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Abstract
Ceramide, the central molecule of sphingolipid metabolism, is an important bioactive molecule
participating in cellular regulatory events and having implications for disease. A challenge in
deciphering ceramide signaling emanates from the myriad of ceramide species that exist and the
possibility that many of them may have distinct functions. Here, we applied systems biology and
molecular approaches to perturb ceramide metabolism in the yeast (Saccharomyces cerevisiae)
and inferred causal relationships between ceramide species and their potential targets by
combining lipidomic, genomic, and transcriptomic analyses. We find that during heat stress
distinct metabolic mechanisms control the abundance of different groups of ceramide species.
Additionally, distinct groups of ceramide species regulated different sets of functionally related
genes, indicating that specific sub-groups of lipids participated in different regulatory pathways.
These results indicate a previously unrecognized complexity and versatility of lipid-mediated cell
regulation.

INTRODUCTION
Ceramides constitute a family of structurally related molecules that form the core structure
of the broader family of bioactive lipids found in all eukaryotes, the sphingolipids (1). These
structural variants of ceramide arise from the condensation of one or more sphingoid bases
and several fatty acids. These, in turn, can be modified by the addition of distinct hydroxyl
groups on either the sphingoid backbone or the fatty acid. Thus, the biosynthesis of
ceramides is the product of the combinatorial action of multiple enzymes that control the
structural variations of the ceramide products. In yeast (Saccharomyces cerevisiae),
ceramide biosynthesis (Fig. 1) generates more than 30 distinct species that can be identified
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by contemporary mass spectroscopy-based lipidomic approaches (2); in mammals, the total
number of ceramide species may exceed 200 (3).

In humans, ceramides are collectively involved in physiological processes, such as growth
regulation and apoptosis, and in pathological conditions, such as diabetes and cancer (2).
However, a fundamental question of ceramide-mediated signaling is whether the structural
diversity of ceramides underlies functional diversity. In other words, do the distinct
ceramides encode specific signals? Although manipulation of individual enzymes of
ceramide metabolism has enabled assignment of specific functions to these enzymes (1, 4,
5), these approaches do not clearly delineate the specific lipid species involved in the
process, because sphingolipid metabolism constitutes a highly connected network such that
perturbing the function of an enzyme can lead to broad changes in sphingolipid species
beyond the substrates and products of the enzyme (metabolic ripple effects) (3, 6).
Pinpointing the functions of the lipid or lipids implicated by manipulating a sphingolipid
metabolic enzyme is critical in deciphering the specific downstream pathways and the
mechanisms that mediate the changes in cellular behavior, because it is the lipid product and
not the enzyme per se that propagates the downstream signal. Therefore, new tools and
approaches capable of delineating connections between specific ceramide structures and
diverse downstream signaling pathways are needed.

S. cerevisiae has emerged as a powerful model to dissect metabolic and functional pathways
of sphingolipids. Activation of de novo sphingolipid synthesis is essential for yeast to
survive heat stress (7, 8), and sphingolipids mediate specific downstream processes in
response to heat stress, such as cell cycle arrest (9–11), mRNA sequestration (12), and
inhibition of nutrient uptake (13). Microarray analysis revealed that de novo synthesis of
sphingolipids mediates the regulation of several hundred genes in response to heat stress
(14). This simultaneous sphingolipid-dependent regulation of diverse processes provides an
opportunity to identify functions of diverse ceramide species, but also requires the
development and application of novel methodology.

RESULTS
Systematic perturbation of sphingolipid metabolism decouples the biosynthesis of some
groups of lipids

