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Abstract
Clinical records include both coded and free-text fields that interact to reflect complicated patient
stories. The information often covers not only the present medical condition and events
experienced by the patient, but also refers to relevant events in the past (such as signs, symptoms,
tests or treatments). In order to automatically construct a timeline of these events, we first need to
extract the temporal relations between pairs of events or time expressions presented in the clinical
notes. We designed separate extraction components for different types of temporal relations,
utilizing a novel hybrid system that combines machine learning with a graph-based inference
mechanism to extract the temporal links. The temporal graph is a directed graph based on parse
tree dependencies of the simplified sentences and frequent pattern clues. We generalized the
sentences in order to discover patterns that, given the complexities of natural language, might not
be directly discoverable in the original sentences. The proposed hybrid system performance
reached an F-measure of 0.63, with precision at 0.76 and recall at 0.54 on the 2012 i2b2 Natural
Language Processing corpus for the temporal relation (TLink) extraction task, achieving the
highest precision and third highest f-measure among participating teams in the TLink track.
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1. Introduction
The narrative sections of clinical records contain information about clinically relevant events
happened to patients. Most of the events, such as the patient's illness progression, test results
or the effect of a treatment are only meaningful in a specific timeline [1]. Questions such as
“How effective was the treatment?” can only be answered and interpreted if the relative
temporal relations between the events are considered. In general, temporal reasoning has
applications in several tasks in the clinical domain such as information extraction [2,3],
question answering [4,5], patient timeline visualization [6], clinical guideline development
[7,8] and others. Automatic extraction of temporal information can facilitate processing of
patient information in the narrative text, and this can contribute to the decision making
process in fundamental patient care tasks such as prevention, diagnosis and forecasting the
effects of the treatments [9,10]. Consider, for example, a situation where a patient with
history of depression is brought to the emergency room. In order to make an informed
decision about the gravity of the situation, the physician would need to go over previous

© 2013 Elsevier Inc. All rights reserved.

Correspondence to: Azadeh Nikfarjam, anikfarj@asu.edu.

NIH Public Access
Author Manuscript
J Biomed Inform. Author manuscript; available in PMC 2014 December 01.

Published in final edited form as:
J Biomed Inform. 2013 December ; 46(0): S40–S47. doi:10.1016/j.jbi.2013.11.001.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



visits and manually find and sort important events to determine suicidal intent.
Alternatively, consider a child presented to the ER with trauma and possible fractures,
reported as caused by a fall by the family member bringing her in. The attending physician
has to quickly determine whether the injuries could be instead the result of abuse and flag
the record for social services intervention, but key information can be hard to find on the
spot. Automatic and reliable timeline generation in such cases and others like them can
facilitate the decision-making process and potentially reduce medical errors. For a
comprehensive review of the applications of automatic temporal reasoning in the clinical
domain, we refer to Zhou et al.'s survey on the subject [9].

There are diverse and complex linguistic mechanisms for representing the temporal
information in natural language that make it very challenging for Natural Language
Processing (NLP) systems to extract such information. For example, in many of the
temporal event descriptions, the associated time is not explicitly mentioned. Automatic
extraction of such implicit information requires domain knowledge plus the utilization of
sophisticated NLP techniques. Sun et al. [1] provide a thorough discussion about the
challenges of automatic temporal reasoning from clinical text. To promote advances in this
area, the Sixth Informatics for Integrating Biology and the Bedside (i2b2) Natural Language
Processing Challenge for Clinical Records focused on temporal reasoning in clinical
narratives [11]. The challenge included three tracks: Event/Timex, TLink and End-to-End.
Here we focus on the TLink track and briefly explain about the provided 2012 i2b2
annotated corpus. For more information about the corpus and other tracks in the challenge,
please refer to Sun et al.'s paper [11].

