
Genetic Signatures for Enhanced Olfaction in the African
Mole-Rats
Sofia Stathopoulos1*, Jacqueline M. Bishop2, Colleen O’Ryan1

1Department of Molecular and Cell Biology, University of Cape Town, Cape Town, Western Cape, South Africa, 2Department of Biological Sciences, University of Cape

Town, Cape Town, Western Cape, South Africa

Abstract

The Olfactory Receptor (OR) superfamily, the largest in the vertebrate genome, is responsible for vertebrate olfaction and is
traditionally subdivided into 17 OR families. Recent studies characterising whole-OR subgenomes revealed a ‘birth and
death’ model of evolution for a range of species, however little is known about fine-scale evolutionary dynamics within
single-OR families. This study reports the first assessment of fine-scale OR evolution and variation in African mole-rats
(Bathyergidae), a family of subterranean rodents endemic to sub-Saharan Africa. Because of the selective pressures of life
underground, enhanced olfaction is proposed to be fundamental to the evolutionary success of the Bathyergidae, resulting
in a highly diversified OR gene-repertoire. Using a PCR-sequencing approach, we analysed variation in the OR7 family across
14 extant bathyergid species, which revealed enhanced levels of functional polymorphisms concentrated across the
receptors’ ligand-binding region. We propose that mole-rats are able to recognise a broad range of odorants and that this
diversity is reflected throughout their OR7 gene repertoire. Using both classic tests and tree-based methods to test for
signals of selection, we investigate evolutionary forces across the mole-rat OR7 gene tree. Four well-supported clades
emerged in the OR phylogeny, with varying signals of selection; from neutrality to positive and purifying selection.
Bathyergid life-history traits and environmental niche-specialisation are explored as possible drivers of adaptive OR
evolution, emerging as non-exclusive contributors to the positive selection observed at OR7 genes. Our results reveal
unexpected complexity of evolutionary mechanisms acting within a single OR family, providing insightful perspectives into
OR evolutionary dynamics.
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Introduction

Highly developed olfaction and odour discrimination underpin

a number of fitness-related behaviours in mammals, from foraging

and predator avoidance, to individual recognition, mate choice

and maternal care [1–3]. In vertebrates, odour molecules are

detected by seven trans-membrane G-protein-coupled receptors

(7-TM GPCRs) encoded by the olfactory receptor (OR) gene

family - the largest in the vertebrate genome [4]. From available

genome data, it is clear that the extent of the vertebrate OR

repertoire varies considerably, ranging from ,100 genes in fish

[5], to 400–1000 ORs in tetrapods (from 388 functional ORs in

humans to 1259 functional genes in rats; [5–7]), where the

expansion of OR gene repertoires is thought to reflect the shift

from aquatic to terrestrial environments in the Middle Devonian,

some 395 MYA [8]. As with the evolution of most multi-gene

families, dynamic and rapid evolution via the birth-and-death

model has been proposed for the OR gene family. Here, new OR

genes arise through duplication and then either diversify in

function in response to selection, lose function via pseudogeniza-

tion, or are lost from the genome [9–11]. Thus, the extent of any

OR repertoire (i.e. number of genes and the diversity among these

genes) depends on diverse evolutionary forces, as well as the extent

of duplication and inactivation events that characterise the

evolution of a species’ genome [11].

Vertebrate ORs are predominantly expressed in the sensory

neurons of the main olfactory epithelium (MOE) [12]; further

evidence also supports their expression in the rodent vomeronasal

organ (VNO) and septal organ of Masera [13].

Genetic variation within OR genes is concentrated in the

ligand-binding pockets of the receptors, spanning trans-membrane

domains 2–7 (TM 2–7) [12,14,15]. High levels of polymorphism in

this region are associated with the recognition of a wide range of

chemicals, including both odorants and semiochemicals [16–18].

