Online Submissions: http://www.wjgnet.com/esps/bpgoffice@wjgnet.com doi:10.3748/wjg.v20.i13.3680 World J Gastroenterol 2014 April 7; 20(13): 3680-3692 ISSN 1007-9327 (print) ISSN 2219-2840 (online) © 2014 Baishideng Publishing Group Co., Limited. All rights reserved.

META-ANALYSIS

Evidence based medicine and surgical approaches for colon cancer: Evidences, benefits and limitations of the laparoscopic *vs* open resection

Laura Lorenzon, Marco La Torre, Vincenzo Ziparo, Francesco Montebelli, Paolo Mercantini, Genoveffa Balducci, Mario Ferri

Laura Lorenzon, Marco La Torre, Vincenzo Ziparo, Francesco Montebelli, Paolo Mercantini, Genoveffa Balducci, Mario Ferri, Surgical and Medical Department of Translational Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology University of Rome "La Sapienza", 00189 Rome, Italy

Author contributions: Lorenzon L, La Torre M, Ziparo V and Ferri M designed the manuscript; Lorenzon L, Montebelli F and Mercantini P performed the database search; Montebelli F, Mercantini P and Balducci G assessed manuscripts for inclusion/exclusion; Lorenzon L, Ziparo V, Mercantini P and Balducci G performed the systematic review; Lorenzon L, La Torre M and Ferri M performed the meta-analysis; Lorenzon L, La Torre M and Ferri M wrote the paper; all authors have reviewed and approved the manuscript in its final form.

Supported by The PhD University Grant program "Clinical and Experimental Research Methodologies in Oncology" provided by the Faculty of Medicine and Psychology University of Rome "La Sapienza" to La Torre M

Correspondence to: Laura Lorenzon, MD, PhD, Surgical and Medical Department of Translational Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology University of Rome "La Sapienza", Via di Grottarossa 1035-39, 00189 Rome, Italy. laura.lorenzon@uniroma1.it

Telephone:+39-633-775989 Fax: +39-633-775322 Received: September 29, 2013 Revised: December 26, 2013

Accepted: February 17, 2014 Published online: April 7, 2014

Abstract

AIM: To report a meta-analysis of the studies that compared the laparoscopic with the open approach for colon cancer resection.

METHODS: Forty-seven manuscripts were reviewed, 33 of which employed for meta-analysis according to the PRISMA guidelines. The results were differentiated according to the study design (prospective randomized trials *vs* case-control series) and according to the tu-

mor's location. Outcome measures included: (1) short-term results (operating times, blood losses, bowel function recovery, post-operative pain, return to the oral intake, complications and hospital stay); (2) oncological adequateness (number of nodes harvested in the surgical specimens); and (3) long-term results (including the survivals' rates and incidence of incisional hernias) and (4) costs.

RESULTS: Meta-analysis of trials provided evidences in support of the laparoscopic procedures for a several short-term outcomes including: a lower blood loss, an earlier recovery of the bowel function, an earlier return to the oral intake, a shorter hospital stay and a lower morbidity rate. Opposite the operating time has been confirmed shorter in open surgery. The same trend has been reported investigating case-control series and cancer by sites, even though there are some concerns regarding the power of the studies in this latter field due to the small number of trials and the small sample of patients enrolled. The two approaches were comparable regarding the mean number of nodes harvested and long-term results, even though these variables were documented reviewing the literature but were not computable for meta-analysis. The analysis of the costs documented lower costs for the open surgery, however just few studies investigated the incidence of postoperative hernias.

CONCLUSION: Laparoscopy is superior for the majority of short-term results. Future studies should better differentiate these approaches on the basis of tumors' location and the post-operative hernias.

© 2014 Baishideng Publishing Group Co., Limited. All rights reserved.

Key words: Laparoscopy; Colon resection; Colon can-

cer; Meta-analysis; Evidence-based medicine

Core tip: This is a comprehensive meta-analysis of studies investigating laparoscopic resection in comparison with the open surgery for colon cancer, with the aim of evidencing short term and long term results of the surgical approaches. Results were provided according to the study designs (randomized trials, case control series) and according to the tumor's location.

Lorenzon L, La Torre M, Ziparo V, Montebelli F, Mercantini P, Balducci G, Ferri M. Evidence based medicine and surgical approaches for colon cancer: Evidences, benefits and limitations of the laparoscopic *vs* open resection. *World J Gastroenterol* 2014; 20(13): 3680-3692 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i13/3680.htm DOI: http://dx.doi.org/10.3748/wjg.v20.i13.3680

INTRODUCTION

Colon cancer remains a major health and social issue affecting in the US more than 100000 new patients/year^[1]; the surgical resection remains the standard of care for treating and staging non-metastatic colon cancer. During the last twenty years several progresses were made for improving the treatments, the survivals and the quality of life of cancer patients; the main innovation in the surgical technique was that outbreak of the laparoscopy. The use of laparoscopy for colon resection has been introduced in 1991^[2,3]. Initial concerns (including e.g., a long training/learning curve, the possible development of port-site metastasis and an inadequate oncologic resection[4-7]) were subsequently surmounted; indeed in recent years a number of studies recognized the adequateness of the laparoscopic approach along with a number of short-term functional benefits and equivalent long-term results. Nevertheless, the scientific literature in this field is quite heterogeneous regarding the study design adopted (randomized/non-randomized studies), objectives and outcome measures (short-term and logterm results, costs analysis), population enrolled (colon and/or rectal cancer patients), thus it might be difficult for clinicians and surgeons to summarize results and "take at home" univocal messages.

The aim of this manuscript is to review the studies comparing the laparoscopic and the open approach for colon cancer differentiating results by: (1) prospective randomized trials; (2) case-control series (including prospective and retrospective studies); and (3) the comparison of these techniques according to the tumor's location. This type of differentiation is seldom conducted and might implement the analysis and help the readers in understanding the results. Moreover we focused our investigation on the costs' analyses provided in the series and trials that were herein reviewed. Indeed, the goal of

this paper is to divulgate a comprehensible meta-analysis of the evidences by each category of investigation and to provide a message of clinical use for clinicians and surgeons committed in the care of colon cancer patients.

MATERIALS AND METHODS

Data source and search strategies

This investigation has been conducted adhering at the PRISMA Statements for review and meta-analysis (Figure 1, Table 1). We conducted a systematic review of the literature by searching PubMed database for all the published series and trials comparing the laparoscopic and open surgical approach for colon cancer from 1995 to December 2012. Keywords: "laparoscopic w open colectomy" AND "colon cancer", languages: "English", limit to "human" including clinical trials and comparative studies. We also included references from the retrieved publications. Duplicate references were removed by manual search.

Authors of this study were blinded to authors' and journals' name while reviewing the series, and did not have any contacts with the authors of the included papers. We did not consider any journal's scores (e.g., journal's Impact Factors) of the published series as exclusion criteria for this review.

Study design and selection of papers

Each paper retrieved was assessed for inclusion or exclusion for this manuscript, by revision of the titles and the abstracts. Published series with the aim to investigate exclusively rectal carcinomas and/or non cancer-diseases (*i.e.*, laparoscopic proctocolectomies for ulcerative colitis or diverticulitis) were excluded (Figure 1). Conversely manuscripts including few rectal cancers (or few non-malignant diseases) into the series, along with the other colon cancer localizations were included into this review.

Hand-assisted and totally laparoscopy procedures were considered altogether into the laparoscopic group, whereas all the open procedures (midline or transverse incisions) were considered as open resections.

All selected papers were categorized into the following sub-groups: (1) randomized studies; and (2) non-randomized studies (including prospective and retrospective case-control series).

Furthermore we identified those researches that investigated the comparison of these two approaches according to the tumor's location (i.e., right side colectomies, left side colectomies and transverse resections) and highlighted within these groups the comparison of the costs derived by these two approaches.