In the TLink track, participants were asked to develop systems to extract temporal relations
(TLinks) of three types (before, after and overlap) between the given events and temporal
expressions in the narrative portion of clinical records. The provided training data includes
310 de-identified discharge summaries in which the clinical events and temporal expressions
are annotated. A total number of 190 notes were released for training and 120 notes were
later released for testing. There are three different types of annotations in each note: events,
temporal expressions (timex), and temporal relations (TLinks) between events and timex
mentions. Events are clinically relevant situations such as treatments, problems, tests and
other occurrences. Temporal expressions are mentions of date, time, duration and
frequencies. The method that we present in this paper, a hybrid approach that features a
combination of machine learning and graph-based inference, was developed for the TLink
track. We propose an innovative way of utilizing parse dependencies for temporal
information extraction by first simplifying a sentence and then generating a temporal graph
based on the simplified version of the sentence. We introduce a method for generalizing
sentences and extracting hidden frequent patterns, which was applied in the creation of
temporal graphs. Moreover, novel classifier features are introduced to characterize the
TLinks. The features significantly contributed to achieving high performance on the test data
compared to other systems in the TLink track.

2. Related work
Extraction of temporal relations from non-clinical text has attracted a lot of attention in the
text mining community. The two TempEval competitions [12,13] were designed for the goal
of temporal information extraction, and greatly helped to advance the field. In these
competitions, machine learning (ML) approaches [14,15] were more successful than the
rule-based methods [13]. CU-TMP [16] is an SVM-based system for the temporal extraction
problem and was the best performing system in TempEval 2007 [13]. Other ML-based
systems presented there, utilize Markov logic networks [15] [17] and Conditional Random
Field classifiers [18,19]. After comparing the performance of various classifiers, Min et al.
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[20] report that SVM is the best performing ML method for temporal relation extraction.
Learning from these non-clinical best performing systems, we used SVM as the ML
classifier in our work.

Clinical text presents additional challenges for the extraction of temporal relations, and work
in this area was recently motivated by the 2012 i2b2 task that focused on this problem.
Eighteen teams from around the world participated in different tracks of the challenge, and
utilized different ML, rule-based, or hybrid approaches [11]. We briefly outline the
approaches taken by the top 2 teams in the TLink track. Cherry et al. [21], who attained the
best f-measure (0.69), show that using an ensemble system, consisting of four components
and targeting different possible TLinks in the notes, can successfully extract the TLinks.
Tang et al. [22] submitted the next top ranked system, using heuristic rules to define the
candidate link pairs instead of generating all the possible candidate links. They apply CRF+
+ and SVM for classification of the TLink candidates. In the official submission, our system
achieved a precision of 0.76, a recall of 0.54 and F-measure of 0.63, placing 1st in precision
and 3rd in F-measure among the competing systems in the TLink track. One of our unique
contributions is the idea of temporal graph (Section 3.3) built based on frequent patterns and
rules. Our method calls first for simplifying the sentences (Section 3.2), then parsing them
and calculating novel grammatical features (Section 3.4.2). Our approach results in a high-
precision system that can subsequently be refined to improve its recall.

3. Methods
We approached the problem of finding TLinks with three complementary methods: graph
reasoning (Section 3.3), machine learning (SVM) (Section 3.4), and rule-based classification
(Section 3.5). The overall approach is illustrated in Fig. 1. We first generated all possible
TLinks and calculated the features that characterize them in the “TLink Candidate Builder”
module (Section 3.1). The TLinks were divided into three categories: section time-event
(sectime-event), within-sentence and between-sentence links. For each type of TLink, a
different classification pipeline was used. Examples of the different types of TLinks are
present in the following sentences:

i. The patient's chest tubes were removed on postoperative day Three.

ii. The patient was started on low dose Lasix which he tolerated well.

The TLink between “The patient's chest tubes” (event) and “postoperative day three”
(timex) is an example of a within-sentence link with the related type “before”. The TLink
that connects “low dose Lasix” (event) and “postoperative day three” is a between-sentence
TLink with the link type “after”.

We trained an SVM classifier for the classification of the sectime-event candidates. The
within-sentence candidates were first passed to the Temporal Graph Reasoning module. If
the type of a candidate could not be determined, it was passed into the within-sentence SVM
Classification module. Between-sentence candidates were processed solely with a set of
heuristic rules (Section 3.5).

