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Abstract

Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has
been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain
a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative
model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs), ArcA
and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and
energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out
ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed
regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate .80% of total
metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the
data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by
ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a
0.71 r2 (p,1e-6) correlation between changes in metabolic flux and changes in regulatory activity across fermentative and
nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by
contextualizing the existing transcriptional regulatory network.
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Introduction

Regulation of metabolism in response to shifting availability of

electron acceptors is a fundamental process in all of biology and is

a critical subject for the understanding of pathogenesis, cancer

metabolism, and industrial biotechnology. However, even in the

model organism Escherichia coli, the regulatory network for this

fundamental metabolic function has not been fully elucidated. It

has long been known that facultative anaerobes will hierarchically

utilize external electron acceptors relative to the free energy

change provided by each [1,2]. Oxygen exists at the top of the

hierarchy, electron acceptors like NO3 in the middle, and lactate

or acetate or other fermentation products are at the bottom [3–5].

Many detailed studies have determined that the transcription

factors (TFs) ArcA and Fnr are the key players in managing this

hierarchy through the activation or repression of the electron

transport chain (ETC) machinery specific to an available electron

acceptor [6–11]. It is also largely understood how ArcA senses

redox via the flow of reducing equivalents through the ETC, and

how Fnr directly senses levels of dissolved O2 [1,12,13] and

glutathione [14,15]. However, it is not clear how these two TFs

work together and more importantly why they regulate hundreds

of gene products that lie outside of the ETC and energy

metabolism [3,5]?

Even though many biochemical details of redox regulation have

been elucidated [6,8,16], systems level principles for the global

regulatory response throughout the anaerobic shift remain elusive.

An important missing piece is a clear framework, or design principle,

that elucidates how hundreds of transcriptionally regulated gene

products are coordinately regulated to produce the necessary

quantitative shifts in metabolic flux states. On the purely metabolic

side, certain design principles have emerged through the analysis of

stoichiometric models that identified growth and energy generation

as the two principal dimensions of metabolic network function [17–

19]. It was further shown that linear combinations of these two

dimensions could account for observed flux patterns throughout

nutrient limitations and the anaerobic shift [18,20]. A question now

becomes, what are the corresponding global TFs and how do they

coordinately regulate all the gene products which enable the

metabolic flux map to shift from one optimal state to another?

Here we show how the global TFs ArcA and Fnr coordinately

regulate the primary metabolic dimensions of growth and energy
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generation. We integrated polyomic data sets and used genome-

scale metabolic models to enable a mechanistic understanding of

hundreds of simultaneous and individual regulatory events. This

analysis subsequently provides a link between global regulatory

circuits and global optimality in microbial metabolism.

Results

Genome-scale identification of TF regulatory events
We first identified individual TF regulatory events at the

genome-scale. Side-by-side measurements of RNA transcript

abundance and TF binding were carried out to determine the

structure and causality in E. coli’s transcriptional regulatory

network (TRN). ChIP-chip assays for ArcA and Fnr were

performed under both fermentative and nitrate respiratory

conditions (Figure 1A). Gene expression measurements were then

used to determine causality of activation or repression for each

ArcA or Fnr binding site under these same two conditions (as

detailed in the later heatmap figure legend, Figure S1). We found

102, and 86 (and 143 and 132) binding regions and 58 and 54 (and

95 and 55) causal regulatory events for ArcA and Fnr under

fermentation (and nitrate respiration) conditions, respectively

(Figure 1A, Tables S1, S2, S3, S4). We then compiled the set of

genomic sequences underlying these binding regions for each of

the TFs and used the MEME program [21] to recover previously

identified binding motifs [22,23] (Figure 1B, Tables S5, S6). We

confirmed 180 of 216 (83%) previously known regulatory events

[24] and discovered 132 new binding regions relative to

RegulonDB (Figure 1A), representing an increase of 74% over

current knowledge of the regulatory functions of these two TFs.

We further performed a detailed comparison of our results to

recently published works [16,25] to determine a 78% overlap in

ArcA binding sites and a 50% overlap in Fnr binding sites under

fermentative conditions (Figures S5, S6, S7). In addition, we report

88 novel binding sites for ArcA and 52 novel binding sites for Fnr

under nitrate respiratory conditions highlighting plasticity of the

network throughout shifting external electron acceptors.

We then integrated transcription start sites (TSS) [26] with TF

binding regions to identify promoter architectures [27]. The

location of TF binding motifs within experimentally determined

binding regions were used to prepare histograms of the frequency

of TF binding relative to the TSS (Figure 1B). This analysis

showed that ArcA spans the TSS or 235 box region and represses

transcription while Fnr spans the 241.5 or alpha carboxy terminal

domain and activates transcription [27]. While each of these

regulatory strategies have been shown previously, here can we

show that each strategy is ubiquitous at the genome-scale.

Discovery of transcription factor mediated bidirectional
transcription

Novel cases of divergent transcriptional regulation were found

in this data. The integration of binding regions with gene

expression data revealed 42 regions where two divergent

transcriptional units (TUs) were simultaneously regulated by a

single binding event. Divergent transcriptional regulation has been

observed previously [28] and is known to be mediated by

transcription factors in certain cases. However, systematic

regulation by global TFs has only been observed in limited cases

[29]. We observe a total of 19 inverse, 16 dual activation, and 13

dual repression events for a total of 48 events spread across the 42

regions as some recur under different experimental conditions.

Two examples (Figure 1C) highlight this ‘hard coupling’ of the

transcriptional regulation of seemingly unrelated but contextually

dependent pathways. The acs-nrfABCDE system represents a lowest

common denominator coupling between acetyl-coA synthetase

(acs) acetate scavenging to acetyl-coA and usage of acetyl-coA via

the TCA cycle and nrfABCDE nitrite reductase. Similarly the aroP-

pdhR system couples the transport of aromatic amino acids to the

regulation of pyruvate that acts as their principal precursor

molecule.

The link between the acs and nrfABCD systems has been

inferred/suggested in previous work which attempted to under-

stand how E. coli could survive on acetate as a sole carbon source

under anaerobic conditions [30]. In particular, E. coli cannot

utilize acetate under fully anaerobic conditions because acetate

must be scavenged into acetyl-coA via acs and then utilized by the

TCA cycle. Anaerobically the TCA cycle cannot be used unless

there is an electron acceptor in the ETC to enable oxidative

phosphorylation. Thus, some usage of the TCA cycle via an

alternative electron acceptor such as nitrite or nitrate is necessary

for E. coli to utilize acetate and acetyl-coA anaerobically. This

metabolic feature is physiologically crucial in the gut environment

that is rich in fatty acids that cannot be used if E.coli does not

utilize alternative electron acceptors like nitrite. Hence, the direct

coupling of acs and nrfABCD through bidirectional transcriptional

regulation is consistent with the necessity of a flux through the

nrfABCD system in order for the acetyl-coA formed by acs to be

utilized. The transcriptional coupling acts as bidirectional gate

controlled by ArcA and the redox state of the cell to coordinate

this evolutionarily crucial metabolic capability.