Outcome measures

Whenever possible we collected data regarding: study design, population and power of the study, types of surgical procedure. We considered as short-term outcome measures: operating times (measured in minutes), blood

Lorenzon L et al. EBM and surgical resection for colon cancer

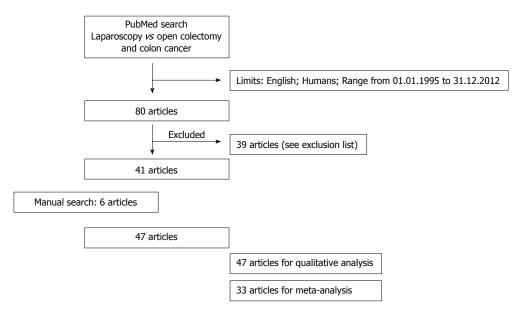


Figure 1 Study design. Study design according to the PRISMA statement for systematic reviews and meta-analysis.

	Table	1	Exclusion list of	the manuscripts
-				
	No.	Αı	ithor	Ref.

No.	Author	Ref.	Cause of exclusion
1	Sasaki J	J Nippon Med Sch 2012; 79 :259-66	Different outcome measure
2	Turagava J	N Z Med J 2012; 125 : 17-26	Only laparoscopy group
3	Poulsen M	J Gastrointest Surg 2012; 16: 1554-1558	Only laparoscopy group
4	Roscio F	Int J Surg 2012; 10 : 290-295	Only laparoscopy group
5	Wang G	Hepatogastroenterology 2012; 59 : 2158-2163	Only laparoscopy group
6	Rottoli M	Surg Endosc 2012; 26 : 1971-1976	Different outcome measure
7	Campos FG	Surg Laparosc Endosc Percutan Tech 2011; 21: 327-333	Exclusively familial polyposis patients
8	Panait L	Chirurgia (Bocur) 2011; 106 : 475-478	Only laparoscopy group
9	Hendren S	Dis Colon Rectum 2011; 54 : 1362-1367	Different outcome measure
10	Issa N	J Gastrointest Surg 2011; 15 : 2011-2015	Only laparoscopy group
11	McNicol FJ	Colorect Dis 2012; 14: 458-462	Rectal cancers
12	Fujii S	Hepatogastroenterology 2011; 58: 406-410	Only laparoscopy group
13	Akmal Y	Surg Endosc 2011; 25 : 2967-2971	Only laparoscopy group
14	Senthil M	Arch Surg 2010; 145 : 840-843	Different outcome measure
15	Han SA	Int J Colorect Dis 2010; 25 : 631-638	Different outcome measure
16	Park IJ	J Gastrointest Surg 2009; 13 : 960-965	Emergency resections
17	Heise CP	Dis Colon Rectum 2008; 51 : 1790-1794	Rectal cancers
18	Strhölein MA	Dis Colon Rectum 2008; 51 : 385-391	Rectal cancers
19	Moloo H	Dis Colon Rectum 2008; 51 : 173-180	Only laparoscopy group
20	Zhang H	Minim Invasiv Ther allied Technol 2007; 16: 187-191	Rectal cancers
21	Polle SW	Surg Endosc 2007; 21 :1301-1307	Rectal cancers
22	Hasegawa H	Surg Endosc 2007; 21 : 920-924	Rectal cancers
23	Del Rio P	Minerva Chir 2006; 61 : 923-927	Only laparoscopy group
24	Schlachta CM	Surg Endosc 2007; 21 : 396-369	Only laparoscopy group
25	Wong DC	Tech Coloproctol 2006; 10 : 37-42	Rectal cancers
26	Moloo H	Dis Colon Rectum 2006; 49 : 213-218	Only laparoscopy group
27	Larson DW	Dis Colon Rectum 2005; 48 : 1845-1850	Rectal cancers
28	Kuhry E	Surg Endosc 2005; 19 : 687-692	Different outcome measure
29	Adaki Y	Hepatogastroenterology 2003; 50: 1348-1351	Different outcome measure
30	Dunker MS	Dis Colon Rectum 2003; 46 : 1238-1244	Different outcome measure
31	Pasupathy S	Tech Coloproctol 2001; 5: 19-22	Rectal cancers
32	Weeks JC	JAMA 2002; 287 : 321-328	Different outcome measure
33	Nelson H	Swiss Surg 2001; 7: 248-251	Different outcome measure
34	Delgrado S	Dis Colon Rectum 2001; 44 : 638-646	Different outcome measure
35	Brown SR	Dis Colon Rectum 2001; 44: 397-400	Rectal cancers
36	Marcello PW	Dis Colon Rectum 2000; 43 : 604-608	Rectal cancers
37	Hewitt PM	Dis Colon Rectum 1998; 41 : 901-909	Different outcome measure
38	Fukushima R	Dis Colon Rectum 1996; 39 (Suppl): S29-34	Different outcome measure
39	Bokey EL	Dis Colon Rectum 1996; 39 (Suppl): S29-34	Only laparoscopy group

loss (measured in milliliter), bowel function recovery (defined by the passage of the first flatus/stool; measured in days), post-operative pain (defined as the usage of analgesic -measured in days- and/or the score obtained by the visual analogue scale), return to the oral intake (usually liquid diet; measured in days), morbidity defined by peri-operative complications and hospital stay (measured in days).

Of note, since complications were often reported using different modalities (e.g., major vs minor complications, rate of adverse events etc.), we extrapolated the overall morbidity rate in each category (laparoscopic and open surgery) reported in all the investigated series.

The oncologic adequateness was recorded whenever considered by the authors as the mean number of lymph nodes harvested in the surgical specimen. Mean follow-up (months) was recorded and long-term outcome measures were considered as the rate of relapses, the survivals and the incidence of incisional hernias. The costs analysis has been conducted recording the overall hospital costs for both procedures, providing results in US dollars, in order to analyze a single currency.

We did not considered conversion surgery, since it might bias the results of the open surgery procedures. On the same extent we did not consider the hospital volume, since it is seldom reported, even though the learning curves and the volume of patients might vary short-term results and costs.

A first analysis has been conducted reviewing papers in each category (prospective-randomized trials; case control series; studies investigating cancer by sites) and highlighting in each article were the evidences stand for (e.g., significant statistical analyses supporting laparoscopy or open surgery) for the different outcome measures (e.g., considering the operating time, blood losses etc.). Moreover and whenever computable we provided a meta-analysis of the results.

Statistical analysis

Continuous variables were analysed using means, medians and standard deviations, whereas categorical variables were analysed using frequencies and percents. Statistical analyses and Meta-analysis were performed using Med-Calc for Windows, version 10.2.0.0 (MedCalc Software, MariaKerke, Belgium). In order to provide significant results, a meta-analysis has been conducted for all variables in different categories (prospective-randomized trials; case control series; studies investigating cancer by sites) whenever at least 3 studies provided data computable.

The Mantel-Haenszel method was used for calculating the weighted summary Odds ratio under the fixed effects model. Next the heterogeneity statistic is incorporated to calculate the summary odds ratio under the random effects model. The total odds ratio with 95%CI is given both for the Fixed effects model and the Random effects model. If the value 1 is not within the 95%CI, then the Odds ratio is statistically significant at the 5% level (P < 0.05).

For meta-analysis of studies with a continuous measure (comparison of means between treated cases and controls), the Hedges g statistic was used as a formulation for the standardized mean difference (SMD) under the fixed effects model. Next the heterogeneity statistic is incorporated to calculate the summary standardized mean difference under the random effects model. If the value 0 is not within the 95%CI, then the SMD is statistically significant at the 5% level (P < 0.05).

Statistical heterogeneity of the results of the trials was assessed on the basis of a test of heterogeneity (standard chi-squared test on N degrees of freedom where N equals the number of trials contributing data minus one). Three possible causes for heterogeneity were pre-specified: (1) differing response according to difference in the quality of the trial; (2) differing response according to sample size; and (3) differing response according to clinical heterogeneity. If the test of heterogeneity is statistically significant (P < 0.05) then more emphasis should be placed on the random effects model.