Our overall framework of dissecting the functions of specific ceramide species in yeast
proceeded as follows: 1) systematically perturb ceramide metabolism using physiological
and pharmacological treatments, 2) monitor lipidomic and transcriptomic responses to the
treatments, and 3) apply systems biology analysis to deconvolute the signaling roles of
ceramide species in these responses. Figure 2 shows the flow of our approach: Yeast cells
were subjected to different combinations (see supplementary methods for detail) of heat
stress, ISP1 treatment and myristate treatment (Fig. 2A), with each perturbation affecting
different part(s) of the lipid metabolic network and leading to diverse lipid profiles. We
measured the relative abundance of the ceramide species by mass spectrometry and the
changes in gene expression in response to these perturbations using microarrays (Fig. 2B).
We then performed a systems biology analysis to identify correlated changes in ceramide
species and gene expression and identified lipid groups that showed similar profiles under
all perturbations (Fig. 2C). We then applied ontology-based function analysis and
transcription factor analysis (Fig. 2D, E) to identify functional modules among the genes
that were potential targets regulated by a specific ceramide species (or a lipid group).
Selected predicted functional associations were validated using phenotypic and
transcriptomic experiments (Fig. 2F).
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We first studied ceramide profiles when cells were subjected to heat stress and investigated
the impact of blocking de novo synthesis using ISP1 (myriocin), which inhibits the serine-
palmitoyl transferase (SPT) complex (Fig. 1), the first committed reaction in the de novo
pathway of sphingolipid biosynthesis. Many ceramide species, especially the phytoceramide
family (PHC), responded to heat stress through increased de novo synthesis (Fig. 3A; table
S1). These included C14, C16, and C18 PHC and α-hydroxy-PHCs (as an example, see inset
in Fig. 3A for C14-α-hydroxy-PHC). In contrast, several members of the dihydroceramide
family (DHC) such as saturated C24 and C26 DHC, decreased during heat stress in the
presence or absence of ISP1 (Fig. 3A). The decrease of DHCs during heat stress is a novel
finding, and the mechanism of how heat stress affects these species has therefore not been
defined.

To test the hypothesis that different ceramides regulate distinct cellular signals to mediate
cell stress responses, we sought to infer the signaling roles of different ceramide species
using gene expression data as readouts of cellular signals. Because of the high connectivity
of the sphingolipid metabolic network (6), many species, for example DHCs differing only
in N-acyl chain length, showed correlated changes during heat stress (Fig. 2A), which
obscured potential contributions of individual ceramides or subsets of ceramides. To further
dissect and segregate specific ceramide responses, we treated cells with the fatty acid
myristate, coupled with treatment with ISP1, to define more specific ceramide responses.

Fatty acid treatment changes the concentration of lipid species with a particular fatty acid
side chain (15–17). Matmati et al showed that adding different fatty acids with different
chain lengths to the media enriches the PHC pool with those PHC species that correspond to
the same chain length (18). Using this methodology, we treated yeast cells with the long-
chain (C14) fatty acid myristate to trigger an acute increase of ceramides with the
corresponding C14 acyl chains. Additionally, we also treated the cells with ISP1 to block the
incorporation of myristate or palmitate (derived from myristate elongation) into the
sphingoid backbone, which would lead to an indiscriminate increase in sphingolipids. Upon
myristate treatment, C14, C16 and C24 DHC and C14 PHC species increased (Fig. 3B).
Moreover, several other ceramide species (Fig. 3B) and the sphingoid bases (C0) (Fig. S1,
table S1) decreased in response to myristate, suggesting selective channeling of sphingoid
bases to C14 DHC and C14 PHC at the expense of other ceramides. Thus, the C14 and C16
ceramides were effectively decoupled from other ceramides, creating a contrast that would
help to resolve the signaling role of these species from other ceramides.

To reveal biologically meaningful patterns from the complex lipidomics datasets collected
from the systematic perturbations, we applied consensus-clustering analysis (19, 20) to the
pooled lipidomic data sets to identify distinct lipid groups. The consensus clustering method
repeatedly performs clustering among randomly drawn subsets of the samples in order to
identify intrinsic subgroups of samples, in the current case, the lipids that were inseparable
during the repeated clustering. The results showed that ceramides could be further
segregated into distinct subgroups (the yellow blocks in Fig. 3C), identifying lipid
subgroups, such as one containing C16, C18 and C20:1 PHCs and one containing C18 and
C20 DHCs (Fig. 2C). Generally, the lipid species that co-segregated into individual
ceramide clusters share similar structures and are mostly products of a common set of
specific enzymatic reactions in the sphingolipid pathway. For example, the cluster consisting
C16, C18, C20.1-PHCs is separated from the cluster comprised of C18, C18.1, C20, C20.1-
DHCs, and synthesis of these ceramide species are metabolically separated by the function
of the hydroxylase, Sur2. Clear separation of these clusters indicated that the perturbations
induced distinct profiles and decoupled lipids that would exhibit a similar profile if the yeast
had only been exposed to a single perturbation, for example heat stress.
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On the basis of the results of clustering analysis and knowledge of ceramide metabolism, we
divided the ceramides into 9 major groups (table S1) within which group members were
statistically inseparable in the clustering analysis and metabolically inseparable on the basis
of biosynthetic pathways. Identification of these clusters lends credence to the theory that
enzymes in the sphingolipid metabolism network respond to cellular changes, thus
producing distinct profiles for different species. Therefore, we hypothesized that each group
functions as a single metabolic, signaling, and functional unit and attempted to identify their
corresponding downstream targets using gene expression data and statistical analyses.