Similarly the aroP-pdhR system couples the transport of aromatic

amino acids to the regulation of pyruvate that acts as their

principal precursor molecule through the action of Fnr. To

understand the network level connection between the aromatic

amino acid transporter (aroP) and the pyruvate dehydrogenase

repressor TF (pdhR) one can examine Figure 2, which shows the

connection between catabolic biomass precursors and biosynthetic

pathways. Tyrosine and tryptophan are both made directly from

PEP that is rapidly dephosphorylated into pyruvate. The

corresponding activation of aroP and repression of pdhR is

consistent with an increased need for amino acid transport when

the precursors for biosynthesis (PEP) are critical to maintain

cellular energy levels. This characteristic is supported by a

dampening of the switch upon the transition to nitrate respiration,

resulting in decreased transporter expression when less pyruvate is

needed for fermentation and can thus be shuttled to amino acid

biosynthesis. In general, pdhR acts as a classic repressor that ‘‘pops

off’’ of its binding site in the presence of pyruvate and hence allows

Author Summary

All heterotrophic organisms must balance the deployment
of consumed carbon compounds between growth and the
generation of energy. These two competing objectives
have been shown, both computationally and experimen-
tally, to exist as the principal dimensions of the function of
metabolic networks. Each of these dimensions can also be
thought of as the familiar metabolic functions of catabo-
lism, anabolism, and generation of energy. Here we detail
how two global transcription factors (TFs), ArcA and Fnr of
Escherichia coli that sense redox ratios, act on a genome-
wide basis to coordinately regulate these global metabolic
functions through transcriptional control of enzyme and
transporter levels in changing environments. A model
results from the study that shows how global transcription
factors regulate global dimensions of metabolism and
form a regulatory hierarchy that reflects the structural
hierarchy of the metabolic network.
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expression of pyruvate dehydrogenase and other oxidative

enzymes. Anaerobically pyruvate dehydrogenase (aceEF-lpd) is

repressed regardless of pdhR by ArcA and Fnr and given that there

is also a higher concentration of pyruvate it would presumably not

be active. Thus, while this switch is highlighted anaerobically in

that full repression of pdhR is concomitant with aroP activation its

physiological significance is more prevalent under nitrate or even

fully aerobic conditions in which it can function to directly couple

and balance the catabolic and anabolic demands around pyruvate

which acts as a critical second messenger in the aerobic-anaerobic

shift [6]. It is very insightful to view such a switch as it is ramped

fully up under anaerobic conditions and then turned down under

nitrate respiration to maintain a physiologically crucial metabolic

balance.

Figure 1. ChIP-chip reveals hundreds of new binding regions and regulatory mechanisms. (A) Triplicate averaged tracks of ChIP-chip
intensity plotted along the length of the genome for ArcA and Fnr under fermentation. We show 83% of previously reported regulatory regions are
confirmed (purple) and 132 binding regions (bright blue) are newly discovered relative to RegulonDB. All discovered peaks are shown and operon
names included when ChIP peaks also corresponded to differential gene expression for a given operon. (B) Binding motifs are recovered from ChIP
binding sites. Histograms of the frequency of motif occurrence relative to the transcription start site (TSS) are plotted and overlaid with gene
expression data to reveal ArcA repression via blocking of the 235 box and Fnr activation via upstream binding at 241.5. (C) Transcription factor
mediated bi-directional transcription is observed in which a single binding region is shown to regulate divergently transcribed transcriptional units.
doi:10.1371/journal.pgen.1004264.g001
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Ubiquitous regulation of the principal dimensions of
metabolism by ArcA and Fnr

Previous work has identified biomass production and energy

production as the two principal dimensions characterizing the

overall function of metabolic networks [17–19]. This duality in

function is conceptually equivalent to considering heterotrophic

metabolism as the standard combustion equation (Figure 2) in

which an electron donor (glucose) is broken apart with an electron

acceptor (oxygen, nitrate, etc.) to form biomass, energy, waste and

heat. Here we use the terms catabolism to describe oxidation of

the electron donor, anabolism to describe biomass formation, and

chemiosmosis to describe energy generation. The genes in each of

these categories were determined by a manual curation of the E.

coli metabolic model [31] and associated literature sources [4,26].

Catabolic genes correspond to nutrient transporters, recycling

machinery, and central catabolic machinery. Anabolic genes

correspond to biosynthetic and macromolecular synthesis path-

ways. Chemiosmotic genes correspond to the electron transport

chain (ETC), fermentation pathways, and ion pumps (Figure 3).

From the data sets described above, the regulation of these three

classes of genes by ArcA and Fnr can be analyzed using their

metabolic functions as context. ArcA and Fnr directly regulate a

total of 127 catabolic genes including 49 transporter genes, 38

recycling or secondary catabolic enzymes, 33 central metabolic

Figure 2. ArcA and Fnr ubiquitously regulate the three branches of metabolism. Transcription factor regulated gene products are shown in
terms of their biological context in the metabolic network. The principal dimensions of metabolism are shown as two large arrows for the formation
of biomass or energy. All of the 12 biomass precursors (10/12 regulated) and 9 primary electron donors (9/9 regulated) are shown with arrows flowing
into biomass formation or chemiosmosis. The anabolic process is pictorialized with the number of genes regulated in each of the biosynthetic
pathways and the chemiosmotic process is shown primarily via the electron transport chain. Numbers indicate the number of regulated genes
upstream or downstream of key precursors (e.g. 19 genes encoding reactions for transport and secondary catabolism pathways are regulated
upstream of pyruvate).
doi:10.1371/journal.pgen.1004264.g002

Genome-Scale Control Circuitry of Redox Metabolism
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Figure 3. Integration of ChIP-chip, gene expression, and biological context. Specific regulation of each gene product by ArcA or Fnr under
strictly anaerobic and nitrate respiratory conditions are shown as columns. Each box is the result of integration between ChIP-chip and gene
expression data in which a TF binding peak was identified and gene expression microarrays showed differential expression upon knockout of the
transcription factor in matched conditions. The genes are grouped biologically according to the principal dimensions described in figure 2.
Immediate broad trends that emerge are catabolic repression by ArcA and chemiosmotic and anabolic activation by Fnr.
doi:10.1371/journal.pgen.1004264.g003
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genes, and 7 associated TFs (Figures 2,3). In particular, recovery of

all of the classic targets of ArcA and Fnr is complemented by the

simultaneous discovery of transporter genes and recycling enzymes

like peptidases and proteases (Figure 3). It can also be recognized

that there existed many classically unknown glycolytic targets

along with generally unrecognized activation of the glucose

transporter ptsG. Activation of ptsG by Fnr is consistent with the

fact that cells nearly double their uptake of carbon during

fermentative growth compared with aerobic growth.