RESULTS

Figure 1 outlines the study design. PubMed search provided 80 results, however 39 studies were excluded due to different outcome measures (e.g., investigations aimed to outline the quality of life or the immunological response), due to the evaluation of the laparoscopy procedures per se (missing the open surgery group) or evaluating rectal cancer patients (see exclusion list). All the 47 articles retrieved were included in the systematic review, however only 33 articles provided data computable for meta-analysis.

Randomized controlled trials

Figure 2 outlines results of this analysis. 11 studies were included for review[8-18] from 1995 to 2012, including overall 2992 patients in the laparoscopy group and 2717 in the open surgery group. Of note 4 studies enrolled less than 50 patients/arm^[8,10-11,13]. The systematic review of the manuscripts documented a number of benefits of the laparoscopic procedure for the vast majority of the short-term outcome measures (bowel function recovery, return to the oral intake, post-operative pain, blood loss and hospital stay), whereas it was documented a longer operating time comparing the open approach. Of note, all the studies - with the exclusion of the first trial conducted by Lacy and co-authors in 1995^[8] - reported a comparable morbidity rate within the two approaches. Similarly the mean count of the nodes harvested (LNH) in the surgical specimens were similar in the 3 studies investigating this variable [8-9,15], and the survivals were reported homogeneous in the vast majority of the studies [11,12,14,17,18], with the sole exception of the trial conducted by Lacy in 2002^[9]. It seems important to highlight that only two randomized trials investigated

Author	Year	Lap arm	OS arm	FU (mo)	0	T_	В	F	C)I	P	P	BL	НО	SP	Morb	idity	LNH	Survival/ relapse	Hernia
		n	n	. ,	Lap	OS	Lap	OS	Lap	OS	Lap	OS	Lap OS	Lap	OS	Lap	OS	Lap OS		Lap OS
Lacy et al ^[8]	1995	25	26			Х	Х		Χ				NS	Χ		Χ		NS		
Lacy <i>et al</i> ^[9]	2002	111	108	43.5		Χ	Χ		Χ				Χ	Χ		N	S	NS	Χ	
Winslow et al ^[10]	2002	37	46	30.1		Χ	Χ									N	S			NS
Kaiser et al[11]	2004	29	20	35.0			Χ		Χ		Χ		NS	Χ		N	S		NS	
COST Trial	2004	437	435	52.0		Χ					Χ			Χ		N	S		NS	
Kang <i>et al</i> ^[13]	2004	30	30		N	S	Χ		Χ		Χ		Χ	Χ		N	S			
Braga <i>et al</i> ^[14]	2005	190	201	36.0										Χ		N	S		NS	NS
COLOR Trial	2005	627	621			Χ	Χ		Χ		Χ		Χ	Χ		N	S	NS		
CLASiCC Trial	2005	526	268		N	S	N	S	N	S				N	S	N	S			
COLOR Trial	2009	627	621	36.0		Χ							Χ						NS	
Bagshaw <i>et al</i> ^[18]	2012	299	302	62.0															NS	
Total		2992	2717																	

В	Variable	Laparoscopy	Open surgery	Total	SMD/OR	95%CI	P value
	Operative time	203	210	413	0.534	0.133-0.935	0.017
	Bowel function	166	164	330	-1.037	-1.702-(-0.371)	0.002
	Oral intake	166	164	330	-0.693	-0.917-(-0.469)	0.07
	Blood loss	166	164	330	-0.649	-0.872-(-0.425)	0.06
	Hospital stay	356	365	721	-0.707	-1.061-(-0.352)	0.007
	Morbidity	302/2012	330/1755		0.609	0.415-0.896	0.0018

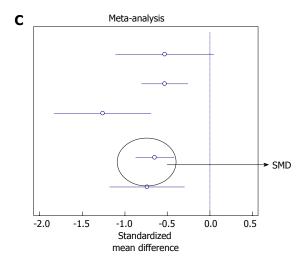


Figure 2 Randomized studies. A: Randomized trails comparing laparoscopy and open surgery. X in the table refers to a statistical association provided in the studies; B: Meta-analysis of the out-come measures; C: Forest plot graph regarding studies investigating blood loss. Lap arm: Laparoscopy arm; OS arm: Open surgery arm; FU: Mean follow-up; OT: Operative time; BF: Bowel function; OI: Oral intake; PP: Post-operative Pain; BL: Blood loss; HOSP: Hospital stay; LNH: Lymph node harvest; NS: Not significant.

the incidence of post-operative hernias^[10,14], reporting a comparable rate of events (Figure 2A).

Meta-analysis conducted on 9 studies in this group $^{[8-16]}$ confirmed the evidences of the short-term outcome measures in favour of the laparoscopy (bowel function recovery, return to the oral intake, blood loss and hospital stay), plus it documented a better morbidity rate for the laparoscopy group (OR = 0.609; 95%CI: 0.415-0.896). Conversely the operating time has been confirmed shortly in the open procedure group (Figure 2B and C).

Case-control studies

Figure 3 reports data from this analysis. 16 case-control studies were included, counting overall 3819 patients in the laparoscopy group and 6990 in the open surgery group [19-54]. The vast majority of these studies agree in reporting shorter operating time in the open surgery group

comparing with the laparoscopic procedures, with the exceptions of the studies conducted by Saba, Bilimoira and de Campos Lobato that provided homogeneous results^[19,27,30]. All studies investigating the bowel function recovery recognized a benefit for the laparoscopy procedure^[19,21-22,24,26]; similarly the investigation of the return to the oral intake provided homogeneous results in the 2 studies that investigated this outcome measure^[19,29].

Even if Shabbir reported a similar use of analgesic in the post-operatory recovery^[22], the other studies reported significant benefits associated with the laparoscopic procedure in this field^[21,22,24]. A significant reduction in the blood loss for the patients undergone laparoscopy has been reported by all the authors^[20,26,30,32,33], with the sole exception of Slow^[24]. The hospital stay has been reported in favour of the laparoscopy group in all the studies, with the exclusion of the series investigated by

Author	Year	Lap group	OS group	FU (mo)	OT	BF	=	OI	PP	BL	HOSP	Mort	oidity	LN	ΙΗ	Surviv relap	•	He	rnia
		n	n		Lap OS	Lap	OS	Lap	OS	Lap	OS	Lap	OS	Lap	OS				
Saba et al ^[19]	1995	25	25		NS	Х		Х			Х			N	S				
¹ Franklin <i>et al</i> ^[20]	1996	191	224	30 ²						X^1	X^1	X^1		N	S^1	NS	1		
Lezoche et al ^[21]	2000	150	160	35.1	Х	Χ			Χ		Χ	N	IS			Χ			
Stocchi <i>et al</i> ^[22]	2000	42	42		Χ	Χ			Χ		Χ	Χ							
Feliciotti et al ^[23]	2002	74	75	48.9												NS			
Sklow et al ^[24]	2003	77	77		X	Χ			Χ	NS	Χ	N	IS						
Patankar et al ^[25]	2003	172	172	55.5								N	IS			NS		N	NS
Vignali <i>et al</i> ^[26]	2005	61	61		X	Χ				Χ	Χ	N	IS	N	S				
Bilimoira <i>et al</i> ^[27]	2008	837	2222		NS						Χ	Χ							
Cermak et al ^[28]	2008	39	120								NS	N	IS			NS			
Shabbir <i>et al</i> ^[29]	2009	32	32		Χ			Χ	NS		Χ			N	S				
de Campos- Lobato <i>et al</i> ^[30]	2011	289	289		NS					Χ	Χ	N	IS						
Gouvas et al[31]	2012	49	41											N	S				
McKay et al[32]	2012	434	742		Х					Χ	Χ	Χ		N	S				
SCOAP Study	2012	1232	2336		X					Χ	Χ	Χ							
Cianchi et al [34]	2012	147	404											Χ					
Total		3819	6990																

В	Variable	Laparoscopy	Open surgery	Total	SMD/OR	95%CI	P value
	Operative time	2683	5480	8163	1.188	0.740-1.637	< 0.0001
	Hospital stay	802	1224	2026	-1.505	-2.661-(-0.349)	< 0.0001
	Morbidity	389/2292	1101/4109		0.641	0.477-0.862	0.0007
	LNH	686	1027	1713	0.316	-0.418-1.050	< 0.0001

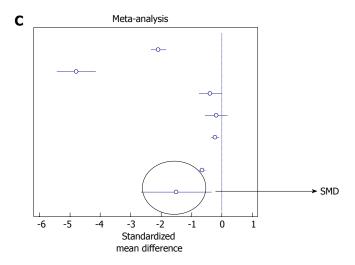


Figure 3 Non-randomized studies. A: Case-control studies comparing laparoscopy and open surgery. X in the table refers to a statistical association provided in the studies; B: Meta-analysis of the out-come measures; C: Forest plot graph regarding studies investigating hospital stay. ¹Statistic analysis not performed; ²Significant difference of follow-up according to the stage of the disease. Lap: Laparoscopy; OS: Open surgery; FU: Mean follow-up; OT: Operative time; BF: Bowel function; OI: Oral intake; PP: Post-operative Pain; BL: Blood loss; HOSP: Hospital stay; LNH: Lymph node harvest; NS: Not significant.