Transcriptomic responses are specific to perturbations in sphingolipid metabolism
From the microarray data collected in parallel to the lipidomic data, we identified
differentially expressed genes responding to different perturbations (Fig. 4A, table S2). We
identified 1,893 lipid-mediated stress-responding genes that represented the intersections of
the heat-sensitive genes with the ISP1-sensitive and with the myristate-sensitive genes. The
members of the union gene set were ISP1-sensitive and thus dependent on de novo synthesis
of sphingolipids, corroborating previous findings that sphingolipids play an important role in
the yeast stress responses (21–24).

To test the hypothesis that distinct ceramides encode disparate signals, which can be
detected through the regulation of distinct target gene sets, we studied the relationship
between lipidomic and transcriptomic data using three distinct methodologies: (i) the
maximum information coefficient (MIC) (25), (ii) the Pearson correlation analysis, and (iii)
a Bayesian regression model. The MIC quantifies the information between a pair of
variables, such as a lipid species profile and a gene expression profile. MIC can capture both
linear and nonlinear relationships between variables in a form similar to the familiar
correlation coefficient, although the measured association (positively or negatively
associated) lack directionality. We assessed the significance of MIC and the Pearson’s
correlation of all lipid-versus-gene pairs. A total of 26,139 lipid-gene pairs had significant
MIC values (p < 0.01, Fig 4.); 25,737 lipid-gene pairs had significant Pearson’s correlation
coefficients (p < 0.01) with a false discovery threshold q-value (26) set at q < 0.05. There
were non-overlapping portions of the MIC and Pearson sets (Fig. 4B), which likely reflect
the difference in assessing statistical significance between the two methods. We also
performed a series of permutation tests in which lipidomic data were randomly permuted
(see supplementary methods) to assess false discovery rate (27). None of the Pearson
correlation coefficients derived from the permutation experiment passed the threshold of p <
0.01 and q < 0.05, indicating that the observed relationships between lipids and gene
expression were not false discoveries that could result from multiple statistical testing.

For the third method, we employed a regularized regression model (28), which represents
the expression value (log2-based) of a gene as a linear function of lipids. It progressively
shrinks the weighting coefficient of each lipid predictor towards zero if that predictor is not
statistically associated with the gene expression, until leaving only a single predictor with a
non-zero coefficient. With this model, we achieved the following goals: (i) identifying the
most informative ceramide with respect to a gene, (ii) representing the direction of a lipid
influence (stimulate or inhibit), and (iii) providing a mathematical means to predict gene
expression as a function of lipid concentration. We pooled the genes potentially regulated by
each lipid cluster and further grouped them according to the direction of regulation (Fig.
5A). Each ceramide group had statistically significant parameters with respect to a set of
genes, and the gene sets associated with different ceramides were largely non-overlapping,
thus supporting the hypothesis that each species plays roles in distinct pathways regulating
different gene sets. We also noticed that distinct gene sets were associated with ceramides
with the same head group but different acyl chain lengths, for example, those associated
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with long-chain (C14, C16) were different from those associated with very-long-chain (C18,
C18.1, C20, C20.1) DHCs (referred to as LC-DHCs and VLC-DHCs, respectively).

To better define ceramide-dependent biological processes and to provide mechanistic
understanding of ceramide-specific pathways, we performed ontology-based, semantic-
driven function analysis and transcription-factor analysis of potential target genes. We
divided the genes significantly associated with a lipid group into modules (certain genes can
be in more than one module) by mining their Gene Ontology (GO) annotations (29), such
that each module contains genes that participate in coherently related biological processes,
which can be encompassed by a GO term that retains as much as possible the semantic
meaning of their original annotations. We then applied a graph-based algorithm to search for
a set of transcription factors that regulate the members of a module in a cooperative fashion,
thus producing a transcription factor module. Analysis of the transcription factors that
associated with gene modules that were negatively correlated with LC-DHCs or VLC-DHCs
illustrates the results of this approach (Fig. 5B) and supplementary website). The genes in
the LC-DHC-associated module are classified as involved in iron ion transportation (GO:
0006826); whereas the genes in the VLC-DHC-associated module are classified as involved
in vacuolar protein catabolic process (GO:0007039). The analyses revealed that the genes
in these modules not only performed related functions but also shared transcription factors,
which provided mechanistic evidence that the genes in a module were regulated by a
common signal. Our functional analyses project the molecular findings from a gene level
onto a conceptual level. For example, the results in Figure 5B can be translated into the
following prediction: “LC-DHCs regulate the genes involved in iron ion transportation.”
Thus, these gene modules produce testable hypotheses regarding functions of specific
groups of ceramide species. All gene modules identified by our analyses—a function map of
the ceramide-dependent genes—are available at the website http://www.dbmi.pitt.edu/
publications/YeastCeramideSignaling.