While the overall structure of ORs is maintained by strong

purifying selection, a signal of positive selection in the ligand-

binding region is reported in a diverse range of species, from fish to

rodents [19–21]. This is consistent with the evolutionary pressure

to generate and maintain adaptive binding properties at ORs, for

the recognition of ecologically important odorants across species

and habitats [22].

Olfactory acuity in vertebrates is commonly measured using the

number of ‘functional’ OR genes in a species genome, together

with the ratio of functional OR genes: pseudogenes [18,23,24].

Functional OR gene number is thought to be proportional to the

range of scents that can be detected and discriminated between

[17,18]. On the other hand, the ratio of OR genes:pseudogenes
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depends on the evolutionary forces that have shaped the OR

repertoire of a species. Accordingly, these two measures vary

across species, as a result of both lineage age and the selective

environment in which they have evolved. For example, a number

of extant rodent species, known to rely on highly developed

olfaction for fitness-related tasks, have a large proportion of

functional OR genes in their repertoires. In contrast, in species

where olfaction has regressed, there is a higher fraction of OR

pseudogenes. For example, in primates the evolution of full

trichromatic vision is proposed to have influenced loss of OR

diversity [25] (but see [26]).

Increasing evidence supports a role for ecological niche

adaptations in the evolution of the vertebrate OR repertoire. A

recent comparative survey of mammalian OR subfamily diversity,

proposed a significant role for ecological niches in the evolution of

OR functional diversity [22]. Similarly, the loss of OR function-

ality in cetaceans appears directly related to the evolution of an

aquatic lifestyle [27]. Noteworthy, is the higher proportion of

functional ORs reported in baleen whales (Mysticeti), which have

a complex olfactory bulb, in comparison to toothed whales

(Odontoceti), implying greater olfactory ability in mysticetes. This

increased olfactory sensitivity is hypothesised to enable mysticetes

to orientate more successfully toward aggregations of their

dominant food source, krill [28]. Likewise, elapid snakes,

viviparous species that have recently adapted to a marine lifestyle

(Subfamily Hydrophiinae, ,8 MYA; [29]), have also experienced

extensive OR pseudogenisation in comparison to both oviparous

aquatic snake species, which still require land-based nests for their

eggs, and fully terrestrial species [30]. In birds, a larger OR

repertoire is found in a number of nocturnal species, that are

known to rely on olfactory cues, as compared to their closest

diurnal relatives [31]. Thus, the physical environment clearly

influences functional diversification and size of this multi-gene

family [27,30,32].

Here we explore OR diversity and evolution within a single OR

family, namely OR7, in the African mole-rats. These burrowing

rodents of the family Bathyergidae are endemic to sub-Saharan

Africa, and most notable for their broad range of social strategies

[33]. Whilst they do disperse above-ground, mole-rats essentially

live permanently underground and have evolved an array of

morphological, physiological and behavioural adaptations [33,34].

All species are poorly equipped for utilisation of the visual field

[35] and exhibit little neuro-anatomical or molecular evidence of

adaptation for low-light vision [36–38]. Whilst light/dark

discrimination has been reported, the bathyergid central visual

system is significantly reduced [37,39] and, in the absence of visual

cues, all species exhibit enhanced olfactory sensitivity [33,36].

Olfactory cues direct mole-rats digging towards food resources,

thus minimising the energy investment necessary for successful

foraging [40,41]. For example, naked mole-rats, Heterocephalus

glaber, recruit colony members to food sources by laying down

odour trails [42], and similarly use olfactory cues during colony

interactions [43–46]. Furthermore, complex scent marking rituals

are used in common nesting and latrine areas within the extensive

burrow systems of all the social mole-rats [33,47]. This chemo-

communication in naked mole-rats is perhaps surprising, given

that they lack a functional vomeronasal organ (VNO) [48]. Thus,

pheromonal communication in naked mole-rats may be mediated

by the MOE in a similar manner to that hypothesised for humans

[49]. Other examples of chemo-communication in bathyergids are

reported in species of the social genus Cryptomys, where individuals

are able to discriminate between kinspecific and heterospecific

odours using a proposed ‘‘self-referent matching’’ mechanism [50–

52]; this information is used to both reinforce individual and group

recognition rituals and to limit incestuous mating [53].