Cermak *et al*²⁸ in 2008. The study of the morbidity rate provided dis-homogeneous results: even though some studies documented some benefits in the laparoscopy group^[20,22,27,32,33], others documented comparable results between the 2 approaches^[21,24-26,28,30]. Notably, Cianchi in 2012 highlighted a better LNH in the laparoscopy group^[34], whereas the others reported homogeneous results.

Similarly, with the exception of Lezoche *et al*²¹, the authors reported comparable survival rates within these 2 approaches. Seems important to highlight that the vast majority of the studies did not investigate the rate

of post-operative hernias, with the sole exception of Pantankar in 2008^[25] that reported similar results in the 2 groups.

A meta-analysis has been conducted for 11 studies in this category^[20-22,24-28,30,32,33], Figure 3B. The operative time has been reported longer in the laparoscopy group, whereas this procedure showed a shorter hospital stay, Figure 3C. Interestingly the meta-analysis provided also in this category of studies some evidences regarding a lower rate of morbidity in the post-operative period following a laparoscopy operation (OR = 0.644; 95%CI: 0.447-0.862). The analysis of the LNH variable was not

Author	Year	Lap group	OS group	Study design; FU (mo)	OT	BF	OI	PP	BL	HOSP	Morbidity	LNH	Survival/ relapse	Hernia
		n	n	, ,	Lap OS	Lap OS	Lap OS	Lap OS	Lap OS	Lap OS	Lap OS	Lap OS		Lap OS
Lezoche et al ^[35]	2002	55	44	CC; 42.2	Х	Х				Х	NS	NS	NS	
Sklow et al ^[24]	2003	40	42	CC	χ^2	X_3		X^3		X^3				
Zheng <i>et al</i> ^[36]	2005	30	34	CC; 26.6	NS	Χ	NS	Χ	Χ	Χ	NS	NS	NS	
Lohsiriwat et al[37]	2007	13	20	CC	X	NS	NS	NS	NS		NS	NS		
Tong <i>et al</i> ^[38]	2007	77	105	CC; 21.5	X	NS	Χ		NS	Χ	NS	NS	NS	
Chung et al ^[39]	2007	41	40-M	R; 29.0	X	Χ	Χ	Χ	Χ	Χ	NS		NS	
Braga <i>et al</i> ^[40]	2007	113	113-M	R; 48.0	X		Χ		Χ	Χ	NS		NS^1	
Nakamura <i>et al</i> ^[41]	2009	100	100	CC; 135.5	NS				Χ	Χ	Χ		NS	
Veenhof et al[42]	2010	25	28-T	CC; 19.0	X				Χ	Χ	NS	NS	NS	NS
Tanis et al ^[43]	2012	30	22-M	CC	X	Χ	NS	NS		Χ	NS	NS		
			23-T											
Total		427	485											

В	Variable	Laparoscopy	Open surgery	Total	SMD/OR	95%CI	P value
	Operative time	83	106	189	3.431	0.613-6.249	< 0.0001
	Bowel function	83	106	189	-1.689	-2.953-(-0.426)	< 0.0001
	Post-operative pain	53	72	125	-2.068	-3.828-(-0.307)	< 0.0001
	Blood loss	83	106	189	-0.387	-1.116-0.342	< 0.0001
	Hospital stay	196	219	415	-1.589	-2.670-(-0.508)	< 0.0001
	Morbidity	57/454	100/484		0.524	0.365-0.754	0.37
	LNH	233	272	505	0.0567	-0.449-0.562	0.0002

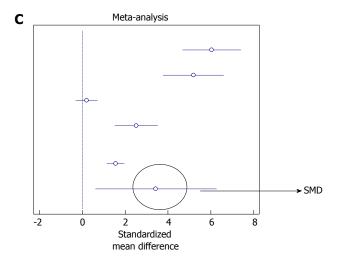


Figure 4 Right sided colectomies. A: Studies comparing right-side laparoscopy colectomy and open surgery. X in the table refers to a statistical association provided in the studies; B: Meta-analysis of the out-come measures; C: Forest plot graph regarding studies investigating operative time. ¹Statistic analysis not performed; ²Exclusively if patients > 75 years old; ³Exclusively if patients < 75 years old. Lap: Laparoscopy; OS: Open surgery; M: Midline incision; T: transverse incision R: Randomized, CC: Case-control; FU: Mean follow-up; OT: Operative time; BF: Bowel function; OI: Oral intake; PP: Post-operative Pain; BL: Blood loss; HOSP: Hospital stay; LNH: Lymph node harvest; NS: Not significant.

of statistical value (95%CI: -0.418-1.050).

Right-sided colectomies

We identified 10 studies in this category^[24,35-43], involving 427 laparoscopy patients and 485 open colectomy patients, Figure 4. Overall we included 8 case-control series^[24,35-38,41-43] and 2 randomized trials^[39,40]. Of note the open surgical approach (midline *tst* transverse incisions) has been categorized exclusively in 4 studies^[39,40,42,43]. All the studies analysed documented homogeneous results regarding the hospital stay (statistically better associated with the laparoscopy approach), LNH and survival rate (comparable results between the 2 procedures). Discordant data were documented for the operating time:

even though the vast majority of the authors reported a shorter operation in the open group, the studies conducted by Zheng in 2005 and by Nakamura in 2009 documented comparable results^[36,41]. The bowel function recovery has been reported shorter in the laparoscopy group in the studies conducted by Lezoche, Slow, Zeng, Chung and Tanis^[24,35,36,39,43], whereas other 2 articles provided similar recoveries for both groups^[37,38]. Three studies reported comparable results within the 2 surgical approaches regarding the return to the oral intake^[36,37,43]; opposite Tong, Chung and Braga^[38-40] reported results in favour of the laparoscopy group. Zeng, Chung and Slow (exclusively in patients < 75 years old)^[24,36,39] reported a lower use of analgesics in the laparoscopy group,

Author	Year	Lap group	OS group	Study design;	OT	Γ	В	F	0	I	Р	Р	В	BL	НО	SP	Morb	idity	LNH	Surviva	•	Hernia	ī
		n	n	FU (mo)	Lap	OS	Lap	OS	Lap	OS	Lap	OS	Lap	OS	Lap	OS	Lap	OS	Lap OS	Lap C	S	Lap OS	<u>5</u>
Lezoche <i>et al</i> ^[35]	2002	86	63	CC; 42.3		Χ	Х								Х		N	S	NS	NS			
Sklow et al ^[24]	2003	35	27	CC		Χ	X^1				X^1				X^1								
Leung <i>et al</i> ^[44]	2004	203	200	R; 50.9		Χ	Χ		Χ		Χ		N	IS	Χ		N	S	NS	NS			
Liang <i>et al</i> ^[45]	2007	135	134	R; 40.0		Χ	Χ				Χ		Χ		Χ		N	S	NS	NS			
Hinojosa <i>et al^[46]</i>	2007	1092	9511	CC											Χ		Χ						
Cheung <i>et al</i> ^[47]	2009	24	24	R	NS	5					Χ		Χ		N	S	Χ		Χ				
Nakashima <i>et al</i> ^[48]	2011	33	22	CC		Χ	Χ		Χ				Χ		Χ		Χ		Χ				
Total		1608	9981																				