Heat stress affects DHC metabolism through activation of Ydc1
Heat stress resulted in a decrease in several DHCs through a mechanism that was not
inhibited by ISP1 and thus did not require de novo synthesis of sphingolipids (Fig. 3A). In
turn, these changes in DHCs affected the expression of a large number of genes (Fig. 5A),
reflecting their important role in mediating the cellular response to heat stress. Therefore, we
investigated the molecular mechanism through which heat stress affected DHC metabolism,
more specifically to identify the enzyme(s) that mediates the effect of heat stress.

The alkaline dihydroceramidase (encoded by the YDC1 gene) is a good candidate enzyme to
mediate the impact of heat stress on long chain DHCs. Ydc1 hydrolyzes dihydroceramides
preferentially over phytoceramides (30) to a free fatty acid and dihydrosphingosine, thus
reducing the concentration of all DHCs. Aft1 is one of the transcription factors associated
with the LC-DHC negatively correlated genes, and the AFT1 gene is in the gene module,
thus forming a positive feedback loop. Therefore, we analyzed the expression of AFT1 as an
indicator of the transcriptional activity of Aft1 in the YDC1 deletion and overexpression
yeast strains. We measured AFT1 expression to assess whether Ydc1 was required to
mediate changes in gene expression in response to heat stress (Fig. 6A and 6B). Heat stress
induced AFT1 expression (Fig. 6A), and deletion of YDC1 attenuated the response (Fig 6B).
Overexpression of YDC1 should decrease DHCs and, thus, mimic the reduction in DHCs
caused by the heat stress. Strikingly, overexpression of YDC1 induced AFT1 more than a
hundred fold compared with that in wild-type yeast (Fig. 6C). Thus, our results confirm that
DHCs regulated the expression of AFT1 in Module 1 and Aft1 is likely involved in this
response. The results also indicated that activation of Ydc1 is sufficient to induce gene
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expression changes similar to those induced by heat stress, thus it is likely one of the
enzymes that mediate the impact of heat stress on DHC metabolism.

Phenotypic experiments validate distinct signaling roles of different DHCs
The integrative analyses of lipidomic and transcriptomic data led to the following
hypothesis: DHC species with different side chains participate in different signaling
pathways. To investigate whether specific transcriptional regulations by distinct DHCs had
functional impacts on cells, we examined the effects of perturbing DHCs on cell phenotypes.
We focused on the two gene modules shown in Figure 3C, which are suggested to be
regulated distinctly by LC-DHCs or VLC-DHCs. Because these modules were negatively
correlated with the specific DHC groups, we predicted that increasing the respective lipids
would repress genes in the corresponding modules and would produce phenotypes
mimicking those resulting from deletion of module genes. We identified 17 phenotypes
(XXX) associated with deletion of the genes in the two modules (Table S3), and we then
evaluated yeast cell growth after treatment with myristate or oleate to increase production of
the LC-DHCs and VLC-DHCs, respectively.