Given the socio-ecological significance of odour discrimination

in the Bathyergidae, we examined OR7 diversity across all genera

of extant mole-rats and present the first assessment of OR gene

diversity and evolution in a subterranean mammal. Useing PCR

and sequencing methods, we characterise representative OR7

diversity across 14 bathyergid species and classify bathyergid OR

genes, based on phylogenetic relationships together with a range of

published OR subgenomes. We hypothesize that well-developed

olfaction in Bathyergidae is the result of an expansion within the

OR multi-gene family, resulting in increased divergence among

OR7 genes. We also test whether patterns of OR7 variation in the

amino acids involved in ligand-binding, are consistent with a

scenario of adaptive functional variability across the Bathyergidae.

In this context, we use phylogenetic-based methods to test whether

adaptive evolution has operated differentially across bathyergid

OR7 clades. Finally, we investigate a role for sociality and

environmental niche specialisation in determining OR7 gene

diversity in mole-rats and interpret our results within the

framework of Nei’s ‘birth-and-death’ model of evolution for

multi-gene families [9].

Results

Olfactory Receptor Diversity in African Mole-rats
The Bathy-OR1/Bathy-OR2 primer pair were designed in this

study and yielded unambiguous amplification of OR7 loci in all 14

African mole-rat species This produced a final alignment of 178

unique OR7 sequences (GenBank accession numbers KF453235–

KF453412), and a BLAST search confirmed the sequence identity

as OR7 genes for all sequences in the dataset. A ‘conserved

domains’ search revealed the presence of typical GPCRs features

in all sequences [54], whilst known OR motifs were confirmed by

eye from the amino acid alignment [23,55].

Consistent with published studies, mole-rat OR sequences were

considered to be pseudogenes if they had mutations that disrupted

the 7TM receptor structure; these mutations included stop codons

and frameshift mutations [8,31,56]. Using these criteria, 97 of the

178 bathyergid OR sequences were classified as pseudogenes.

However, this may be a potential underestimation of the number

of pseudogenes because of additional mutations outside the

amplified region (TM 2–7), or mutations in promoter regions

that were not amplied [25,57].

After allelic variants were merged, 119 unique OR7 genes were

identified from the original pool of 178 OR7 gene candidates,

including 51 putatively functional ORs and 68 OR pseudogenes.

Interestingly, alleles of the same OR7 gene (as well as identical

alleles) were identified across a number of mole-rat species and

tentatively supports the idea that OR7 diversification may have

preceded speciation in Bathyergidae.

The distribution of amino acid diversity across Bathyergidae

OR7 genes was assessed based on Katada et al.’s molecular model

of the mouse mOR-EG receptor [15]. The topological distribution

of conserved and variable sites in mole-rat receptors is analogous

to that of mOR-EG [15], with 73% of highly conserved residues

shared, and 88% of variable residues occupying the same locations

(Figure 1). High levels of both nucleotide and amino acid sequence

polymorphism were detected in mole-rat OR7 sequences, and

variability is concentrated in the region between TM3 and TM6,

which corresponds to the predicted core of the ligand-binding

pocket of ORs (Figure 1) [14,15]. Interestingly, 19 of the 26 amino

acid residues predicted to be involved in ligand-binding [14,15],

are variable in bathyergids. If residues in TM domains 2 and 7 are

Olfactory Gene Diversity in African Mole-Rats
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excluded, 83% of the alleged odorant-binding sites in mole-rat

OR7 genes are polymorphic, consistent with a role in odorant

recognition [14].