3.1. TLink Candidate Builder
The “TLink Candidate Builder” module created the possible TLink candidates (between-
sentence, sectime-event and within-sentence TLinks) in a given clinical note. The later two
candidates were used for training/testing the SVM classifiers or fed into the graph reasoning
module for deciding about the link types. The candidates were categorized into two types:

• Sectime-event. Each clinical note has associated admission and discharge time,
which are referred to as section times. Every event in the note can be before, after
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or overlap with either “admission” or “discharge” time; the choice of admission or
discharge depends on the location of the event in the note. Each note in the corpus
includes two main sections: patient history and hospital course. To comply with the
guideline, we compared the time of the events presented in the patient history
section with “admission” time, and the events in the hospital course section with
“discharge” time. We created a candidate TLink connecting every event to its
associated section time. For instance, the first example sentence is located in the
hospital course section; therefore “The patient's chest tubes” and “postoperative
day three” are both compared with “discharge” time and are before discharge.

• Within-sentence. For each sentence, we built a complete graph. The nodes were the
events and time expressions in the sentence, and the edges were the link types
(before, after, overlap and unknown). We added unknown as the fourth and the
default type to consider all the possible temporal relations in a sentence. Other link
types were set based on the corresponding annotated TLink in the training data.
There were two different types of within-sentence TLinks:

• Timex-event. timex-events were the links that connected a timex node to all of the
existing event nodes in the sentence. We generated a candidate TLink for each
timex-event edge in the graph.

• Event-event. Similarly, for each possible link between every two events in a
sentence, a corresponding candidate event-event TLink was created.

After generating the TLink candidates, a set of features was calculated for every candidate
before passing them to the graph inference or the SVM module for classification. See
Section 3.4.2 for feature details. We used simplified versions of the sentences in the corpus,
in generating some of the classifier features, and in building the temporal graph. The
sentence simplification approach is described in the following section.

3.2. Sentence simplification
Many of the events and time expressions in the sentences were expressed as descriptive
phrases, such as “a video assisted thoracoscopic study of the right lung,” which has 9 tokens
as a single annotated event. The sentence simplification idea was motivated by observing
that grammatical dependency relations provided useful information in finding the temporal
relations between the mentions. However we did not need the whole content of the mentions
to establish the dependencies, and the extra content could actually hinder the parser's
determination. Therefore, we decided to first simplify the sentences and then parse them to
get the dependency relations. By simplifying the sentences, we excluded the uninformative
words (with regard to the syntax of the sentence) in each mention to make it simpler for
analysis. As an example, consider the following sentence with the pre-tagged events in bold:
“The MRI scan on admission revealed an impending cord compression at the level of
T10”. This was simplified to “Scan on admission revealed compression at the level of T10.”
Thus, to simplify a sentence, we replaced each identified event or timex with only one
representative word of the event. The representative word of an event was simply the head
word of the phrase. Choosing the representative word of a temporal expression depended on
the type of the timex. Date and time expressions were replaced with their absolute
normalized value (included in the provided input data). For instance, “the morning of the
first day of admission, August 16, 1998” was replaced with 1998-08-16. Other types of
temporal expressions (such as duration) were replaced with the first noun in the phrase. If
there was no noun in the phrase, the last word was used as the representative word (e.g. “the
following three days” was replaced with “days”).
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3.3. Temporal graph
As stated before, a novel aspect of our work is a graph-based approach to find the temporal
relations in a sentence (within-sentence TLinks) based on the possible path between pairs of
events and time expressions in the sentence. A temporal graph is a directed graph where the
nodes (vertices) are a subset of the words in the sentence, and the edges are labeled with
possible temporal relations. We generated a corresponding temporal graph for each
candidate sentence. The possible link type between pairs of nodes was identified based on
the calculated temporal signal. Fig. 2 presents a sample sentence with the corresponding
temporal graph. Consider the two target events “scan” and “compression”. There is a path
with {overlap, after} as the set of edge labels, illustrated with bolder arrows. Based on a set
of rules (Section 3.3.2), and considering the label set in the path, we concluded that scan
occurred “after” compression. Graph building details and reasoning are presented in the
following sections.