В	Variable	Laparoscopy	Open surgery	Total	SMD/OR	95%CI	P value
	Hospital stay	1262	9672	10934	-2.244	-4.188-(-0.300)	1262
	Morbidity	293/1573	2504/9954		0.849	0.473-1.525	0.0003

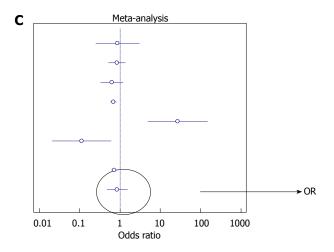


Figure 5 Left sided colectomies. A: Studies comparing left-side laparoscopy colectomy and open surgery. X in the table refers to a statistical association provided in the studies; B: Meta-analysis of the out-come measures; C: Forest plot graph regarding studies investigating morbidity rate. 1Exclusively if patients > 75 years old. Lap: Laparoscopy; OS: Open surgery; M: Midline incision; T: transverse incision R: Randomized, CC: Case-control; FU: Mean follow-up; OT: Operative time; BF: Bowel function; OI: Oral intake; PP: Post-operative Pain; BL: Blood loss; HOSP: Hospital stay; LNH: Lymph node harvest; NS: Not significant.

whereas Lohsiriwat and Tanis failed in reporting a statistical association^[37,43]. Within the laparoscopy procedures, all the authors with the exceptions of Lohsiriwat and Tong^[37,38], documented lower blood losses. Also in this category, the investigation of the rate of post-operative hernias has been conducted in a single study^[42].

A meta-analysis has been conducted or 9 manuscripts [24,35-42] within this category, Figure 4B. Significant evidences were highlighted for the laparoscopy procedures regarding the bowel function recovery, post-operative pain, blood losses, hospital stay and interestingly for the morbidity rate (OR = 0.524; 95%CI: 0.365-0.754). Also in this category the investigation of the LNH variable was not of statistical value (95%CI: -0.4149-0.562). Conversely the operating time has been confirmed shorter in the open surgery group, Figure 4C.

Left-sided colon cancers

Seven studies were included in this category [24,35,44-48], encompassing 1608 patients undergone laparoscopy and 9981 patients undergone open surgical resections, Figure 5. Three studies were randomized^[44,45,47], the remaining were case-control studies. It seems important

to highlight that 3 studies enrolled less than 50 patients/ $\text{arm}^{[\widecheck{24},47,\widecheck{48}]}.$ The analyses of the bowel function recovery, the return to the oral intake, the post-operative pain and the survival rates provided homogeneous results among studies (benefits for the laparoscopy patients for the short-term outcome measures, comparable results between the 2 approaches for long term survivals). The operating time has been reported in favour of the open approach in all the studies with the exception of Cheung et al^[47]. Conversely the analysis of the blood losses was in favour of the laparoscopy procedures in all the researches, excluding the article by Leung et al⁴⁴. A shorter hospital stay has been reported statistically associated to the laparoscopy procedure in all the studies with the sole exclusion of the report by Cheung et $al^{4/3}$.

Interestingly the analysis of the morbidity rate provided discordant data: 3 studies reported benefits for the laparoscopy procedure whereas other 3 studies reported comparable results 155,4445. Notably the analysis of the LNH reported homogeneous results among different studies, with the exceptions of Cheung and Nakashima^[47,48].

A meta-analysis has been provided including all the

Author	Year	Lap group	OS group		OT	В	F	OI		PP	E	3L	HOSP	Morbidity	LNH	Survi	. ,	He	rnia
		n	n	design	Lap OS	Lan	OS	lan ()S I	an O	Lan	OS	I an OS	Lap OS	Lap OS	relap Lap		Lan	05
					Lup OS	Сир	-05	Lup (<i>,</i>	up Os	, сар	-05	Lup OS	Lup OS	Lup OS	Lup	05	Lup	
Kim <i>et al</i> ^[49]	2009	37	50	CC	NS	Χ		Χ			Χ		NS	NS	NS				
Akiyoshi <i>et al</i> ^[50]	2010	53	39	CC	Χ	Χ		Χ			Χ		Χ	NS	X				
Fernández-	2012	34	52	CC	NS	Χ		NS			Χ		NS	NS	NS				
Cebrián <i>et al</i> ^[51]																			
Total		124	141																

Figure 6 Transverse colectomies. Studies comparing transverse laparoscopy colectomy and open surgery. X in the table refers to a statistical association provided in the studies. Lap: Laparoscopy; OS: Open surgery; M: Midline incision; T: transverse incision; R: Randomized; CC: Case-control; OT: Operative time; BF: Bowel function; OI: Oral intake; PP: Post-operative Pain; BL: Blood loss; HOSP: Hospital stay; LNH: Lymph node harvest; NS: Not significant.

7 studies, but it was computable for only two variables (Figure 5B) and interestingly both the hospital stay and the morbidity rate were confirmed in favour of the laparoscopy group, Figure 5C.

Transverse colon cancers

Three studies were included in this category of investigation [49-51], including 124 patients in the laparoscopy group and 141 in the open surgery group, Figure 6. All the studies were case-controls series with some concerns regarding the power of the analyses due to the small samples enrolled. These studies reported homogeneous results in favour of the laparoscopy procedures for the bowel function recovery and the intra-operative blood loss. Notably all the studies documented similar morbidity rates for both surgical approaches. The studies conducted by Kim et al [49] and by Fernández-Cebrián et al^[51] documented comparable operating times, whereas Akiyoshi et al^{50]} reported benefits in this field in the open surgery group. Fernández-Cebrián et al^[51] documented comparable results within the 2 procedures regarding the return to the oral intake, whereas the others documented a statistical correlation with the laparoscopy procedure [49,50]. The hospital stay has been reported comparable by Kim and by Fernández-Cebrián^[49,51], whereas Akiyoshi et al^[50] reported a shorter hospitalization in the laparoscopy group. The analysis of the LNH reported similar results between the surgical procedures in the studies conducted by Kim et al [49] and by Fernández-Cebrián et al^[51], whereas Akiyoshi et al^[50] documented a higher mean number of nodes harvested in the open surgery group. None of these studies investigated the survivals or the incidence of post-operative hernias.

It was not possible to computable data for metaanalysis within this category of investigation.

Costs analysis

Nine studies were included in this investigation [19,29,36,44-46,52-54], including 3 randomized trials [44,45,52], Figure 7. The overall number of patients pooled in the laparoscopy group has been of 102763; otherwise 72264 patients were included in the open surgery group. Costs were expressed or converted whenever necessary in United States dollars. Overall laparoscopy procedures provided costs ranging from \$4000 to \$41000; conversely the open surgery

expenses were ranging from \$1800 to \$43000. 4 studies were meta-analysed [36,44-46]. Results of the meta-analysis confirmed a significant reduction of the costs in the open surgery group comparing with laparoscopy (SMD = 4.843; 95%CI: 3.031-6.656), Figure 7B and C.

DISCUSSION

The primary goal of this manuscript was to divulgate the evidences obtained reviewing 47 manuscripts in this field, 33 of which provided data computable for meta-analysis; the results were categorized on the basis of the study design (randomized trials, case-control series) and on the basis of the tumor locations. Moreover we conducted an analysis of the costs derived by the two surgical procedures. Our results are in agreement with that of other meta-analyses in this field documenting better short-term results in the laparoscopy groups comparing with the open surgery procedures [55,56], even though it is associated with a significant longer operative time.

We considered any complications provided by different studies in the "morbidity rate" outcome measure, since it was very difficult to provide homogeneous results reviewing studies in this field; indeed authors considered different complications in the analyzed studies (infections, bleeding *etc.*). The interpretation of results, however, might be implemented if future studies could stratify the severity of adverse events using standard classifications (*e.g.*, the Clavien's classification)^[57].