In keeping with other published studies, recombination is not a

significant mechanism for the generation of sequence variability

across mole-rat OR7 loci [10]. Tests for linkage disequilibrium did

not indicate significant pairwise associations between polymorphic

sites (ZZ = 0.006). This is consistent with the widely accepted idea

that variability across OR genes is predominantly the result of

gene duplication events and nucleotide substitution driven by

positive selection, rather than recombination [10]. This result

means that recombinant PCR artefacts are unlikely to have

obscured the signal in our dataset [58].

Phylogenetic Relationships among Mole-rat OR7
Sequences

Phylogenetic reconstruction revealed four well-supported clades

of closely-related OR7 genes (bootstrap support $97%). The four

clades were named clades A–D, and an isolated gene (BJ4_A12),

that is a sister lineage to clades A and B, was also observed.

Identical phylogenetic topology was recovered when only a single

representative sequence for each putative OR7 gene was analysed.

The numbers and ratios of functional OR7 genes and pseudogenes

across clades A–D are reported in Table S1.

The four clades do not cluster in a species-specific way. Instead,

sequences in each clade were found to share functional motifs

across the ligand-binding sites. Of the 23 amino-acid positions

involved in odorant-binding across TM3-6 [14,15], only three

were found to be conserved across all clades, whilst the remaining

20 sites displayed clade-specific motifs. This is consistent with OR7

genes in each clade having different binding properties. Further-

more, there is a striking prevalence of hydrophobic amino-acids

(92% of all amino-acids involved in odorant-binding) across the

putative ligand-binding domain of OR7 genes in all clades. This

result supports Katada et al.’s hypothesis [15], that the interaction

between ORs and odorant ligands occur primarily via hydropho-

bic and van der Waals interactions [59].

Classification and Evolution of Mole-rat OR7 Genes
Using genetic similarity criteria, mammalian OR genes are

subdivided into Class I and Class II genes [60,61], and these

classes are further partitioned into 17 families. There are four

Class I families, families 51, 52, 55 and 56, and 13 Class II

families, families 1 to 13 [61,62]. Although the differential

functions of these families and the range of odorants they can

recognise is poorly understood [5], it has been mooted that each

family might detect a particular class of odorant molecules [63].

In order to identify the OR genes amplified in our study, we

inferred phylogenetic relationships between mole-rat OR genes

and representative OR sequences from the entire OR repertoires

of 18 different mammalian species [22]. The resulting phylogeny

reveals strong support for Bathyergidae OR genes clustering

together with Family 7 OR (OR7) genes from a number of

mammalian species (Figure 2).

Family 7 OR genes represent a polyphyletic family of Class II

OR genes in mammals, and are classified as part of the larger

grouping of families 1/3/7 [22]. However, OR genes from

families 1 and 3 appear to group independently from family 7, in

strongly supported clades in our tree (Figure 2), and are more

distantly related to the mole-rat OR genes characterized in this

study.

The evolution of OR7 Bathyergidae genes was inferred by

phylogenetic analyses of all the available mammalian OR7

sequences from Hayden et al.’s dataset [22]. Again, African

mole-rat OR7 genes clustered into four strongly supported clades,

which correspond to clades A–D in the Bathyergidae phylogenetic

tree (with the exception of two genes; Figure S2). Interestingly,

clades A, B and D appear to be Bathyergidae-specific clades, whilst

clade C included OR7 genes from other mammalian species.

Other family-specific clades are highlighted in the tree by a colour-

coded classification of mammalian OR7 genes (Figure S2).