We analyzed in detail 7 phenotypes based on deletion mutant phenotypes (31–37) for the
genes within the LC-DHC-sensitive gene module or the VLC-DHC-sensitive gene module
(Fig. 7 and Fig S2). For example, the genes ARN1, ARN2, and FRE3 were among iron-
transport genes that should be negatively regulated by LC-DHCs as predicted by our
analysis (Fig 5B), and their corresponding deletion mutant strains arn1Δ, arn2Δ, and fre3Δ
are all sensitive to high sodium. Increased production of LC-DHCs by myristate treatment,
but not increased VLC-DHCs induced by oleate treatment, reproduced this growth defect in
the wild-type strain (Fig. 5). Conversely, increased production of VLC-DHCs by oleate
treatment, and not by myristate treatment, reproduced the Congo red and Rose Bengal
sensitivity phenotypes associated with HSP12 and SKN7 deletions ((35, 38), respectively.
We expected oleate and the corresponding increase in VLC-DHCs would mimic the
phenotypes of hsp12Δ because this gene was identified from the microarray data as
negatively correlated with VLC-DHCs. Skn7 is a transcription factor required to induce the
genes involved in oxidative responses, and a profound sensitivity of skn7Δ to the singlet
oxygen-producing chemical rose bengal was reported (38). Our transcription factor analysis
indicated that Skn7 likely stimulates the transcription of seven genes in Module 2, thus
leading to the hypothesis that VLC-DHCs regulate these genes through suppression of the
transcriptional activity of Skn7. Oleate treatment led to marked increase in sensitivity to rose
bengal in wild-type cells in a lipid-specific manner, which is consistent with the hypothesis
that VLC-DHCs inhibited the transcriptional activity of Skn7. The results from these
phenotypic experiments demonstrate the identification of specific functional responses to
specific groups of ceramides.

DISCUSSION
Here, we addressed the challenging task of determining specific signaling roles of distinct
ceramides in yeast. In general, a well-established approach to infer causal relationship
between two objects (or events) is to manipulate the potential causal object (or event) in a
random trial, while investigating whether the target object (or event) consistently responds
to such manipulations (39). Adopting this principle to lipid-mediated signaling, we applied a
series of perturbations to manipulate sphingolipid metabolism, with each leading to unique
changes in both ceramide metabolism and gene expression through distinct mechanisms.
The results showed significant correlations (linear or nonlinear) between specific ceramide
species or ceramide groups and gene expression despite the diversity of lipid and gene
response to these perturbations, thus supporting the hypotheses that causal relationships
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exist between the ceramides and genes studied in this report. Although it is possible that
each perturbation may exert effects on gene expression (or phenotypes) through additional
confounding mechanisms other than through ceramides, systematic perturbation experiments
reduced the likelihood of such effects. For example, the combination of multiple approaches
to manipulate LC-DHC—reducing these lipids by heat stress, myrocin treatment, or
overexpression of YDC1, and inducing these lipids by myristate treatment—effectively
minimize the impacts of potential confounding factors associated with each individual
manipulation. Thus, we confidently concluded that LC-DHCs regulated the genes in Module
1.

In conclusion, ceramides mediated a multitude of distinct cellular signals in the yeast stress
responses. Additionally, this study revealed that the abundance of DHCs was decreased
during the yeast response to heat stress, likely through activation of the dihydroceramidase
(Ydc1). Functionally, the various DHCs regulated distinct subsets of target genes predicted
to participate in distinct biologic processes. Overall, we provided evidence that distinct
ceramide species with different N-acyl chains, functional groups, and hydroxylation
participate in regulatory processes. The structural complexity of ceramides underscores the
potential diversity of the functions that they can play in cellular systems, because even
closely related ceramides (such as LC-DHCs vs. VLC-DHCs) regulated distinct sets of
functionally related genes. These findings suggest new research directions in the study of
ceramide-mediated signaling, including their roles in human physiology and disease.

MATERIALS AND METHODS
Yeast Strains and Culture Conditions

Yeast strains used in this study including genotypes are listed in table S5. YPD medium was
used for the heat stress experiment, and for fatty acid treatment, synthetic complete (SC)
media containing: 0.17 % yeast nitrogen base (US Biological), 0.5 % ammonium sulfate, 2
mM sodium hydroxide, and 0.07 % synthetic complete supplement was used, SCD is SC
containing 2 % dextrose. SCD dropout medium lacking uracil was used in cells transformed
with pYES2 plasmid, SC with galactose lacking uracil was used to induce YDC1 open
reading frame in pYES2 plasmid for the overexpression studies. For all experiments, cells
were treated during mid-log growth at 30 °C. Heat stress was performed by shifting cells to
a 39 °C water bath after 45 min pretreatment with myriocin (Sigma) or vehicle. Cultures
were harvested by centrifugation at 3000 × g for 3 min and stored at −80 °C. For spot tests,
compounds required for specified treatments including glycerol, sodium chloride, acetic
acid, caffeine, congo red, hygromycin B, and rose bengal were purchased from Sigma. All
compounds, including fatty acid (myristate or oleate) or vehicle (0.1 % ethanol), were
dissolved in media by warming to 50 °C for 10 min. After media was re-equilibrated to
room temperature, it was mixed with 2x agar at 50 °C to make SC with 2 % agar; 25 ml of
media was poured into 100 mm Petri dishes. Solidified plates were dried for 20 min at 37 °C
before use. Mid-log cultures in SCD were diluted (OD600 0.3), then 5 μl of 4 serial 1:10
dilutions were spotted and incubated at 30 °C for 3–5 days.

