursors
has been shown to be toxic in Salmonella, leading to the suggestion that undecaprenyl
sequestration influences essential Und-P dependent pathways [55]. Both O-antigen and
peptidoglycan biogenesis utilize this membrane-bound carrier for addition of nucleotide
sugars. Because undecaprenyl levels are limited in bacterial membranes, blocking transfer of
Und-PP O-antigen to the lipid A core leads to sequestration of Und-P, thereby depleting the
Und-P pool available to other essential pathways such as peptidoglycan biosynthesis. This
toxicity would be predicted to be highly dependent on the strain background.

There are many different factors which may contribute to whether a bacterial strain is
susceptible to accumulation of the Und-PP O-antigen. For instance, some O-antigen
serotypes utilize a second distinct biosynthetic pathway, the ABC transporter-dependent
pathway [14]. The O-antigen homopolymer is assembled on a single Und-P carrier in the
cytoplasm prior to transport and ligation to the oligosaccharide-lipid A acceptor on the
periplasmic face of the IM [14,56]. Those strains that utilize this ABC pathway would
clearly be less susceptible to the accumulation of O-antigen because the demand for the
carrier lipid is far less. Secondly, different strains of bacteria modify their lipid A core with
O-antigen to varying extents [57]. Some bacteria tend to cap a larger portion of lipid A-
oligosaccharides with O-antigen, producing smooth LPS, whereas other organisms tend to
have predominantly underivatized lipid A-oligosaccharide core present on the surface
(rough LPS) [14]. The extent to which lipid A-oligosaccharides are end-capped with O-
antigen (smooth to rough ratio) reflects the flux through the pathway, which in turn is
related to the usage of Und-P carrier. A final factor contributing to the sensitivity of a given
strain to O-antigen accumulation and the resulting Und-P sequestration is whether cellular
mechanisms exist to process the stalled intermediates. Ordinarily, after the O-antigen
polysaccharide is transferred to the lipid A-core via WaaL, the newly released Und-PP is
recycled back to its active monophosphoryl form Und-P via pyrophosphatases, which
liberates carriers enabling the next round of O-antigen and peptidoglycan biosynthesis [58].
It is possible that certain pyrophosphatases can also cleave the O-antigen precursors when its
biosynthesis or ligation stalls and allow the Und-P lipid carrier to be recycled. Indeed, in
certain E. coli strains with group 4 capsules, a fraction of O-antigen is normally released by
hydrolysis to form an extracellular capsule polysaccharide layer [59,60]. This discussion is
simply meant to illustrate that there might be many strain-specific mechanisms to relieve the
buildup of O-antigen intermediates that would otherwise result in toxicity due to
sequestration of the lipid carrier.
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Inhibition of LPS biosynthesis could affect the assembly and function of
membrane proteins

In addition to LPS, the outer membrane of Gram-negative bacteria contains two major
classes of proteins: lipoproteins and integral membrane proteins of β-barrel structure. The
exact function of most membrane β-barrel proteins is not known, but many are believed to
form pores (porins) in the membrane to provide nonspecific channels across the OM to
allow entry of nutrients, which are generally small and hydrophilic [22,61]. It is believed
that LPS facilitates porin assembly and function by acting as a molecular chaperone [35].
For example, the porins OmpC and OmpF depend on LPS for trimerization [62–64] and for
maintaining proper channel gating function [65], while the protease OmpT requires LPS for
its proteolytic activity [66]. While the complement of essential OMPs has only been defined
in a limited number of species, there are two outer-membrane β-barrel proteins known to be
essential in E. coli. One, LptD is a component of the heterodimeric OM translocon
responsible for LPS transport and assembly on the cell surface [38,39,41,49–51]. In those
strains of Neisseria where LPS is not essential, LptD becomes non-essential as well [39].
The other BamA is an essential component of the five-protein complex responsible for
assembling all OMPs [67–70]. In fact, there are some endosymbionts that have evolved
minimal genomes and do not contain genes involved in LPS biogenesis pathway (either Lpx
or Lpt) [71,72]. However BamA is generally found to be essential even in minimal genomes,
suggesting some β-barrel proteins must be present to permit passage of metabolites across
the outer membrane. Clearly, different strains of bacteria have unique nutrient requirements
and hence may depend on a specific repertoire of porins for essential nutrient uptake. In the
case where these porins depend on LPS for folding/function, LPS would become
indispensable.

The loss of LPS could also disrupt the structure and function of the inner membrane. It is
possible that inhibition of LPS biosynthesis leads to accumulation of glycolipid (e.g., Und-
PP O-antigen, Und-PP enterobacterial common antigen [73,74], or other secondary cell
envelope polymers [75]) intermediates. One could imagine many scenarios through which
these accumulated glycolipid intermediates could compromise IM functions. The
accumulation of glycolipid intermediates could influence the functions of IM proteins. For
example, various essential IM proteins are involved in peptidoglycan biosynthesis [76].
Since both the O-antigen and Lipid II contain an Und-PP activating group, accumulation of
Und-PP O-antigen could compete with Lipid II inhibiting cell wall synthesis. Additional
glycolipids could also influence the proper assembly of inner-membrane proteins by
affecting the lipid environment in the IM. Simply by affecting IM bilayer packing, these
accumulated glycolipids could also create physical defects in the IM and cause problems by
dissipation of membrane potential. Here again, the presence of strain-specific mechanisms to
relieve the buildup of O-antigen intermediates (or other secondary cell envelope polymers)
would determine whether a given Gram-negative organism would be susceptible to LPS
deletion.