In anabolism, ArcA and Fnr directly regulate 54 genes including

34 metabolite synthesis genes, 14 macromolecular synthesis genes,

and 6 TFs. Broad trends of nucleotide biosynthesis activation and

amino acid biosynthetic activation of nucleotide precursors is

consistent with redox related demands. However, perhaps the most

important of these findings is the regulation of both transhydro-

genases (sthA, pntAB) in E. coli. Previous work has shown that a large

portion of the NADPH used for biosynthetic reactions comes from

the membrane bound transhydrogenase PntAB [32] and that the

soluble SthA is used for re-oxidation of NADPH under aerobic

growth with excess glucose. Our data shows that ArcA activates

pntAB and represses sthA in a redox-dependent fashion consistent

with an increased need for NADPH under nitrate respiration

relative to fermentation (Figure 3). This regulatory shuttling of

reduction equivalents thus plays a critical role in maintaining the

balance between growth and energy generation by increasing

growth only once when energy demands are satisfied.

In the chemiosmotic category we observe regulation of 120

genes including 83 genes of the ETC, 6 for fermentation, 21 for

ion pumps, 2 for motility, and 8 TFs. Nearly all of the regulation

can be shown to coincide with redox related demands including

regulation of ion pumps which coincides with an increased need to

maintain a positive electrical gradient across the inner membrane

to make up for the diminished proton gradient. We also observed

strong regulation of the flhDC, gadW, and appY transcription

factors. The flhDC system is a master regulator for the motility and

flagellum apparatus of the cell that feeds off the chemiosmotic

gradient in search of nutrients. appY and gadW are key regulators of

cytochromes and acidic tolerance, respectively. After including

regulation through appY we can conclude that ArcA and Fnr

exhibit control either directly or indirectly over 15 out of the 16

known dehydrogenase and oxidoreductase reactions in E. coli [4]

(Figures 2,3).

High-level architecture of the metabolic-regulatory
network

Enumerating regulatory events is informative, but how do they

all together form a coherent regulatory logic that produces

meaningful physiological states? Network analysis of these

regulatory interactions reveals a qualitative feedforward and

feedback flow-based model of the primary metabolic dimensions

(Figure 4A). The model input is the total set of catabolites (glucose

or electron donor) available to the cell that are oxidized based on

the availability of an electron acceptor into a ratio of reduced to

oxidized components. These components (primarily NADH/NAD

and NADPH/NADP) are then used by the anabolic machinery to

generate biomass, or by the chemiosmotic machinery to generate

energy as outputs. The ratio of reduced-to-oxidized components is

sensed by ArcA and Fnr [1], and they can feedback and

feedforward regulate the catabolic, anabolic, and chemiosmotic

processes in a coordinated fashion to maintain the ratio.

Consistent with this schema, it has been shown that TFs are ideal

flux sensors [33].

Figure 4. Flow based model of the metabolic-regulatory network explains regulation throughout the anaerobic shift. (A) Considering
a mass balance around the ratio of reduced to oxidized molecules allows the unification of catabolism, anabolism, and chemiosmosis into a single
process. The ratio of reduced to oxidized molecules is then sensed by ArcA and Fnr to elicit corresponding feedforward and feedback regulatory
circuitry which allows the cell to maintain this critical ratio. (B) Mapping of the regulation of gene products (Figure 3) for each branch of the circuit
reveals a broad trend of feedforward with feedback-trim regulation. Under fermentative conditions the redox ratio is high and the observed
regulation works to lower the input and activate the output to bring the ratio down. Under nitrate respiration, the ratio drops and the circuit
maintains a similar number of connections but is shown to decrease in gross activity levels.
doi:10.1371/journal.pgen.1004264.g004
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Feedforward with feedback-trim architecture regulates
the anaerobic shift

Analyzing the regulatory events within the context of the

qualitative flow-based model reveals a feedforward with feedback-

trim architecture of the overall regulatory logic. Counting the

number of genes that are activated or repressed (Figure 3) provides

a measure of the extent of feedforward or feedback regulation

exerted (Figure 4B). Under fermentation ArcA represses 70

catabolic genes and Fnr activates 75 chemiosmotic genes. Under

nitrate respiration ArcA represses 73 catabolic genes and Fnr

activates 61 chemiosmotic output genes. A similar trend is

observed for regulation of the anabolic circuitry in which Fnr

activates 14 and 11 genes under fermentation and nitrate

respiration. This circuitry is consistent with fast sensing of oxygen

by Fnr and slow but continuous sensing of redox flow through the

ETC by ArcA [34].

The regulatory architecture revealed by this qualitative model is

comprehensive and novel, but primarily topological. To more

quantitatively assess the functions of the observed transcriptional

regulatory architecture on the metabolic network that it regulates

we sampled all allowable network flux states of a highly curated

genome-scale metabolic model of E. coli metabolism [31] under

both fermentative and nitrate respiratory conditions. This

sampling of allowable flux states of the metabolic network was

then integrated with the experimentally determined regulatory

architecture to discern the amount of total flux (sum of flux loads

across all reactions) regulated by ArcA and Fnr under each of the

conditions studied. This calculation revealed that 60% and 57%

(and 88% and 80%) of all metabolic flux is directly (and indirectly)

controlled by ArcA and Fnr under fermentative and nitrate

respiratory conditions respectively (Tables S7, S8). We further

show that 69% and 62% of the catabolic fluxes producing each of

the redox molecules and biomass precursors along with 71% and

69% of the downstream anabolic and chemiosmotic fluxes are

directly regulated under fermentative and nitrate respiratory

conditions respectively (Figure S3, Table S9, S10). From a gene

level we find that 246 genes are differentially expressed (fdr,.05,

fold change .2) between fermentative and nitrate respiratory

conditions and that 236/246 or ,96% of the genes are directly

(73) or indirectly (163) regulated by ArcA or Fnr (Table S12).