Heat stress and ISP1 treatment
Cells grown to mid-log (OD600 0.6) from overnight cultures were pretreated with 5 μM ISP1
or vehicle (0.1 % methanol) for 45 min, and then heat stress samples were shifted from 30 to
39 °C for 15 min. 100 ml samples were divided into 10 and 90 ml aliquots for microarray
and lipidomic analysis, respectively, then harvested at room temperature by centrifugation at
3000 × g for 3 min, and then flash frozen in a dry ice methanol bath.
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Myristate treatment
Cells grown to mid-log (OD600 0.6) from overnight cultures were pretreated with 5 μM
myriocin or vehicle (0.1 % methanol) for 45 min, and then treated with 1 mM myristate
(Sigma) or fatty acid vehicle (0.05 % ethanol) for 15 min. 100 ml samples were divided into
10 and 90 ml aliquots for microarray and lipidomic analysis, respectively, and then
harvested at room temperature for 3 min and flash frozen in a dry ice methanol bath.

Systematic Perturbations and Collection of Lipidomic and Microarray Data
Yeast cells (JK9-3dα) were subjected to the following combinations of perturbations: 1)
control condition; 2) ISP1 treatment at 30 °C; 3) heat stress; 4) heat stress plus ISP1
treatment; 5) control condition for fatty acid supplement experiment, 30 °C in SC medium;
6) myristate treatment at 30 °C; 7) myristate plus ISP1 treatment at 30 °C. Experiments were
repeated three times under each of the above condition.

RNA was extracted from 108 cells using the hot acid phenol method (40). Synthesis of
cDNA, in vitro transcription labeling and hybridization onto the Yeast2.0 chip were
conducted using the Affymetrix GeneChip kit.

Cells were grown, treated, extracted, and total protein was measured, all according to (41),
and relative lipid concentrations were quantified according to the method of (42), and
normalized to total protein.

YDC1 experiments
Wildtype (BY4741) or ydc1Δ were used to perform experiments. Growth conditions and
heat stress were done as described above. To achieve YDC1 overexpression, a BY4741
strain was transformed with pYES2 plasmid containing an open reading frame of YDC1
under galactose promoter. For galactose induction, cells were harvested from a dextrose-
containing medium by centrifugation at 3000 × g for 3 min., pellets were washed with sterile
water, then inoculated into a galactose-containing medium and grown for 6 hours before
treatment with heat stress. After heat stress, cells were harvested by centrifugation, washed
with sterile water and centrifuged again. The pellets were snap frozen in liquid nitrogen until
ready for RNA extraction.

Quantitative Real Time reverse transcriptase-polymerase chain reaction
Total RNA was harvested using hot acid phenol method, described in Short Protocols in
Molecular Biology, unit 13.10 (43). First strand cDNA was produced as described
previously (44). Real time analysis was done using 7500 Real Time PCR system (Life
Technology), SYBR Green Supermix protocol (Bio-Rad) was used to perform the analysis.
Primers used in the rt-PCR are AFT1 forward primer: TCAAAAGCACACATTCCCTCA,
AFT1 Reverse primer: AACTTTAAATGCGTCCGACC. The expression of target genes
was normalized to the expression of RDN18, ALG9, TAF10. The primers are as follows:
RDN18 forward primer: CCA TGG TTT CAA CGG GTA ACG, RDN18 reverse primer:
GCC TTC CTT GGA TGT GGT AGC C; ALG9 forward primer:
CACGGATAGTGGCTTTGGTGAACAATTAC, ALG9 reverse primer:
TATGATTATTCTGGCAGCAGGAAAGAACTTGGG; TAF10 forward primer:
ATATTCCAGGATCAGGTCTTCCGTAGC, TAF10 reverse primer:
GTAGTCTTCTCATTCTGTTGATGTTGTTGTTG.