Figure 1. Functional variability across mole-rat OR7 receptors (redrawn from [15]). Functional variation is colour coded based on the
number of different amino-acids presents at each position: red – highly variable ($5); orange – variable (3–4); light blue – conserved (2); dark blue –
highly conserved (1). Amino-acid positions involved odorant-binding are circled in black [14,15]; these are predominantly variable in our dataset, as
expected. Abbreviations stand for the following: TM trans-membrane domain, EC extra-cellular and IC intracellular domain.
doi:10.1371/journal.pone.0093336.g001
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Signatures of Selection in the African Mole-rat OR7 Tree
Tests for differential positive selection across bathyergid OR7

clades revealed a number of evolutionary patterns. Likelihood

ratio tests (LRT) for ongoing positive selection were performed on

the functional OR7 genes from clades A, C and D, while clade B

was excluded from this analysis due to insufficient sample size. The

LRT results reveal significant positive selection for clade A only,

although numerous codons were found to be evolving under

positive selection in both clades A and C (Figure 3.II).

Notably, no amino-acid sites in clade D were characterised by

dN/dS.1; instead, all sites within this clade were characterised by

dN/dS ratios ,1, which is consistent with purifying selective

forces acting along the OR genes of this clade. A codon-based Z-

test was then used and a strong signal of purifying selection was

confirmed (p,0.0001).

To identify episodic events of adaptive evolution across specific

Bathyergidae OR7 lineages, we used a branch-site test of positive

selection across all branches of the African mole-rat OR gene tree.

Six branches in the tree support a signal of positive selection in the

corresponding lineages (p,0.05). However, when Q-values are

taken into account, positive selection can only be inferred

unequivocally for two branches (75 and 34, Q-value ,0.001;

Figure 3.I). The next two branches (# 27 and 63 Figure 3.I) are

only mildly significant (Q-value = 0.13), whereas from the fifth

branch the Q value jumps to 0.54. Results from a Bayes Empirical

Bayes (BEB) [64,65] analysis to identify which amino-acid sites are

evolving under adaptive evolution, revealed that the number and

location of positively selected sites vary among these lineages

(reported in Figure 3.II and Table S2).

Divergent, lineage-specific evolutionary forces in mole-rat OR7

genes are revealed when considering signals of both current and

episodic selection and the proportion of functional genes in of the

four clades. Firstly, within clade A, significant adaptive selection

was detected both at ancestral branches (branch #34, Figure 3.I)

and at the tips of the tree. Clade A is also characterised by a

relatively higher OR7 genes: pseudogenes ratio, when compared

to other clades. Along branch #34, six of the eight amino-acid

sites that were identified as evolving under positive selection, based

on the BEB analysis, lie in TM3-6 region (Figure 3.II). This is

suggestive of selection acting predominantly on the odorant-

binding region in this gene lineage, presumably to generate novel

binding properties. The second branch that carries a mild signal of

positive selection in this clade (# 27 Figure 3.I), leads to a subset of

H. glaber OR7 pseudogenes that have only one positively selected

codon within TM2 (Table S2). In addition, only pseudogenes are

present in the sub-clade derived from branch #27, further

Figure 2. Mammalian OR family structure. Maximum likelihood tree obtained with Tamura-Nei substitution model (1000 bootstrap) using
representative sequences of all OR Families from the available Mammalian database [22], together with the Bathyergidae OR genes characterised in
this study. OR families are colour-coded as reported on the right. All Bathyergidae ORs appear to cluster together with mammalian Family 7 OR genes
(indicated in green, together with the bootstrap support value for that branch).
doi:10.1371/journal.pone.0093336.g002
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strengthening the idea that the mild signal of positive selection

detected by the branch-site test may be a consequence of

pseudogenisation, rather than adaptive evolution. Secondly, Clade

B supports a small number of putatively functional OR7 genes,

together with the highest proportion of pseudogenes in the dataset

(86%, Figure 3.II). This is possibly indicative of the fact that ORs

within this clade may be secondary for bathyergid olfaction and

thus more susceptible to mutation, resulting in pseudogenes.

Accordingly, the branch-site test of positive selection failed to

detect any episodic events of positive selection across this clade.