Taken together, these measurements quantify the global metabolic

regulation of flux by ArcA and Fnr and provide further evidence

towards the proposed feedforward with feedback-trim regulatory

architecture.

To provide more validation for the feedforward with feedback-

trim architecture at the genome-scale we first assessed the set of 91

reactions that significantly differed (flux cutoff of 0.25 mmol/

gDW-1 -h-1) between fermentation and nitrate respiration; gDW

is denotes grams dry weight. We were then able to show that 89 of

the 91 reactions were regulated directly (40 reactions) or indirectly

(49 reactions) by ArcA or by Fnr (Table S11). We then calculated

the change in flux for each of these 89 reactions between the two

conditions along with the change in regulatory strength for the

genes encoding these 89 reactions across the same conditions

(Table S11). We plotted the change in flux versus the change in

regulation (Figure 5A) and calculated an r2 correlation value of

0.71 (p,1e-6) for the directly regulated genes. This correlation

provides quantitative evidence for the logic of the regulatory

circuit in the transition from fermentation to nitrate respiration.

The linear positive slope shows not only that the reactions

responsible for the redox shift are regulated, but also that these

reactions are quantitatively regulated to help minimize the redox

ratio in concert with the quantitative model predictions. Most of

the ArcA regulated reactions are de-repressed, as indicated by the

lightening shade of blue under nitrate respiration (Figure 5B).

Most of the Fnr regulated reactions are de-activated as highlighted

by the lightening shade of yellow under nitrate respiration

(Figure 5B). The broad repression of crucial catabolic genes by

ArcA and activation of chemiosmotic genes by Fnr is also shown

through analysis of C-13 MFA data generated between wild type

and Dfnr or DarcA strains (Figure S8). This trend of redox ratio

minimization was so strong that the only outliers resulted in

identification of new biology in the form of transport-coupled

redox balancing for allosterically regulated amino acid biosyn-

thetic reactions (Figure S4, Text S1).

We then sought to show that this quantitative regulatory model

was truly redox dependent and not just fermentative/nitrate

respiration specific. We thus took C-13 measured flux data [35] for

E. coli grown aerobically in batch under either fully respiratory

galactose conditions or partially fermentative glucose conditions.

Even though both conditions are aerobic, we hypothesized that a

similar shift in the redox ratio as observed between fully

fermentative and nitrate respiration would occur given the

comparison between a partially fermentative and fully respiratory

condition. We made the same plot (Figure 5C) as in Figure 5a and

even used regulatory strengths taken from the fermentative/nitrate

shift. Only 16 flux measurements could be mapped of which only 9

showed any difference between glucose and galactose conditions.

Of those 9 fluxes we were able to see a clear correlation for 7 and

an overall weak but significant r2 correlation value of .26

(p = .079). This plot again shows genes regulated by ArcA being

de-repressed and genes regulated by Fnr being de-activated upon

the shift to more oxidative conditions (Figure 5D).

Hierarchy of the joint metabolic-regulatory network
An expansion of the top-level of the flow-based model

contextualizes the function of the hundreds of individual gene

products and provides a window into the structure of the full

metabolic-regulatory network (Figure 6A). Each different type of

catabolite (Figure 3, Figure 4A, Figure 6A) is maintained via

production fluxes (transport or recycling) and consumption fluxes

(secondary catabolism or central catabolism). The catabolism

specific production set consists of genes for amino acid,

carbohydrate, lipid, and nucleic acid transport and recycling.

The same expansion can be performed for anabolism and

chemiosmosis. For anabolism, the total biomass is a result of the

sum of the rate of metabolite biosynthesis plus the rate of

macromolecular synthesis [36] minus the rate of dilution and

recycling. For chemiosmosis, the total gradient is a sum of protons

pumped across the inner membrane via the ETC, proton

equivalents pumped across the inner membrane via fermentation,

and ions translocated across the inner membrane minus the usage

of the gradient for ATP production, nutrient transport, and

motility [37].

This expansion also accounts for the classically observed

hierarchy [38] of the TRN via sensing of lower level metabolites

and subsequent regulatory control of the TFs themselves or of the

production or consumption pathways for sensed metabolites

(Figure 6B). A full tracing of the TRN to explain the effects of

the global TF deletion is consistent with 69% of observed

differential expression (Figure S2).

Discussion

This work presents a systems level and genome-scale mecha-

nism for the coordinate action of global transcription factors

throughout an electron acceptor shift. Our mechanism accounts

for the previously unexplained genes regulated by ArcA and Fnr, it

Genome-Scale Control Circuitry of Redox Metabolism
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predicts changes in flux patterns, and perhaps most importantly

shows that the classically observed hierarchy of transcriptional

regulation mirrors the hierarchy of dimensions in the metabolic

network. By basing our work off of the extensive body of detailed

biological literature and the more recent work of principal

dimensionality in metabolic networks we are able to present a

systematic and remarkably consistent genome-scale mechanism.

At the local level, we first greatly expanded the number of cases

of promoter architectures [39]. This validates and highlights the

importance of understanding initiation mechanisms, as they may

be extendable to a systems level in future development of

computational models. We were then able to make the novel

discovery that 42 regions across the genome contained divergently

transcribed TUs controlled by a single global TF binding region.

We recognize that due to ChIP-chip resolution it is possible (and

even likely) that multiple binding sites exist under the larger ChIP

peak, however the local proximity still affords the same hard-

coupling within the regulon. This hard coupling suggests switch

like mechanisms in which sets of seemingly unrelated genes are

jointly regulated to obey non-obvious systems level constraints. We

identify two such cases of this in the acs-nrfABCDE operon and the

aroP-pdhR operon.

To understand systems level mechanisms of transcriptional

regulation we turned to previous work that showed the principal

Figure 5. Quantitative correlation of shifts in regulatory strength between experimental conditions with shifts in flux through
regulated enzymes. (A) The decrease in activity levels from anaerobic to nitrate is quantified by calculating a correlation between the change in
flux for all altered reactions across nitrate and anaerobic conditions with the change in level of regulation across the same conditions. (B) Overlaying
information for the specific regulators shows that ArcA is involved in the derepression of key reactions going from fermentation to nitrate respiration
and Fnr is involved in deactivation. (C) The shift between glucose and galactose under batch growth mirrors the respiratory shift from fully
fermentative to nitrate respiratory conditions. C-13 labeled fluxomic data generated for wild type cells under both glucose and galactose batch
conditions is used to generate the same plot as in (A) and is even plotted against the same regulatory strengths between fully fermentative anaerobic
cultures and nitrate respiring cultures. (D) One can again see that key ArcA regulated genes are de-repressed whereas Fnr regulated genes are de-
activated.
doi:10.1371/journal.pgen.1004264.g005