3.3.1. Generating the temporal graph—Building the graph started with adding a node
corresponding to every event or timex in the sentence. Next, we added the edges based on a
set of temporal signals using two main approaches: pattern driven and rule driven.
Considering every pair of nodes, if the activated signal indicates before/after/overlap, an
edge with the corresponding label connected the first node to the second one and the reverse
edge was added from the second to the first node (Fig. 3). Otherwise, no edge was added
between the nodes.

3.3.1.1. Pattern driven signal type detection: A group of the training TLinks follows
recurring patterns of words and POS between oraround the arguments of the link such as
“occurrence on date” or “date prior to occurrence”. We built a simple conditional model
over the observed pattern of tokens presented in the link. First, we generalized the sentence
and then extracted the tokens located between the pairs of the link's arguments. Examples of
the generalized sentences are presented in Table 1.

A between-token pattern of a given TLink in the test data could appear zero to many times
in the training data. If we had never seen the pattern in the training data, no decision was
made using this approach. However, in many cases, the pattern was observed in different
links and sometimes with different link types. For assigning the signal type for a given test
instance, with the observed pattern (p), we chose the link type that maximized the
conditional probability in Eq. (1) – where x and y are TLink instances and L is the set of all
TLinks in the training data. Pattern(x) is the between-mention pattern of x and LinkType(x)
is the type of the TLink x. We applied two constraints to choose the link type: the maximum
probability should be higher than the defined threshold parameter, α (α > 0.5), and the total
number of patterns in the training data should be more than β instances, where β is set to be
2 in our experiments.

(1)

Eq. 1: The link type(t) that maximizes the conditional probability is the selected linkType

There are different approaches whereby a sentence can be generalized; following a similar
approach to our previous proposed method [23], we replaced every mention in the sentence
with the corresponding type such as treatment, frequency or duration. Other words (except
verbs) were replaced with the related part of speech, while verbs remained intact.
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3.3.1.2. Rule driven signal type detection: In this module, we first parsed the simplified
sentences to get the dependency relations. A dependency relation is a triplet that shows the
grammatical relationships between two words in a sentence, and is usually presented as
“Relation (wi,wj).” Relation is the name of the dependency and wi and wj are referred to as
the governor and the dependent words of the relation [24]. In the next step, for every
dependency, a set of rules was checked and if satisfied, the corresponding temporal signal
was used as the label of the edge that connected the governor and the dependent words. If
the governoror the dependent were not in the initial set of graph nodes, we added the nodes
and then connected them with the corresponding edge. The possible edge labels were before,
after and overlap. Prepositions in a sentence play an important role in conveying the
temporal signal type. We manually selected a subset of the Stanford dependency relations
[24] for every link. For example, “before” signal was activated between the governor and
the dependent nodes if the dependency relation belonged to prep_prior_to, prep_until or
prep_towards. The “after” signal was activated if the relation name was prep_after. The
“overlap” signal was activated by the relations such as prep_at or prep_during.

3.3.2. Inference based on temporal graph—We identified the link type of a candidate
TLink based on the path between the arguments of the TLink candidate in the temporal
graph. The underlying assumption was that if there was a path between the two nodes, it was
likely that there was a temporal relation between them; otherwise the link type could not be
identified by the graph reasoning module. We used the following rules based on the edge
labels in the path to assign one of the possible link types:

• Overlap: if an “overlap” edge was in the path and there was no edge with “before”
or “after” label.

• Before: if a “before” edge was in the path and there was no edge with “after” label
in the path.

• After: if an “after” edge was in the path and there was no edge with “before” label
in the path.

If the graph inference module determined the type of the TLink, that type would be the final
decision for the given candidate and the predicted class was then updated in the database.
Conversely, if the graph inference module could not decide about the type of the link, the
candidate was passed to the SVM classifier for the final decision.