Nevertheless, the laparoscopy procedure for colon cancer resection has been reported oncologically safe^[58,59]. The same results were reporting analysing exclusively right-sided colectomies [60]. In the field of the evaluation of resections by cancers' site, we noted that still to-date few studies compared the right-side colectomy by transverse incisions with the laparoscopy procedures; indeed as highlighted by Tanis et al^[43] the shortterm results obtained by the transverse incisions are often between laparoscopy and the midline approach. It is our opinion that this field of studies should be implemented. Moreover in the field of left-side colectomies the some series pool left-sided and recto-sigmoid cancers [45,46], thus it is often difficult to differentiate "pure" colectomies from the recto-sigmoid resections. Of note just 4 studies out of the 47 reviewed, investigated the rate of post-operative hernias, providing homogeneous

Author	Year	Lap group	OS group	Study design	Co	ost	P value
		n	п		Laparoscopy (mean ± SD)	Open surgery (mean ± SD)	
Saba et al ^[19]	1995	25	25	СС	4338	1839	< 0.05
Leung et al[44]	2004	203	200	R	9297 ± 2091	7148 ± 2164	< 0.001
Zheng et al ^[36]	2005	30	34	CC	11498.54 ± 2618.86	10228.34 ± 2372.57	NS
Liang <i>et al</i> ^[45]	2007	135	134	R	6076.3 ± 82.68	4263.12 ± 86.0	< 0.001
Hinojosa <i>et al</i> ^[46]	2007	1092	9511	CC	13507 ± 8238	15248 ± 17373	
Franks et al ^[52]	2006	452	230	R	11092.21	10661.32	
Steele et al[53]	2008	95627	3296	CC	34685	34178	NS
Shabbir et al[29]	2009	32	32	CC	7943	7253	NS
Vaid et al ^[54]	2012	5147	58802	CC	41971	43459	< 0.001
Total		102763	72264				

В	Variable	Laparoscopy	Open surgery	Total	SMD/OR	95%CI	P value
	Costs	1460	9879	11339	4.843	3.031-6.656	< 0.0001

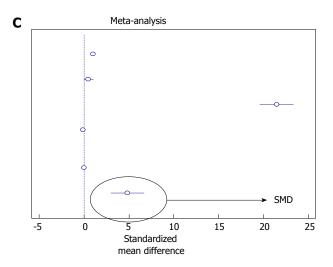


Figure 7 Costs analysis. A: Studies comparing laparoscopy and open surgery: analysis of the costs; B: Meta-analysis; C: Forest plot graph. Lap: Laparoscopy; OS: Open surgery; NS: Not significant; R: Randomized; CC: Case-control.

results comparing the 2 methodologies^[11,14,25,42], thus also this field of investigation should be implemented by incoming studies.

Take at home messages

Short term outcome measures including: a lower blood loss, an earlier recovery of the bowel function, an earlier return to the oral intake, a shorter hospital stay and a lower morbidity rate were statistically associated to the laparoscopic procedures in randomized trials. Opposite the operating time has been confirmed shorter in the open surgery group.

Even though the majority of the trials reported a statistical association with less post-operative pain in the laparoscopic group, this data was not computable on meta-analysis, similarly the comparable results of the LNH within the 2 procedures was documented at the review but not computable at the meta-analysis.

This trend has been confirmed analyzing case-control series and cancer by sites, even though there are some concerns regarding the power of the studies in this latter field due to the small number of trials and the small sample of patients often enrolled.

The analysis of the costs documented lower costs for

the open surgery procedures, however seems important to highlight that just few studies investigated the incidence of post-operative hernia. The analysis of the post-operative hernia could add important information; indeed a re-intervention might substantially implement the costs and might put into question the cost-effectiveness of the procedure.

COMMENTS

Background

Colon cancer is a major health issue. Over the last twenty years several progresses were made for improving the treatment and the quality of life of cancer patients, and the main innovation in the field of colon cancer surgical technique was that outbreak of the laparoscopy procedures (minimally-invasive treatments).

Research frontiers

Several studies recognized the adequateness of the laparoscopic approach along with a number of short-term functional benefits and equivalent long-term results comparing to "open" approach. Nevertheless, the scientific literature in this field is quite heterogeneous, thus it might be difficult for clinicians and surgeons to summarize results and "take at home" univocal messages.

Innovations and breakthroughs

The goal of this paper is to divulgate a comprehensible meta-analysis of the evidences and to provide a message of clinical use for clinicians and surgeons committed in the care of colon cancer patients.

Applications

The results are in agreement with that of other meta-analyses in this field documenting better short-term results in the laparoscopy groups comparing with the open surgery procedures, even though it is associated with a significant longer operative time.

Peer review

This is a comprehensive review and meta-analysis of laparoscopic vs open colectomy for colon cancer. It's well-written with a solid analysis.

REFERENCES

- Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10-29 [PMID: 22237781 DOI: 10.3322/caac.20138]
- 2 Fowler DL, White SA. Laparoscopy-assisted sigmoid resection. Surg Laparosc Endosc 1991; 1: 183-188 [PMID: 1669400]
- 3 Jacobs M, Verdeja JC, Goldstein HS. Minimally invasive colon resection (laparoscopic colectomy). Surg Laparosc Endosc 1991; 1: 144-150 [PMID: 1688289]
- Jacquet P, Averbach AM, Jacquet N. Abdominal wall metastasis and peritoneal carcinomatosis after laparoscopic-assisted colectomy for colon cancer. Eur J Surg Oncol 1995; 21: 568-570 [PMID: 7589609 DOI: 10.1016/ S0748-7983(95)97564-0]
- 5 **Akle CA**. Early parietal recurrence of adenocarcinoma of the colon after laparoscopic colectomy. Port site metastasis after laparascopic colorectal surgery for cure of malignancy. *Br J Surg* 1996; **83**: 427 [PMID: 8665223 DOI: 10.1002/bis.1800830353]
- 6 Wexner SD, Cohen SM. Port site metastases after laparoscopic colorectal surgery for cure of malignancy. Br J Surg 1995; 82: 295-298 [PMID: 7795990 DOI: 10.1002/bis 1800820305]
- 7 Ramos JM, Gupta S, Anthone GJ, Ortega AE, Simons AJ, Beart RW. Laparoscopy and colon cancer. Is the port site at risk? A preliminary report. *Arch Surg* 1994; 129: 897-89; discussion 900 [PMID: 8080369 DOI: 10.1001/arch-surg.1994.01420330011001]
- 8 Lacy AM, García-Valdecasas JC, Piqué JM, Delgado S, Campo E, Bordas JM, Taurá P, Grande L, Fuster J, Pacheco JL. Short-term outcome analysis of a randomized study comparing laparoscopic vs open colectomy for colon cancer. Surg Endosc 1995; 9: 1101-1105 [PMID: 8553212 DOI: 10.1007/BF00188996]
- 9 Lacy AM, García-Valdecasas JC, Delgado S, Castells A, Taurá P, Piqué JM, Visa J. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. *Lancet* 2002; 359: 2224-2229 [PMID: 12103285 DOI: 10.1016/S0140-6736(02)09290-5]
- Winslow ER, Fleshman JW, Birnbaum EH, Brunt LM. Wound complications of laparoscopic vs open colectomy. Surg Endosc 2002; 16: 1420-1425 [PMID: 12085142 DOI: 10.1007/s00464-002-8837-3]
- 11 Kaiser AM, Kang JC, Chan LS, Vukasin P, Beart RW. Laparoscopic-assisted vs. open colectomy for colon cancer: a prospective randomized trial. *J Laparoendosc Adv Surg Tech A* 2004; 14: 329-334 [PMID: 15684776 DOI: 10.1089/lap.2004.14.329]
- 12 Clinical Outcomes of Surgical Therapy Study Group. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med 2004; 350: 2050-2059 [PMID: 15141043 DOI: 10.1056/NEJMoa032651]
- 13 Kang JC, Chung MH, Chao PC, Yeh CC, Hsiao CW, Lee TY, Jao SW. Hand-assisted laparoscopic colectomy vs open colectomy: a prospective randomized study. Surg Endosc 2004; 18: 577-581 [PMID: 15026923 DOI: 10.1007/s00464-003-8148-3]
- 14 Braga M, Frasson M, Vignali A, Zuliani W, Civelli V, Di