Genome-Scale Control Circuitry of Redox Metabolism
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Figure 6. Topological organization of the joint metabolic-regulatory network. (A) Qualitative model where levels of the hierarchy represent
a coarse graining of the total metabolic network around pools of key metabolites. Each metabolite has mass balanced production and consumption
fluxes and often a corresponding TF sensor that can regulate the input and output fluxes. (B) Quantitative assessment of this regulatory scheme done
by curation and classification of the regulatory targets for every TF known to sense a metabolite in the iJO1366 model (Table S13). The classification
of a gene product into the catabolic, anabolic, or chemiosmotic metabolic pathways was done identically to the classification of figure 3. The main
point is that the hierarchy of the regulatory network does in fact mirror the hierarchical dimensionality of the metabolic network. Regulators which
sense a catabolite only regulate catabolic genes, regulators which sense an anabolite only regulate anabolic genes, and regulators which sense a
chemiosmotic component only regulate chemiosmotic genes. However, metabolites that exist as both a catabolite and anabolite, or as both a

Genome-Scale Control Circuitry of Redox Metabolism

PLOS Genetics | www.plosgenetics.org 9 April 2014 | Volume 10 | Issue 4 | e1004264



dimensions of a metabolic space were biomass and energy

generation. We hypothesized that global regulators must play a

role in regulating globally decisive metabolic dimensionality. This

hypothesis is supported by broad regulation across all of these

main categories and the abilities of ArcA and Fnr to sense the

molecules that govern the branch point between the two

dimensions.

Although we were able to make an unbiased characterization of

the genes in each of the categories using the iJO1366 model we

were still unsatisfied with such a coarse grained approach and

sought to understand the composition of each of the categories.

This led us to a hierarchical expansion and classification of

pathways around key metabolic intermediates. Going on in this

fashion led us to realize that the global transcriptional regulatory

hierarchy plays out not only on the level of TF-TF regulation, but

perhaps more importantly at the level of global TFs regulating the

production or consumption fluxes of lower level metabolites which

are correspondingly sensed by other intermediate regulators. In

essence, the regulatory network is shaped by the underlying

metabolite pools and vice versa.

After determining the broad circuitry of the metabolic-

regulatory network we mapped our data onto it and discovered

that a strong feedforward with feedback trim architecture

dominates at the genome scale. This occurs via ArcA’s strong

repression of input catabolic circuits coupled with Fnr’s strong

activation of downstream chemiosmotic and anabolic circuitry.

This circuit is corroborated by Fnr’s ability to sense oxygen [13]

which will diffuse quickly whereas ArcA will more continuously

sense the flow of reducing equivalents through the ETC by sensing

of the ratio of reduced to oxidized quinones [12]. This pattern of a

fast component feeding forward for downstream ‘‘planning’’

coupled with a slower but continuous feedback sensor is a

common pattern in basic process control schemes [40]. If coupled

with other common process control patterns such as hierarchical

and PID control one can envision a process control based model

for the entire joint metabolic-regulatory network.

This work presents a formal integration and reconstruction of

over 50 years of research on E. coli metabolism and its

transcriptional regulation. The result is a detailed and coherent

hierarchical view of the regulation of the principal dimensions of

metabolism through a critical environmental shift. We find that

the mathematical notions of optimality in metabolic functions are

in line with our observations of global regulation. TRNs are not

just TF-gene networks but rather TF-gene-enzyme-reaction flux

networks, that are tightly integrated as levels or ratios of

metabolites can drive TF activity [41,42]. The full elucidation of

an electron acceptor response in the important model organism, E.

coli, may have implications for similar metabolic responses in other

organisms. For cancer, recent focus has shifted towards an

understanding of the metabolic drivers and Warburg effect, where

the hypoxia inducible factor (HIF) [43] senses the redox ratio and

feedforward or feedback regulates genes producing or consuming

reduction potential.

Taken together, we are able to show how the two principal

dimensions of metabolism are controlled in a shifting environment

by global TFs through the use of polyomic data sets and genome-

scale metabolic models. This study is likely to be useful as a guide

for similar studies in other organisms where the same tools for

experimentation and analysis are available.

Methods

Bacterial strains and growth conditions
All strains used in this study were E. coli K-12 MG1655 and its

derivatives. The E. coli strains harboring Fnr-8myc and ArcA-

8myc were generated as described previously [44]. The deletion

mutants (Dfnr and DarcA) were constructed by a l red and FLP-

mediated site-specific recombination method. Glycerol stocks of E.

coli strains were inoculated into M9 minimal medium containing

0.2% (w/v) carbon source (glucose) and 0.1% (w/v) nitrogen

source (NH4Cl), and cultured overnight at 37uC with constant

agitation. The cultures were diluted 1:100 into fresh minimal

medium and then cultured at 37uC to an appropriate cell density

with constant agitation. For the anaerobic cultures, the minimal

medium were flushed with nitrogen and then continuously

monitored using a polarographic-dissolved oxygen probe (Cole-

Parmer Instruments) to ensure anaerobicity. For nitrate respiration

20 mmol potassium nitrate was added.

ChIP-chip
To identify Fnr and ArcA binding regions in vivo, we used the

ChIP-chip approach as described previously [44,45]. Briefly, cells at

appropriate cells density were cross-linked by 1% formaldehyde at

,20uC for 25 min. Following the quenching of the unused

formaldehyde with a final concentration of 125 mM glycine at

,20uC for 5 min, the cross-linked cells were harvested and washed

three times with 50 ml of ice-cold Trisbuffered saline. The washed

cells were resuspended in 0.5 ml lysis buffer composed of 50 mM

Tris-HCl (pH 7.5), 100 mM NaCl, 1 mM EDTA, 1 mg/ml

RNaseA, protease inhibitor cocktail (Sigma) and 1 kU Ready-Lyse

lysozyme Epicentre). The cells were incubated at 37uC for 30 min

and then treated with 0.5 ml of 2 Å,IP buffer with the protease

inhibitor cocktail. The lysate was then sonicated four times for 20 s

each in an ice bath to fragment the chromatin complexes using a

Misonix sonicator 3000 (output level, 2.5). The range of the DNA

size resulting from the sonication procedure was 300–1,000 base

pairs (bp). The specific antibodies that specifically recognizes myc

tag (9E10, Santa Cruz Biotech) were used to immunoprecipitate

each chromatin complex, respectively. For the control (mock-IP),

2 mg of normal mouse IgG (Upstate) was added into the cell extract.