3.4. TLink SVM classifiers
We used SVM classifiers for sectime-event and within-sentence TLink candidates. We
trained an SVM model for sectime-event, and two separate SVM models for event-event and
timex-event candidates. SVM was selected since it was shown to be effective in similar
temporal link extraction tasks [16, 20]. There were four possible final classes (before, after,
overlap and unknown) that every TLink candidate could be assigned by the classifier,
therefore we utilized SVMMulticlass implementation [25] of the algorithm.

3.4.1. Expanding the within-sentence TLinks—We evaluated the effectiveness of
training the within-sentence SVM classifiers on the expanded set of original TLinks.
Consider the three events (A, B and C): if A is before B and B is before C, then we can infer
that A is before C. In most cases, there was no explicitly annotated TLink in the training
data that connected A to C. As we explained in Section 3.1, we generated TLink candidates
for every pair of mentions in a sentence and assigned the default type to “unknown”.
Therefore, the type of the TLink connecting event A to C initially was set to “unknown”
while the inferred type was “before”. By considering the transitivity of the temporal
relations, we increased the number of training instances that had a link type other than
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unknown. We expanded the original TLinks based on the transitive rules in Table 2. We
found that training the classifiers on the expanded set increased the recall of the system with
the cost of having a decrease in the precision (see the results in Section 4).

3.4.2. TLink classification features—We calculated the same set of features for event-
event and timex-event candidates. The following list of features effectively contributed to
achieving the highest precision among all the systems submitted to the TLink task.

3.4.2.1. TLink's arguments basic features: These features were mainly attributes of the
events and temporal expressions which were provided as part of the annotations in the input
i2b2 corpus. They were used for both of the participating mentions (timex or event) in a
TLink. The basic features included: textual content, mention type (whether it was an event
or a timex), event type (such as problem, test, treatment and others), event modality (e.g.
factual, hypothetical), event polarity (negated or not), timextype (date, time, frequency or
duration), timex modality (e.g. approximate).

3.4.2.2. TLinks' lexical features: These features were related to the ink arguments and the
words between them. This includes the number of words in between, number of events and
time expressions in between, and bigrams of the words that were between the TLink
arguments. Bigrams were binary features that turned true based on the presence of the two
consecutive words located n between the TLink arguments.

3.4.2.3. Dependency-based features: These were the syntactic features calculated from the
parse dependency relations and part of speech (POS) tags of the TLink's sentence. In order
to use dependencies as classifier features, they are usually transformed to the corresponding
string “Relation-wi-wj”. This way of representation s referred to as lexicalized dependency
[26]. We used the Stanford parser [27] to parse a sentence and calculated the following
features accordingly. Some of these features, such as POS, preposition, and related verb,
have been previously shown to be effective in temporal link extraction [16].

• Mention POS was the part of speech of the link arguments. If a mention included
more than one word then the sequence of the part of speeches were used as the
value of this feature (e.g. ADJ-NN).

• Related preposition was the preposition (such as for, on, at) related to the mention,
for instance “at” in “at the hospital”.

• Related verb was the governor verb of the TLink arguments. Among Stanford
dependencies, there are some dependencies that represent the relation of a verb
with subject (nsubj, nsubj-pass), object (dobj) or complement (cop) of a sentence;
in such relations, the governor word is the governor verb of the dependent. For
more information about the dependency relations, please refer to Marneffe and
Manning [24]. If we could not find any of the verb related dependency relations
among the sentence's dependencies, we chose the nearest preceding verb to the
mention as the related verb.

• Verb auxiliaries were the auxiliaries of the related verbs such as can, could and
may.

• Are verbs connected? This was a binary feature that showed if the related verbs of
the link arguments were connected in the dependency graph or not.

• Lexicalized dependencies of the simplified sentence. We included all the lexicalized
dependencies of the simplified sentences. For instance, a subset of the lexicalized

Nikfarjam et al. Page 7

J Biomed Inform. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



features for the example sentence in Section 3.2 includes: nsubj-revealed-scan,
prep_on-scan-admission, dobj-revealed-compression.