- Carlo V. Laparoscopic vs. open colectomy in cancer patients: long-term complications, quality of life, and survival. *Dis Colon Rectum* 2005; **48**: 2217-2223 [PMID: 16228828 DOI: 10.1007/s10350-005-0185-7]
- Veldkamp R, Kuhry E, Hop WC, Jeekel J, Kazemier G, Bonjer HJ, Haglind E, Påhlman L, Cuesta MA, Msika S, Morino M, Lacy AM. Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol 2005; 6: 477-484 [PMID: 15992696 DOI: 10.1016/S1470-2045(05)70221-7]
- Guillou PJ, Quirke P, Thorpe H, Walker J, Jayne DG, Smith AM, Heath RM, Brown JM. Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. *Lancet* 2005; 365: 1718-1726 [PMID: 15894098 DOI: 10.1016/S0140-6736(05)66545-2]
- Buunen M, Veldkamp R, Hop WC, Kuhry E, Jeekel J, Haglind E, Påhlman L, Cuesta MA, Msika S, Morino M, Lacy A, Bonjer HJ. Survival after laparoscopic surgery versus open surgery for colon cancer: long-term outcome of a randomised clinical trial. *Lancet Oncol* 2009; 10: 44-52 [PMID: 19071061 DOI: 10.1016/S1470-2045(08)70310-3]
- 18 Bagshaw PF, Allardyce RA, Frampton CM, Frizelle FA, Hewett PJ, McMurrick PJ, Rieger NA, Smith JS, Solomon MJ, Stevenson AR. Long-term outcomes of the australasian randomized clinical trial comparing laparoscopic and conventional open surgical treatments for colon cancer: the Australasian Laparoscopic Colon Cancer Study trial. *Ann Surg* 2012; 256: 915-919 [PMID: 23154392 DOI: 10.1097/SLA.0b013e3182765ff8]
- 19 Saba AK, Kerlakian GM, Kasper GC, Hearn AT. Laparoscopic assisted colectomies versus open colectomy. *J Laparo*endosc Surg 1995; 5: 1-6 [PMID: 7766922]
- 20 Franklin ME, Rosenthal D, Abrego-Medina D, Dorman JP, Glass JL, Norem R, Diaz A. Prospective comparison of open vs. laparoscopic colon surgery for carcinoma. Five-year results. Dis Colon Rectum 1996; 39: S35-S46 [PMID: 8831545]
- 21 Lezoche E, Feliciotti F, Paganini AM, Guerrieri M, Campagnacci R, De Sanctis A. Laparoscopic colonic resections versus open surgery: a prospective non-randomized study on 310 unselected cases. *Hepatogastroenterology* 2000; 47: 697-708 [PMID: 10919014]
- 22 Stocchi L, Nelson H, Young-Fadok TM, Larson DR, Ilstrup DM. Safety and advantages of laparoscopic vs. open colectomy in the elderly: matched-control study. *Dis Colon Rectum* 2000; 43: 326-332 [PMID: 10733113]
- Feliciotti F, Paganini AM, Guerrieri M, Sanctis A, Campagnacci R, Lezoche E. Results of laparoscopic vs open resections for colon cancer in patients with a minimum follow-up of 3 years. Surg Endosc 2002; 16: 1158-1161 [PMID: 11984684]
- 24 Sklow B, Read T, Birnbaum E, Fry R, Fleshman J. Age and type of procedure influence the choice of patients for laparoscopic colectomy. Surg Endosc 2003; 17: 923-929 [PMID: 12618937]
- Patankar SK, Larach SW, Ferrara A, Williamson PR, Gallagher JT, DeJesus S, Narayanan S. Prospective comparison of laparoscopic vs. open resections for colorectal adenocarcinoma over a ten-year period. *Dis Colon Rectum* 2003; 46: 601-611 [PMID: 12792435]
- Vignali A, Di Palo S, Tamburini A, Radaelli G, Orsenigo E, Staudacher C. Laparoscopic vs. open colectomies in octogenarians: a case-matched control study. *Dis Colon Rectum* 2005; 48: 2070-2075 [PMID: 16086219]
- 27 Bilimoria KY, Bentrem DJ, Merkow RP, Nelson H, Wang E, Ko CY, Soper NJ. Laparoscopic-assisted vs. open colectomy for cancer: comparison of short-term outcomes from 121 hospitals. J Gastrointest Surg 2008; 12: 2001-2009 [PMID: 18575941 DOI: 10.1007/s11605-008-0568-x]
- 28 Cermak K, Thill V, Simoens CH, Smets D, Ngongang CH,

- da Costa PM. Surgical resection for colon cancer: laparoscopic assisted vs. open colectomy. *Hepatogastroenterology* 2008; **55**: 412-417 [PMID: 18613377]
- 29 **Shabbir A**, Roslani AC, Wong KS, Tsang CB, Wong HB, Cheong WK. Is laparoscopic colectomy as cost beneficial as open colectomy? *ANZ J Surg* 2009; **79**: 265-270 [PMID: 19432712 DOI: 10.1111/j.1445-2197.2009.04857.x]
- 30 de Campos-Lobato LF, Alves-Ferreira PC, Geisler DP, Kiran RP. Benefits of laparoscopy: does the disease condition that indicated colectomy matter? *Am Surg* 2011; 77: 527-533 [PMID: 21679582]
- 31 **Gouvas N**, Pechlivanides G, Zervakis N, Kafousi M, Xynos E. Complete mesocolic excision in colon cancer surgery: a comparison between open and laparoscopic approach. *Colorectal Dis* 2012; **14**: 1357-1364 [PMID: 22390358 DOI: 10.1111/j.1463-1318.2012.03019.x]
- 32 McKay GD, Morgan MJ, Wong SK, Gatenby AH, Fulham SB, Ahmed KW, Toh JW, Hanna M, Hitos K. Improved short-term outcomes of laparoscopic versus open resection for colon and rectal cancer in an area health service: a multicenter study. *Dis Colon Rectum* 2012; 55: 42-50 [PMID: 22156866 DOI: 10.1097/DCR.0b013e318239341f]
- 33 Kwon S, Billingham R, Farrokhi E, Florence M, Herzig D, Horvath K, Rogers T, Steele S, Symons R, Thirlby R, Whiteford M, Flum DR. Adoption of laparoscopy for elective colorectal resection: a report from the Surgical Care and Outcomes Assessment Program. J Am Coll Surg 2012; 214: 909-18.e1 [PMID: 22533998 DOI: 10.1016/j.jamcollsurg.2012. 03.010]
- 34 Cianchi F, Cortesini C, Trallori G, Messerini L, Novelli L, Comin CE, Qirici E, Bonanomi A, Macrì G, Badii B, Kokomani A, Perigli G. Adequacy of lymphadenectomy in laparoscopic colorectal cancer surgery: a single-centre, retrospective study. Surg Laparosc Endosc Percutan Tech 2012; 22: 33-37 [PMID: 22318057 DOI: 10.1097/SLE.0b013e31824332dc]
- 35 Lezoche E, Feliciotti F, Paganini AM, Guerrieri M, De Sanctis A, Minervini S, Campagnacci R. Laparoscopic vs open hemicolectomy for colon cancer. Surg Endosc 2002; 16: 596-602 [PMID: 11972196]
- 36 Zheng MH, Feng B, Lu AG, Li JW, Wang ML, Mao ZH, Hu YY, Dong F, Hu WG, Li DH, Zang L, Peng YF, Yu BM. Laparoscopic versus open right hemicolectomy with curative intent for colon carcinoma. World J Gastroenterol 2005; 11: 323-326 [PMID: 15637736]
- 37 Lohsiriwat V, Lohsiriwat D, Chinswangwatanakul V, Akaraviputh T, Lert-Akyamanee N. Comparison of shortterm outcomes between laparoscopically-assisted vs. transverse-incision open right hemicolectomy for right-sided colon cancer: a retrospective study. World J Surg Oncol 2007; 5: 49 [PMID: 17498289]
- 38 Tong DK, Law WL. Laparoscopic versus open right hemicolectomy for carcinoma of the colon. *JSLS* 2007; 11: 76-80 [PMID: 17651561]
- 39 Chung CC, Ng DC, Tsang WW, Tang WL, Yau KK, Cheung HY, Wong JC, Li MK. Hand-assisted laparoscopic versus open right colectomy: a randomized controlled trial. *Ann Surg* 2007; 246: 728-733 [PMID: 17968162]
- 40 Braga M, Frasson M, Vignali A, Zuliani W, Di Carlo V. Open right colectomy is still effective compared to laparoscopy: results of a randomized trial. *Ann Surg* 2007; 246: 1010-1014; discussion 1014-1015 [PMID: 18043103]
- 41 Nakamura T, Onozato W, Mitomi H, Naito M, Sato T, Ozawa H, Hatate K, Ihara A, Watanabe M. Retrospective, matched case-control study comparing the oncologic outcomes between laparoscopic surgery and open surgery in patients with right-sided colon cancer. Surg Today 2009; 39: 1040-1045 [PMID: 19997798 DOI: 10.1007/s00595-009-4011-z]
- 42 Veenhof AA, Van Der Pas MH, Van Der Peet DL, Bonjer