The remaining ChIP-chip procedures were performed as described

previously [44,45]. The high-density oligonucleotide tiling arrays

used to perform ChIP-chip analysis consisted of 371,034 oligonu-

cleotide probes spaced 25 bp apart (25 bp overlap between two

probes) across the E. coli genome (Roche NimbleGen). After

hybridization and washing steps, the arrays were scanned on an

Axon GenePix 4000B scanner and features were extracted as a pair

format by using NimbleScan 2.4 software (RocheNimbleGen).

qPCR
To monitor the enrichment of promoter regions, 1 mL

immunoprecipitated DNA was used to carry out gene-specific

qPCR. The quantitative real-time PCR of each sample was

performed in triplicate using iCycler (Bio-Rad Laboratories) and

SYBR green mix (Qiagen). The real-time qPCR conditions were

as follows: 25 mL SYBR mix (Qiagen), 1 mL of each primer

(10 pM), 1 mL of immunoprecipitated or mock-immunoprecipi-

tated 3DNA and 22 mL of ddH2O. All real-time qPCR reactions

were done in triplicates. The samples were cycled to 94uC for 15 s,

catabolite and chemiosmotic component, tend to have regulators which regulate genes in each of the given categories. Similarly, TFs which sense
molecules that are biomass precursors and energy precursors will necessarily globally regulate metabolic genes in all three categories. All curation
results are available in a functional form at http://nbviewer.ipython.org/gist/steve-federowicz/f3a1ad0f86158d3f672e.
doi:10.1371/journal.pgen.1004264.g006
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52uC for 30 s and 72uC for 30 s (total 40 cycles) on a LightCycler

(Bio-Rad). The threshold cycle values were calculated automati-

cally by the iCycler iQ optical system software (Bio-Rad

Laboratories). Any primer sequences used were described previ-

ously [44].

Transcriptome analysis
Samples for transcriptome analysis were taken from exponen-

tially growing cells. From the cells treated by RNAprotect Bacteria

Reagent (Qiagen), total RNA samples were isolated using RNeasy

columns (Qiagen) in accordance with manufacturer’s instruction.

Total RNA yields were measured using a spectrophotometer

(A260), and quality was checked by visualization on agarose gels

and by measuring the sample A260/A280 ratio (.1.8). Affymetrix

GeneChip E. coli Genome 2.0 arrays were used for genome-scale

transcriptional analyses. cDNA synthesis, fragmentation, end-

terminus biotin labeling, and array hybridization were performed

as recommended by Affymetrix standard protocol. Raw CEL files

were analyzed using robust multi-array average for normalization

and calculation of probe intensities. The processed probe signals

derived from each microarray were averaged for both the wild

type and deletion mutant strains.

ChIP-chip and expression data analysis. To identify TF-

binding regions, we used the peak finding algorithm built into the

NimbleScan software. Processing of ChIP-chip data was per-

formed in three steps: normalization, IP/mock-IP ratio computa-

tion (log base 2), and enriched region identification. The log2

ratios of each spot in the microarray were calculated from the raw

signals obtained from both Cy5 and Cy3 channels, and then the

values were scaled by Tukey bi-weight mean. The log2 ratio of

Cy5 (IP DNA) to Cy3 (mock-IP DNA) for each point was

calculated from the scanned signals. Then, the bi-weight mean of

this log2 ratio was subtracted from each point. Each log ratio

dataset from duplicate samples was used to identify TF-binding

regions using the software (width of sliding window = 300 bp). Our

approach to identify the TF-binding regions was to first determine

binding locations from each data set and then combine the

binding locations from at least five of six datasets to define a

binding region using the MetaScope software (http://sbrg.ucsd.

edu/Downloads/MetaScope). Raw gene expression CEL files

were normalized using background corrected robust multi-array

average implemented in the R affy package. To detect differential

expression between the wild type and TF deletion strains we

applied a two-tailed unpaired students t-test between the

experimental triplicates for the wild type and gene deletion strains.

This was followed by a false discovery rate adjustment. Before

performing the FDR correction we removed all genes that

exhibited an expression level below the background across all

experiments. The background level was calculated as the average

expression level across all intergenic probes. We then only

considered genes meeting a 5% FDR (false discovery rate)-adjusted

P-value cut-off to be differentially expressed. ChIP binding tracks

for Figure 1a and the heatmap for Figure 3 were generated using D3

[46]. Related code is available at http://nbviewer.ipython.org/gist/

steve-federowicz/7cceedba73982c0ae995. All raw and processed

data have been deposited in NCBI/GEO under accession number

GSE55367 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =

GSE55367).

Motif searching
The ArcA and Fnr binding motif analysis was completed using

the MEME and FIMO tools from the MEME software suite [21].

We first determined the proper binding motif and then scanned

the full genome for its presence. The elicitation of the motif was

done using the MEME program on the set of sequences defined by

the ArcA and Fnr binding regions respectively. Using default

settings the previously determined ArcA and Fnr motifs were

recovered and then tailored to the correct size by setting the width

parameter to 18-bp and 16-bp respectively. We then used these

motifs and the PSPM (position specific probability matrix)

generated for each by MEME to rescan the entire genome with

the FIMO program.

Promoter architecture determination
We integrated transcription start sites (TSS) with our TF

binding regions to identify promoter architectures genome wide

[27,47]. We first determined the location of motif binding sites

within experimentally determined binding regions. We then

calculated the distance between motif center position and

previously determined TSS locations [26]. Finally, we prepared

a histogram of the number of motifs that occur at varying distances

relative to the TSS (Figure 1B) and included the gene expression

data to determine the regulatory outcome of each binding event.

The results showed that ArcA spans the TSS or 235 box region

and represses transcription while Fnr spans the 241.5 or alpha

carboxy terminal domain [47] and activates transcription. The

histograms also reveal the previously reported trend [48] of motif

frequency oscillation at a roughly 10.5 bp interval consistent with

helical phasing of the DNA strand.

Genome-scale metabolic sampling
To perform sampling we first generated pFBA [49] constrained

models of the iJO1366 [31] metabolic model corresponding to

fermentative and nitrate respiratory conditions. Fermentative

conditions were simulated by setting the lower bound of the

oxygen exchange reaction (EX_o2) to zero. Nitrate respiratory

conditions were simulated by setting the lower bound for nitrate

uptake (EX_no3) to 220 mmol gDW21 h21 (mirroring experi-

mental addition of 20 mmol KNO3) along with the lower bound of

EX_o2 set to zero. pFBA constrained models were generated by

first using the convertToIrreversible() function of the COBRA

toolbox [50] followed by a standard FBA for growth rate. This

growth rate was then imposed as a constraint in a subsequent

optimization that found the minimum sum of flux able to achieve

that growth rate. Finally, using the gpSampler() [50] method we

sampled each of the pFBA constrained models. All sampling runs

were for a full 24 hours to ensure a mixing fraction below .55.