• Are arguments directly connected? This was a binary feature that turned true if the
TLink arguments had a direct relation among the dependency relations of the
simplified sentence.

• Have common governors? This feature was also a binary feature showing that
whether the two TLink's arguments had a common governor in their dependency
relations of the simplified sentence.

Note that all of the above features were used in training both event-event and timex-event
candidates. Features used in sec-time-event SVM include: TLink's arguments basic features;
the location of the event (“hospital course” or “history”) and the type of the target section
time (admission or discharge).

3.5. Rule engine
For finding links between concepts in two different sentences, one approach is to create all
possible links between mentions in the neighboring sentences and run an SVM classifier on
them. This approach turned out not to be effective, since the number of negative instances
became very large. To overcome this problem, a set of limited heuristic rules was used to
create and label TLinks based on certain observations in the training data. The rules
performed better than an SVM classifier, running over all possible links between neighbor
mentions in different sentences. We defined the following rules for classifying between-
sentence links (the first sentence denoted as s1 and the second sentence denoted as s2):

1. Create “overlap” link if s2 has only one mention m2:

i. m2 is TEST and m1 is the first occurrence of treatment, clinical_dept or
test before m2.

ii. m2 is “duration” and m1 is the first occurrence of “treatment” before the
m2.

For example, consider the two following sentences: “ALT was 53.” and “AST was
89;” the assigned link type between “ALT” and “AST” is “overlap”.

2. Create “before” link if an event is repeating. The repetition is detected by “repeat”
trigger word. For example: “White cell count” and “Repeat white cell count”.

These two simple rules detected some between-sentence TLinks and slightly helped to
improve the overall recall. As we mentioned before, we did not focus on proposing a
complete solution for between-sentence TLinks and further research is needed to solve this
problem.

4. Results
We measured the performance of the system by evaluating it with the test data (120 notes)
using the evaluation script provided by the i2b2 challenge organizers. It measured the
overall performance of the system (considering all the expected TLinks in the discharge
note). Precision, recall and F-measure were used as the evaluation metrics.

Table 3 shows the individual evaluation of the different modules in the system after the
modifications presented here, compared against our submitted system performance (Original
TLinks), listed in Table 4. Using the ground truth of the test data, we assigned the gold
standard link types to the TLink candidates and measured the maximum possible obtained
recall that each individual module (sectime-event, within-sentence (WS) and between-
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sentence) could achieve. We found that around 30% of the TLinks were between events and
section times, 43% were within sentence, and 27% were between sentence links (listed as
“max possible recall” in Table 3). The sectime-event module that used SVM to classify the
TLinks, successfully extracted the majority of the sectime-event candidates and classified
them with the precision of 0.92. The within-sentence module, trained on the expanded set of
TLinks (Section 3.4.1), was the strongest module in our system, achieving a recall of 0.34
and a precision of 0.60 in extracting the within-sentence TLinks. In evaluating the within-
sentence module, the achieved recall (using gold standard values) was 0.43, while our
system's recall was 0.34. The graph inference method for the within-sentence module
extracted a relatively low number of TLinks with high precision. When we used the hybrid
method (WS (Hybrid)), we got a slight rise in the F-measure. Between-sentence (BS) rule-
based method covered a small portion of the between-sentence TLinks and, as expected,
contributed little to the overall performance.

Table 4 shows a comparison of the overall performance of the system when the within-
sentence classifier is trained on the original TLinks versus when it is trained on the
expanded set of TLinks (as explained in Section 3.4.1). When the system was trained on the
expanded set, we got a noticeable rise in the recall. However, the precision dropped from
0.76 to 0.71, resulting in a 2% increase in the overall F-measure.

5. Discussion
We found that the combination of graph inference and ML-based classification is an
effective approach for extracting temporal links from clinical notes. Temporal reasoning
over clinical data is a challenging task for even human annotators, as demonstrated by an
inter-annotator agreement for the TLink track of 0.79 [11]. This means that the best
automated approaches, when trained on this corpus, are expected to eventually achieve a
performance no higher than the reported agreement level.