Ontology-based gene function analysis
Given a set of genes that are significantly correlated to a specific lipid species and their
annotations in the form of the Gene Ontology (GO) (45) (www.geneontology.org) terms, we
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aimed to group genes into non-disjoint subsets, such that each module contained genes with
closely related GO annotations and the overall function of the module was represented by a
GO term that captured most of the semantic information of the original GO annotations of
the genes. We represented genes and their annotations using a data structure referred to as
GOGene graph (29, 46). In such a graph, a node represents a GO term and a directed edge
between a pair of nodes reflects an “is a” (ISA) relationship between the GO terms, that is
parent term subsumes that of the child term. In addition, each node kept track of the genes it
annotated, therefore the graph contained information of both GO terms and genes. We
constructed a canonical graph using all GO terms in the Biological Process namespace,
according to the ontology definition from the GO consortium (www.geneontology.org).
When given a set of genes and their annotations, we associated the genes to GO terms based
on their annotations, and then we trimmed leaf nodes that had no genes associated. This
produced a subgraph in which leaf nodes were a subset of the original GO annotations
associated with the genes of interest. Under such a setting, the task of finding functionally
coherent gene modules can be achieved by grouping genes according to their annotations
through collapsing GOGene graph in a manner that leads to minimal information loss, and
we stopped merging when the p-value of assessing the functional coherence of a gene
module was equal or greater than 0.05 (29).

Microarray and data analysis
Affymetrix CEL files of the microarray experiments were processed using the “affy”
package (v 1.24.2) and differential expression was assessed using the “limma” package
(v3.2.3) of the Bioconductor Suite (http://www.bioconductor.org/). The threshold for
detecting differential expression was set at p-value < 0.01 and q-value < 0.05.

Consensus clustering of lipidomic data
The R implementation of the ClusterCons (20) was downloaded from the CRAN (http://
cran.r-project.org/web/packages/clusterCons/). Lipidomic data (32 species in 21
experimental conditions) were used as input for the program in multiple runs. For each lipid
species, the concentration is normalized to a standard normal distribution (zero mean and
unit standard deviation). The partition around medoids (PAM) and K-means algorithms were
used as base clustering algorithms to run the ConsensusPlus algorithm. The cluster size (K)
is set through a range (6–13) to explore optimal number of clusters to group the lipids.

Correlation analysis of ceramides concentrations and gene expression
The software for calculating maximal information coefficient was downloaded from the
website: http://www.exploredata.net/ (accessed Dec, 2012), which was maintained by the
authors of the report by Reshef et al (25). The statistical significance of the MIC values was
determined using the significance table provided by the authors at the threshold of p < 0.01.
Due to the fact that the authors only provide the p-values for MIC values that are sufficiently
large, it is not possible to perform false discovery correction of these p-values using the q-
values (26) package in such setting.