After sampling was performed we took the average across the 7046

sampling points (2n where n = 3,523 reactions in the metabolic

model). Sampling results were then interfaced with the regulatory

network and metabolic model via the COBRApy project (http://

opencobra.sourceforge.net/openCOBRA), iPython notebook

[51], and in-house databases.

Supporting Information

Figure S1 Workflow overview of the experimental and compu-

tational analysis process. An integrated and iterative loop was used

to generate the integrated regulatory and metabolic analysis.

(PDF)

Figure S2 We performed a detailed comparison of the

discrepancies between the ChIP data for ArcA and Fnr generated

in this study vs. the ChIP data generated in the studies by Park

et al. and Myers et al. This comparison is only performed for data

generated under fermentative conditions as no other comparable

conditions were assayed in the Park et al. and Myers et al. studies.

The overall conclusion can be seen that our ArcA data is very

similar but our Fnr data has significant differences. All of the code
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and results for this curation can be viewed at http://nbviewer.

ipython.org/gist/steve-federowicz/aa44c9d8add955f4ada7 for

Fnr and http://nbviewer.ipython.org/gist/steve-federowicz/

1c5017c6ce419234019a for ArcA.

(PDF)

Figure S3 We performed a detailed comparison of the expression

data for Dfnr and DarcA strains compared to a wild type strain that

were generated in our study versus that generated by the studies of

Park et al. and Myers et al. This comparison is only performed for

data generated under fermentative conditions as no other

comparable conditions were assayed in the Park et al. and Myers

et al. studies. The overall conclusion here is that most of the

differences in each case were due to genes that were either not

expressed or lowly expressed in our data. These differences can be

primarily attributed to different measurement technologies used for

gene expression measurement. We used affymetrix arrays through-

out this study which generally do not have as high of a dynamic

range as RNAseq or Nimblegen tiling arrays used in the studies of

Park et al. and Myers et al. However, there is still a slight bias

towards our ArcA data having reasonably similarity but our Fnr

showing noticeable differences. All of the code and results for this

curation can be viewed at http://nbviewer.ipython.org/gist/steve-

federowicz/8c0e96ac208264e623b9 for Fnr and http://nbviewer.

ipython.org/gist/steve-federowicz/05659c90b49abc049a42 for ArcA.

(PDF)

Figure S4 We performed a detailed comparison of the direct

regulatory targets for ArcA and Fnr between our study and the

studies of Park et al. and Myers et al. Direct regulatory targets are

defined as genes that contain an upstream ChIP binding region

along with significant differential gene expression between the

knockout TF strain and a wild type strain. These comparisons show

that for ArcA, the 21 discrepancies can be almost uniformly

attributed to noise in highthroughput data in which some solid

information exists, but ultimately falls below stringent cutoffs. A

similar picture also emerges for Fnr with almost every discrepancy

containing some type of comparable data in our study. All of the

code and results for this curation can be viewed at http://nbviewer.

ipython.org/gist/steve-federowicz/1cbb68842ab0a0571ff0 for Fnr

and http://nbviewer.ipython.org/gist/steve-federowicz/f2b3d25f

114914147c81 for ArcA.

(PDF)

Figure S5 Regulation of fluxes around key metabolic interme-

diates is quantified via the integration of computational sampling

of the iJ01366 metabolic network and experimentally generated

regulation data. Twenty-four different metabolites are profiled,

including 12/13 biomass precursors, 9/9 primary electron donors,

and the three primary electron carriers, H+, NADH, and

NADPH. Each node map diagram shows the split between the

amount of regulated vs. unregulated flux that goes into the

production or consumption of each metabolite. The notable

pattern is repression of the consumption and often production

upon a shift to nitrate respiratory conditions. This occurs primarily

as a means of negative feedback on the flux through these core

nodes. In fact these diagrams fail to show that under fermentative

conditions these same fluxes through core nodes are even more

highly repressed. This occurs because the metabolic network at

optimality is already in line with the regulation, and hence does

not carry flux through many of the reactions that are shown to be

repressed under nitrate respiratory conditions. This result led us to

make the scatter plot of Figure 5A which more clearly displays the

higher degree of repression in fermentation vs. nitrate respiratory

conditions along with deactivation through the shift. All data

tables and associated code is available at http://nbviewer.ipython.

org/ea455904c0d7cda4bfba.

(PDF)

Figure S6 We compared C-13 MFA derived flux values [36]

gathered for wild type strains and Dfnr or DarcA strains under

partially fermentative glucose batch growth. It can be seen that

deletion of arcA does cause de-repression of the key catabolic fluxes

of the TCA cycle. This causes less flux to be directed towards the

fermentative chemiosmotic pathways ultimately wasting energy.

(PDF)

Figure S7 Transport coupled redox balancing. After sampling

the metabolic model and determining all reactions that produce or

consume NADH, we identified only 5 reactions that carried flux

and were not regulated by ArcA of Fnr. We found that one

encoded fre, a constitutively expressed NAD generation enzyme,

and the other four, serA, tyrA, metF, and hisD all encode amino acid

biosynthetic enzymes. We then took into consideration a puzzling

finding of newly discovered and highly significant regulation of

amino acid transporters for serine, tyrosine, methionine and

histidine. We noticed that for serA and tyrA in particular, the

NADH generating reactions were the subject of end product

inhibition by serine and tyrosine. Thus we can hypothesize that

activation of the uptake transporters for these amino acids will

cause feedback inhibition of the enzymes and thus maintain the

expression of critical metabolic enzymes while simultaneously

modulating their redox related contributions.

(PDF)

Figure S8 Causative classification of genes differentially ex-

pressed log two fold between a wild type and DarcA or Dfnr strain

under fully fermentative conditions. After deletion of the arcA and

fnr transcription factor genes, 148 and 169 genes are differentially

expressed under anaerobic conditions. We then trace the

regulatory network to explain the regulation of these genes. 63

and 47 are shown to be directly regulated through binding of the

TFs in the ChIP-chip data. Another 48 and 60 genes are indirectly

regulated via secondary network effects (Regulation by a local TF

that is directly regulated by ArcA or Fnr). Finally the last three

categories represent genes involved in the stress response, genes of

unknown function, and other metabolic genes. Differentially

regulated genes that are primarily stress response genes may

represent variability in culture conditions or unknown regulatory

interactions. Uncharacterized and metabolic genes likely represent

unknown regulatory links.