As Table 4 shows, training the within-sentence SVMs on the expanded set of the original
TLinks (Section 3.4.1) significantly increased the recall of the system. However, the
precision decreased to 0.71 from 0.76. The expanded set of TLinks included more instances,
and their arguments were located farther apart in a sentence. They also added more variety
to the classifier features, but did not generalize as well as the original TLinks. Yet, the
overall F-measure improved by expanding the training data.

Table 3 shows that sectime-event module alone reached a precision of 0.92 and a recall of
0.25. Considering that sectime-event TLinks constitute 30% of the total TLinks, this module
successfully extracted 83% of the possible sectime-event TLinks with high precision. The
errors of this module were mainly related to the candidate builder component (Section 3.1).
If the candidate builder component could not find the “hospital course”, “patient history” or
the section times (“admission” and “discharge”), it did not generate the correct sectime-
event candidate.

When we only evaluated the within-sentence SVM classifiers and measured the overall
performance, the system reached a recall of 0.33 and a precision of 0.60 (Table 3); while
when using the graph inference the system reaches a recall of 0.14 and a precision of 0.70.
However, when we combined the classifier and the temporal graph inference, the recall did
not get as large an increase as one would have expected, reaching only 0.34. One possible
explanation is that when we use the graph inference and SVM individually, many of the
correctly classified TLinks are common to both.

In general, the proposed approach to generating the temporal graphs has inherent limitations.
One of the limitations is that currently generating the graph is partially dependent on a
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limited number of manual rules as explained in Section 3.3.1.2. Investigating the
effectiveness of automatically generating the temporal graph is an interesting future research
direction that could address this limitation and potentially impact the performance. On the
other hand, pattern driven temporal signal detection (Section 3.3.1.1) for adding the edges in
the graph highly depends on the size of the training data. We designed an experiment, in
which we evaluated the within-sentence module when only pattern-driven signal type
detection was applied. We measured the overall F-measure while using different number of
training sentences (10% of the training sentences to 100%). As Fig. 4 illustrates, when only
10% of the training sentences was used, the recall was very low (0.04). As we increased the
size of the training data, a smooth increase in the recall was observed. Therefore, using more
training instances is expected to result in a higher F-measure, since recall is expected to
continue increasing. The precision remained roughly at the level of 0.8 for different training
size options, which was reflective of what was expected given the inter-annotator
agreement. In the future, we plan to add more flexibility when generating the patterns, and
apply semi-supervised pattern learning methods to be less dependent to the training data.

Additionally, we used a very limited set of rules to handle between-sentence TLinks, which
contributed a little to the overall performance. However, around 27% of the links in the
corpus were between-sentence links. More research is needed to design an ML classifier for
this type of TLinks. The most challenging part in using ML classifiers for between-sentence
links is keeping a balance between the number of positive (before, after or overlap) and
negative (unknown) classification candidates by generating fewer negative candidates.
Furthermore, using a co-reference resolution component in the system can help detect many
of the overlap links that connect the references to the same event in different sentences.

We also performed an analysis to determine the source of the major errors in the within-
sentence module. We randomly selected 50 false negative TLinks with expected types
(before, after or overlap) that were wrongly classified as unknown by the system. As we
showed in the result section, most of the within-sentence TLinks were classified by the SVM
model. SVM tries to find an optimal hyper-plane to achieve the best overall result. This
means that some similar instances, which are close to the hyper-plane, can be misclassified
in order to get more instances correctly classified. For example, consider the following:

• The patient was briefly admitted to the ICU for low hematocrit and hyponatremia
immediately following the surgery but was then transferred back to the floor in
stable condition.

The system could correctly extract most of the TLinks in the sentence. Examples of the
correct TLinks are: the link between “low hematocrit” and “the ICU” (before),
“hyponatremia” and “the ICU” (before) and “stable condition” and “the floor” (before). It is
interesting to note that, despite the relatively large distance between “admitted” and
“transferred”, the system could correctly classify the TLink into before. At the same time,
the link type between “the ICU” and “transferred” was incorrectly predicted as unknown,
while the correct link type is before. This shows that two very similar instances can be
classified differently by SVM. Defining more distinguishing classifier features can reduce
such errors.