Inhibition of LPS biosynthesis could trigger stress response pathways
causing inhibition of growth

Inhibition of growth could result directly from the loss of LPS or from the cellular response
to the loss – activation of an alternative genetic program in response to the stress of LPS
deletion. It has been shown that the accumulation of mistargeted and/or misfolded outer
membrane proteins in the periplasm is detected by a sensor protein, DegS, initiating a
proteolytic cascade that results in activation of the σE -dependent envelope stress response
system [77,78] (Figure 1D). The σE -transcription factor up-regulates both the expression of
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genes involved in the targeting and assembly of OMPs, as well as for genes encoding
proteases in order to clear misfolded substrates [79]. Literally hundreds of genes are turned
on in order to restore the intracellular trafficking of OMPs. Because various OMPs require
LPS to fold, inhibition of LPS biosynthesis could also cause misfolding of porins initiating
the envelope stress response resulting in growth stasis until the intracellular levels of LPS
can be restored [80–82]. A recent report has suggested that there are surveillance systems
that directly detect mistargeted LPS in the periplasm of E. coli, and triggers the envelope
stress response by activating σE (Figure 1D) [83]. The fact that bacteria respond to LPS and
OMP defects or loss by activating a quality control mechanism further emphasizes the
essentiality of LPS in maintaining OM integrity. In E. coli and Salmonella, a particularly
stringent OM stress response has presumably evolved in order to allow these organisms to
colonize the gut, where a high concentration of detergent-like molecules (e.g. bile salts)
must be tolerated [84]. Hence, LPS may, in part, be required to prevent growth stasis
triggered by stress response systems. Although relatively less is known about stress response
systems in other Gram-negative organisms, it is conceivable that such OM quality control
surveillance systems may not be as prominent as their counterparts in E. coli and Salmonella
[35]. These bacteria may continue to grow and divide in an OM compromised state, whereas
other strains would cease growing due to stress response signaling.

Conclusion
For several decades LPS was thought to be an essential structural component of the OM of
Gram-negative bacteria just as amino acids are essential to the structures of proteins.
However, with the discovery of LPS-deficient organisms it is now clear that the essentiality
of LPS to Gram-negative bacteria is more complex. It seems reasonable that LPS was
selected in Nature because when combined in an asymmetric bilayer with phospholipids it
produces an unusual membrane that prevents the passage of toxic hydrophobic molecules
into the cell. However, at this point, maintaining a proper LPS permeability barrier is
tangential to its essentiality. Having become so heavily integrated into the cell envelope
physiology, its removal may affect other metabolic processes through indirect means.
Whether it is possible to delete LPS from a given organism will depend on the cellular
context and perhaps even how it is removed. While LPS may be non-essential in some
organisms, its loss is not inconsequential. Strains lacking LPS are less virulent [85] and
much more susceptible to antibiotics that normally do not penetrate the OM [29,30,86]. It is
still believed that compounds which interfere with the functions of LPS synthesis, transport,
or assembly, will have the potential to function on their own as antibiotics as well as to
potentiate the entry of other existing antibiotics normally excluded by the OM. In fact, a
better understanding of the importance of LPS biogenesis on bacterial physiology could
provide clues as to the specific vulnerabilities of a given Gram-negative pathogen to
inhibition of LPS at different steps in synthesis and assembly.
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Highlights

• We discuss the cellular role of lipopolysaccharide within Gram-negative
bacteria.

• We propose explanations for why lipopolysaccharide is essential in certain
organisms.

• We consider implications for developing lipopolysaccharide-targeting
antibiotics.
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Figure 1.
Pathways that mediate outer membrane (OM) biogenesis and maintain OM integrity. (A)
LPS is a complex glycolipid that consists of three regions: lipid A, a core oligosaccharide
and an O-antigen polysaccharide. (B) O-antigen is assembled through the Wzy-dependent
pathway. The O-antigen repeat unit is assembled in the cytoplasm and flipped to the
periplasmic face of the IM by Wzx; O-antigen is polymerized by Wzy and the chain length
is modulated by Wzz. (C) LPS is biosynthesized in the cytoplasm, flipped to the periplasmic
face of the inner membrane (IM) and transported through the periplasm to the outer leaflet
of the OM via the Lpt pathway. Ligation to O-antigen depends on the particular strain
background. (D) Mislocalized or misfolded OMPs and LPS loss or defects initiate the σE

envelope stress response pathway. LPS loss or defects affect porin assembly; misassembled
porin binds to DegS, degrading RseA and initiating the σE stress response. LPS signal could
directly bind to RseB, subjecting RseA to proteolysis by DegS to activate the σE stress
response.
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