(PDF)

Table S1 ArcA-associated regions under fermentative conditions

identified by ChIP-chip analysis and its regulatory effect on the

target operons determined by expression profiles. This table

summarizes the results of ChIP-chip experiments to determine the

genome-wide locations of DNA targets for ArcA binding in

exponential phase E. coli cells growing in strictly anaerobic

minimal media conditions. First and second columns indicate

identified ArcA-binding peaks (Start: left-end peak position, End:

right-end peak position). The third column indicates the log2 ratio

of each ArcA-binding peak.

(PDF)

Table S2 ArcA-associated regions under nitrate respiratory

conditions identified by ChIP-chip analysis and its regulatory

effect on the target operons determined by expression profiles.

This table summarizes the results of ChIP-chip experiments to

determine the genome-wide locations of DNA targets for ArcA

binding in exponential phase E. coli cells growing in strictly

anaerobic minimal media with the addition of 20 mm KNO3.
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First and second columns indicate identified ArcA-binding peaks

(Start: left-end peak position, End: right-end peak position). The

third column indicates the log2 ratio of each ArcA-binding

peak.

(PDF)

Table S3 Fnr-associated regions under fermentative conditions

identified by ChIP-chip analysis and its regulatory effect on the target

operons determined by expression profiles. This table summarizes

the results of ChIP-chip experiments to determine the genome-wide

locations of DNA targets for Fnr binding in exponential phase E. coli

cells growing in strictly anaerobic minimal media conditions. First

and second columns indicate identified Fnr-binding peaks (Start: left-

end peak position, End: right-end peak position). The third column

indicates the log2 ratio of each Fnr-binding peak.

(PDF)

Table S4 Fnr-associated regions under nitrate respiratory

conditions identified by ChIP-chip analysis and its regulatory

effect on the target operons determined by expression profiles.

This table summarizes the results of ChIP-chip experiments to

determine the genome-wide locations of DNA targets for Fnr

binding in exponential phase E. coli cells growing in strictly

anaerobic minimal media with the addition of 20 mm KNO3.

First and second columns indicate identified Fnr-binding peaks

(Start: left-end peak position, End: right-end peak position).

The third column indicates the log2 ratio of each Fnr-binding

peak.

(PDF)

Table S5 ArcA motifs found underneath experimentally deter-

mined ChIP binding regions. First column is the center position of

the peak (averaged for peaks occuring under both fermentative

and nitrate respiratory conditions).

(PDF)

Table S6 Fnr motifs found underneath experimentally deter-

mined ChIP binding regions. First column is the center position of

the peak (averaged for peaks occuring under both fermentative

and nitrate respiratory conditions).

(PDF)

Table S7 Mean flux values above .1 mmol/GDWH across all

sampling points under anaerobic conditions. This table shows all

reactions, whether or not they are directly regulated by ArcA or

Fnr, their mean flux values, the percent of the total flux that this

flux values corresponds too, and the list of genes associated with

the reaction. For each reaction the regulation column is TRUE if

at least one gene is directly regulated by ArcA or Fnr. The total

percent of flux regulated can then be calculated by summing

across all flux values which are regulated and dividing by the total.

(PDF)

Table S8 Mean flux values above .1 mmol/GDWH across all

sampling points under nitrate conditons. This table shows all

reactions, whether or not they are directly regulated by ArcA or

Fnr, their mean flux values, the percent of the total flux that this

flux values corresponds too, and the list of genes associated with

the reaction. For each reaction the regulation column is TRUE if

at least one gene is directly regulated by ArcA or Fnr. The total

percent of flux regulated can then be calculated by summing

across all flux values which are regulated and dividing by the total.

(PDF)

Table S9 Regulation of fluxes around key metabolites in

fermentative conditions. This table shows all of the biomass

precursor, electron donor, and electron carrier molecules along

with the associated flux amounts in which they are produced or

consumed and the amount of this flux which is activated or

repressed by ArcA and Fnr.

(PDF)

Table S10 Regulation of fluxes around key metabolites in nitrate

respiratory conditions. This table shows all of the biomass

precursor, electron donor, and electron carrier molecules along

with the associated flux amounts in which they are produced or

consumed and the amount of this flux which is activated or

repressed by ArcA and Fnr.

(PDF)

Table S11 This table shows the relative flux levels and

differential transcriptional regulation values for reactions that

differed by at least .25 mmol/GDWh mean sampled flux units

between fermentative and nitrate respiratory conditions. This

table contains 91 gene-associated reactions of which 89 are

regulated by ArcA or Fnr. The first column is the COBRA

reaction ID followed by the mean flux value in fermentative

(fermen.) and nitrate respiratory (nitrate) conditions. The columns

for Fermentative regulation and Nitrate regulation are the max

absolute value levels of regulation (Fig. 3) cause by ArcA or Fnr

under that condition across all genes associated with the metabolic

reaction. The flux difference and regulation difference is always

the value of the nitrate condition minus the value of the

fermentation condition. The plot in figure 5c is between the last

two columns of this table.

(PDF)

Table S12 Regulation of altered reactions based on sampling of

flux solutions between fermentative and nitrate respiratory

conditions. After calculating the set of reactions which differ in

their flux values between fermentative and nitrate respiratory

conditions we sought to understand how many of these reactions

were regulated by ArcA and Fnr. Altered reactions describes the

total number of reactions which differ between the conditions by

the flux cutoff (e.g. 91 reactions differ between the two conditions

by at least .25 mmol/GDW-h). Of these 91 reactions, 40 are

directly regulated by ArcA or Fnr and another 49 are indirectly

regulated.

(PDF)

Table S13 List of all transcription factors found in RegulonDB

that map to metabolites in the iJO1366 metabolic model.

(PDF)

Text S1 Transport coupled redox balancing as shown in Fig. S4

is explained in greater detail. Briefly, only 5 genes are found that

encode for reactions which produce NAD(P)H and are not

regulated by ArcA or Fnr. Interestingly, 4/5 of these genes are

amino acid biosynthetic enzymes. Two of these enzymes in

particular, serA and tyrA, are feedback inhibited by serine and

tyrosine respectively. Thus, as shown in Figure S4 we are able to

corroborate dramatic regulation of the sstT serine transporter and

the aroP tyrosine transporter with feedback inhibition of these

critical biosynthetic enzymes. Under this regulatory scheme, serine

and tyrosine would be produced at the expense of critical redox

potential but immediately shut down if any serine or tyrosine can

be scavenged exogenously.
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