Furthermore, for many of the misclassified TLinks, there were temporal trigger phrases in
the sentence (such as history of, continued, repeat, consecutive, subsequently). If modeled
properly, they could act as a very distinguishing feature and eliminate the misclassification.
For example, the following TLink between the bold events was misclassified to unknown,
but the word “continued” could trigger the right type, overlap:
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• “He was given D50, but continued to have progressive respiratory failure, was
…”

Similarly “transformation” could trigger before between “his CMML” (problem) and “acute
myelogenous leukemia” (problem) in this sentence:

• “A bone marrow biopsy revealed the transformation of his CMML to acute
myelogenous leukemia,…”

If the system had the knowledge that transformation of event A to B indicates event A
happened before B, then it could predict the right link type. Incorporating similar knowledge
in ML systems requires creating and incorporating a comprehensive ontology of all trigger
words that is an ongoing research problem.

6. Conclusion
We proposed a system for extracting the temporal relations from clinical notes. The system
utilized machine-learning and graph-based inference to extract the links between events and
temporal expressions in the clinical notes. Specialized modules were designed for different
types of temporal links: sectime-event, within-sentence and between-sentence. We found
that using SVM classifiers in conjunction with temporal graph inference can produce
promising results, in comparison with other systems, placing us among the top performing
systems in the 2012 i2b2 TLink extraction challenge. The idea of sentence simplification
and the use of the frequent patterns/parse dependency relations in creating the temporal
graph can serve as a base for further studies on temporal relation extraction.

The sentence simplification method and the pattern-driven signal type detection approach
can easily be applied for similar relation extraction tasks (such as drug-drug or gene-disease
interaction extraction) from biomedical literature. The graph inference method and the
proposed features are domain-independent and can be applied in other contexts.
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Fig. 1.
Modules of the proposed system: between-sentence, sectime-event and within-sentence.
Within-sentence candidates passed through the temporal graph reasoning module, and if the
decision was not made, they were passed to the SVM for classification.
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Fig. 2.
Sentence: “The MRI scan on admission revealed an impending cord compression at the level
of T10.”; Simplified Sentence: “scan on admission revealed compression at the level of
T10.” “The MRI scan” happened after “an impending cord compression”.
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Fig. 3.
Corresponding edge labels in temporal graph; if the identified signal between Node1 and
Node2 is before the reverse edge is also added (after) from Node2 to Node1.
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Fig. 4.
The effect of the training data size on the performance of the pattern-based approach.
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Table 1

Examples of generalized sentences for pattern extraction.

Original sentence Generalized sentence Between tokens pattern

Dopamine and epinephrine given for cardiovascular
support

[treatment_1] CC [treatment_2] given IN
[treatment]

Treatment CC treatment

The patient's bilirubin level at 24 h of life was 4.6 [test_1] IN [date_2] IN NN was CD Test IN date
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Table 2

Extending temporal Links; A, B and C are events or temporal expressions.

If (A overlap B) and (B overlap C) then (A overlap C)

If (A before B) and (B [before| overlap] C) then (A before C)

If (A after B) and (B [after| overlap] C) then (A after C)
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Table 3

The evaluation of the individual modules of the system (sectime-event, within-sentence (WS) and between-
sentence).

Subtask F-measure Precision Recall Max possible recall

All 0.6412 0.7109 0.5839 ∼1

Sectime-event 0.3915 0.9221 0.2485 0.30

WS (SVM) 0.4256 0.6019 0.3292 0.43

WS (Graph) 0.2396 0.7044 0.1444 0.43

WS (Hybrid) 0.4291 0.5937 0.3360 0.43

Between-sentence 0.0395 0.5279 0.0205 0.27
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Table 4

Comparison of the overall performance when the system was trained on the original vs. expanded TLinks.

Training data F-measure Precision Recall

Original TLinks 0.6280 0.7569 0.5366

Expanded TLinks 0.6412 0.7109 0.5839
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