- HJ, Meijerink WJ, Cuesta MA, Engel AF. Laparoscopic versus transverse Incision right colectomy for colon carcinoma. *Colorectal Dis* 2010; Epub ahead of print [PMID: 20854441 DOI: 10.1111/j.1463-1318.2010.02413.x]
- 43 Tanis E, van Geloven AA, Bemelman WA, Wind J. A comparison of short-term outcome after laparoscopic, transverse, and midline right-sided colectomy. *Int J Colorectal Dis* 2012; 27: 797-802 [PMID: 22249439 DOI: 10.1007/s00384-011-1404-4]
- 44 Leung KL, Kwok SP, Lam SC, Lee JF, Yiu RY, Ng SS, Lai PB, Lau WY. Laparoscopic resection of rectosigmoid carcinoma: prospective randomised trial. *Lancet* 2004; 363: 1187-1192 [PMID: 15081650]
- 45 Liang JT, Huang KC, Lai HS, Lee PH, Jeng YM. Oncologic results of laparoscopic versus conventional open surgery for stage II or III left-sided colon cancers: a randomized controlled trial. *Ann Surg Oncol* 2007; 14: 109-117 [PMID: 17066227]
- 46 Hinojosa MW, Murrell ZA, Konyalian VR, Mills S, Nguyen NT, Stamos MJ. Comparison of laparoscopic vs open sigmoid colectomy for benign and malignant disease at academic medical centers. *J Gastrointest Surg* 2007; 11: 1423-1429; discussion 1429-1430 [PMID: 17786529]
- 47 Cheung HY, Chung CC, Tsang WW, Wong JC, Yau KK, Li MK. Endolaparoscopic approach vs conventional open surgery in the treatment of obstructing left-sided colon cancer: a randomized controlled trial. *Arch Surg* 2009; 144: 1127-1132 [PMID: 20026830 DOI: 10.1001/archsurg.2009.216]
- 48 Nakashima M, Akiyoshi T, Ueno M, Fukunaga Y, Nagayama S, Fujimoto Y, Konishi T, Noaki R, Yamakawa K, Nagasue Y, Kuroyanagi H, Yamaguchi T. Colon cancer in the splenic flexure: comparison of short-term outcomes of laparoscopic and open colectomy. Surg Laparosc Endosc Percutan Tech 2011; 21: 415-418 [PMID: 22146163 DOI: 10.1097/SLE.0b013e31823aca96]
- 49 Kim HJ, Lee IK, Lee YS, Kang WK, Park JK, Oh ST, Kim JG, Kim YH. A comparative study on the short-term clinicopathologic outcomes of laparoscopic surgery versus conventional open surgery for transverse colon cancer. Surg Endosc 2009; 23: 1812-1817 [PMID: 19263150 DOI: 10.1007/s00464-009-0348-z]
- Akiyoshi T, Kuroyanagi H, Fujimoto Y, Konishi T, Ueno M, Oya M, Yamaguchi T. Short-term outcomes of laparoscopic colectomy for transverse colon cancer. *J Gastrointest Surg* 2010; 14: 818-823 [PMID: 20224982 DOI: 10.1007/s11605-010-1182-2]
- 51 Fernández-Cebrián JM, Gil Yonte P, Jimenez-Toscano M, Vega L, Ochando F. Laparoscopic colectomy for transverse colon carcinoma: a surgical challenge but oncologically feasible. *Colorectal Dis* 2013; 15: e79-e83 [PMID: 23078032 DOI: 10.1111/codi.12067]
- 52 Franks PJ, Bosanquet N, Thorpe H, Brown JM, Copeland J, Smith AM, Quirke P, Guillou PJ. Short-term costs of conventional vs laparoscopic assisted surgery in patients with colorectal cancer (MRC CLASICC trial). Br J Cancer 2006; 95: 6-12 [PMID: 16755298]
- 53 Steele SR, Brown TA, Rush RM, Martin MJ. Laparoscopic vs open colectomy for colon cancer: results from a large nationwide population-based analysis. *J Gastrointest Surg* 2008; 12: 583-591 [PMID: 17846852]
- Vaid S, Tucker J, Bell T, Grim R, Ahuja V. Cost analysis of laparoscopic versus open colectomy in patients with colon cancer: results from a large nationwide population database. Am Surg 2012; 78: 635-641 [PMID: 22643256]
- 55 **Abraham NS**, Young JM, Solomon MJ. Meta-analysis of short-term outcomes after laparoscopic resection for colorectal cancer. *Br J Surg* 2004; **91**: 1111-1124 [PMID: 15449261]
- 56 Tilney HS, Lovegrove RE, Purkayastha S, Heriot AG, Darzi AW, Tekkis PP. Laparoscopic vs open subtotal colectomy

- for benign and malignant disease. *Colorectal Dis* 2006; **8**: 441-450 [PMID: 16684090]
- 57 Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. *Ann Surg* 2004; 240: 205-213 [PMID: 15273542]
- 58 **Bonjer HJ**, Hop WC, Nelson H, Sargent DJ, Lacy AM, Castells A, Guillou PJ, Thorpe H, Brown J, Delgado S, Kuhrij E, Haglind E, Påhlman L. Laparoscopically assisted vs open colectomy for colon cancer: a meta-analysis. *Arch Surg* 2007;
- 142: 298-303 [PMID: 17372057]
- 59 Korolija D, Tadić S, Simić D. Extent of oncological resection in laparoscopic vs. open colorectal surgery: meta-analysis. *Langenbecks Arch Surg* 2003; 387: 366-371 [PMID: 12536332]
- 60 Rondelli F, Trastulli S, Avenia N, Schillaci G, Cirocchi R, Gullà N, Mariani E, Bistoni G, Noya G. Is laparoscopic right colectomy more effective than open resection? A meta-analysis of randomized and nonrandomized studies. *Colorectal Dis* 2012; 14: e447-e469 [PMID: 22540533 DOI: 10.1111/j.1463-1318.2012.03054.x]

P- Reviewers: Gayet B, Sing RF S- Editor: Zhai HH
L- Editor: A E- Editor: Zhang DN

Published by Baishideng Publishing Group Co., Limited

Flat C, 23/F., Lucky Plaza, 315-321 Lockhart Road, Wan Chai, Hong Kong, China Fax: +852-65557188

Telephone: +852-31779906 E-mail: bpgoffice@wjgnet.com http://www.wjgnet.com

ISSN 1007-9327