The Pearson correlation analysis was performed the standard R language package. The
returned p-values for all lipid-vs-gene pairs were further subjected to false discovery
correction using the Q-value package. The significance threshold is set at p-value ≤ 0.01 and
q-value ≤ 0.05.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. S. Cerevisiae sphingolipid metabolism
(A) Complete sphingolipid metabolic pathway with explicit examples of ceramide structures
of each ceramide subspecies investigated. Enzymes manipulated or mentioned in the text are
highlighted with red color. (B) Generic ceramide structure with a C18 sphingoid base
indicating placement of hydroxyl groups of alpha-hydroxy and phytoceramide species. A
double bond is indicated at the third carbon of the fatty acid, but ceramide species with
monounsaturated fatty acids may vary in placement of the double bond.
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Fig. 2. Overall strategy of the study
A. Perturbing sphingolipid metabolism in different experimental conditions: heat stress,
ISP1 and myristate treatments. B. Collecting lipidomic and gene expression data. C.
Modeling the relationship between lipids and genes. The pseudo-colored matrix shows that
different lipid groups (columns) are significantly correlated with different genes (rows). The
scatter plots illustrate that genes in green region of the matrix are negatively correlated to a
lipid, and those in a red region are positively correlated to a lipid. D. Performing ontology
based function analysis and transcription factor analysis. E. Identifying functional modules
associated with lipid groups. Triangles represent genes encoding transcription factors,
rectangles depict genes, and an edge indicates a gene is regulated by a transcription factor.
F. Validating prediction using phenotype assays.
Figure guidelines:
Prepare 5.0 in wide..
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Fig. 3. Lipidomic Analysis
A: Lipidomic response to heat stress/ISP1 treatment. Control (C), heat (H), ISP1 (I), heat
plus ISP1 (H+I). B. Lipidomic response to myristate treatment. Control (C), myristate (M),
myristate plus ISP1 (M+I). In A and B, rows represent N-acyl chain length; columns
represent single combination of hydroxyl groups for each ceramide. Saturated (Sat.),
monounsaturated (Unsat.) N-acyl chain. Bar height is averaged triplicate ceramide level; the
range of each chart is color-coded. Legend inset: C14-alpha-hydroxy phytoceramide. C.
Consensus clustering of lipidomic data. The heatmap of the consensus matrix reflects how
frequently a pair of lipids is assigned to a common cluster during repeated sampling and
clustering. A red cell in the matrix indicates that a pair of lipids tends to be assigned to
mutually exclusive clusters and a yellow cell indicates that a pair tends to be assigned to a
common cluster. Lipid name abbreviations: ‘dh’ dihydro, ‘aOH’ alpha hydroxy, and ‘C’
followed by a number indicates fatty acid chain length.
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Fig. 4. Assessing the correlation between lipid abundance and gene expression
A. Venn diagram illustrating number of genes sensitive to different treatments. B. Venn
Diagram illustrating number of lipid-gene pairs with significant association assessed using
MIC and Pearson correlation analyses. C and D. Heatmaps representation of Pearson
correlation coefficient between lipids (C) or lipid groups (D) and gene expression. In the
figures, rows correspond to genes that have significant correlation with at least one lipid
species; the columns correspond to lipid species. In both figures, a black cell indicates the
corresponding lipid-gene pair is not significantly correlated; a red cell represents that the
pair is positively correlated; a green cell indicates the positively the pair is negatively
correlated. Left panel shows the correlation of genes with respect to all lipid species; the
right panel shows that correlation of genes with respect to lipid groups.
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Fig. 5. Modeling relationship between lipidomic and gene expression data
A. Organizing genes demonstrating significant correlation with specific ceramides. Genes
(rows) are organized according to their association with the different lipid subgroups. A
green block represents a set of genes negatively correlated to a lipid, and a red block
represents a set of genes positively correlated to a lipid. Examples of major enriched GO
terms within gene blocks are shown. B. Defining pathways of specific biologic modules that
respond to specific ceramides, perform related functions, and share transcription factors.
Two example modules are shown (all modules can be found at supplementary website).
Rectangles represent lipid-correlated genes, triangles indicate the transcription factors
shared by the genes; an edge from a transcription factor to a gene indicates that the gene has
the binding sites for the transcription factor in its promoter. The function performed by the
genes in a module is represented with a GO term.
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Fig. 6. The role of Ydc1 in mediating the impact of heat stress on gene expression
A. Effect of heat stress on AFT1 expression in wild-type (WT) yeast cells (n = 6 and 4, for
30 °C and 39 °C respectively, and p-value = 0.26). B. Effect of heat stress on AFT1
expression in the ydc1Δ strain (n = 4, for 30 °C and 39 °C, p-value = 0.76). C. Effect of over
expression of YDC1 on AFT1 expression at 30°C (n = 6 and 2, for wt and +YDC1
respectively, p-value = 0.058)
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Fig. 7. Experimental validation of lipid-dependent phenotypes
(A) Confirmation of published genetic phenotypes as positive controls. Published
phenotypes for deletion mutants from the LC-DHC-sensitive gene module (green font) or
the VLC-DHC-sensitive gene module (blue font) were used to predict ceramide and fatty-
acid-specific growth defects. One deletion mutant phenotype was confirmed for each
treatment employed. Conditions were selected from the literature based on phenotypes of
genes within each module (31–37).
(B) Validation of LC-DHC- or VLC-DHC-sensitive phenotypes. Rows: specific phenotypes
predicted to manifest in response to C14 or C18:1 dihydroceramides, given the indicated
treatment condition. Cells were spotted onto agar containing specified treatment plus vehicle
(0.1 % ethanol), or saturating (1 mM) myristate or oleate. SCD is no treatment. Spots
represent 1:10 serial dilutions of a single mid-log culture. Green font: phenotypes of the LC-
DHC-sensitive module predicted to be induced by myristate treatment. Blue font:
phenotypes of the VLC-DHC-sensitive module predicted to be induced by oleate treatment,
and 2% glycerol is associated with both modules. Images are representative of triplicate
experiments (Fig. S5).
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