Thirdly, Clade C is characterised by a strong signal of positive

selection on one ancestral branch (#63) and mild positive selection

on the other ancestral branch (#75), with selection concentrated

on the ligand-binding region of the genes (Figure 3 and Table S2).

Although several codons at the tips of the tree are under positive

selection, the LRT did not identify an unambiguous signal of

selection. This, together with a relatively lower proportion of

functional genes in this clade (23% functional OR7 genes in clade

C versus 50% in clade A), is consistent with an ancestral pulse of

adaptive evolution on clade C OR7 genes, perhaps indicating a

phase when new OR functionalities were acquired within this gene

lineage. Finally, strong purifying selection has maintained an

unaltered pool of OR7 genes, over a long period of evolutionary

time, in Clade D. Since the divergence of the major mole-rat

genera Bathyergus, Georychus, Cryptomys and Fukomys , 15–17MYA

[66] (Figure S1) and throughout the phylogeny, no periods of

adaptive evolution are detected in this clade. Interestingly, the

highest proportion of functional OR7 genes (62.5%), as well as the

greatest number of putatively functional genes, are found in clade

D (Figure 3.II). These results are consistent with a scenario where

odorant chemicals, that carry fundamental information for

Bathyergidae fitness, are recognised by clade D ORs and are

therefore actively maintained unchanged over time.

The Roles of Sociality and Environment in Shaping OR7
Evolution

We tested whether episodic positive selection has acted

differentially on OR7 genes across specific bathyergid lineages.

The bathyergid OR7 gene phylogeny was partitioned between

solitary and social species and explored with a branch-site test of

positive selection (following Ramm et al. [67]). No significant

correlation was found between social phenotypes and positive

selection (LnL difference = 0, p = 1).

The role of the environment in shaping OR7 diversity was also

explored, by comparing OR genes of families 1/3/7 in mole-rats

with a suite of mammalian species occupying the full spectrum of

ecological habitats. Following Hayden et al. [22], the different

proportions of OR 1/3/7 pseudogenes were calculated for each

ecological habitat or ‘ecogroup’, and we introduced the mole-rat

‘Subterranean’ group to the analysis. Proportions of OR

pseudogenes within ecogroups are reported in Figure 4.

Figure 3. I Divergent evolutionary forces on the Bathyergidae OR7 gene tree. Simplified schematic view of the maximum likelihood tree
(GTR, 1000 bootstrap) constructed using a single representative sequence for each putative Bathyergid OR gene; three rhodopsin-like GPCRs were
used to root the tree (accession numbers NP_001287.2, NP_005292.2, NP_037014.2). Black filled circles at branch tips represent the putatively
functional OR genes; empty circles represent OR pseudogenes. Pie charts represent the proportions of functional OR genes (black) and OR
pseudogenes (white) in clades A–D; only one isolated gene falls out of these clades and is indicated with an asterisk. Positively selected lineages,
according to branch-sites analysis, are coloured in blue; # branch numbers correspond to those assigned by CodeML [107,108]. A summary of the
selective forces acting on Bathyergidae OR7 gene family, based on ancestral and ongoing selection, as well as on the ratios and numbers of
functional OR genes in each clade (Table S1), is represented in vertical colour bars. Figure 3.II Positively selected residues in Bathyergidae OR7
lineages. a) Results from the Bayes Empirical Bayes analysis reveal a prevalence of positively selected sites across the odorant-binding region of ORs
(TM3-6); branch numbers match labelled branches in Figure 3.I. Amino-acid positions and location domains were assigned based on Katada et al.’s
molecular model [15]. b) An analysis of ongoing selection on functional nucleotide alignments from clades A and C identifies a number of amino-acid
positions characterised by dN/dS.1 (indicated in orange), whilst no such sites are found across clade D (clade B was excluded from the analysis for
insufficient sample size).
doi:10.1371/journal.pone.0093336.g003
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A Wilcoxon rank-sum test was used to identify whether

ecogroups differed significantly with respect to their proportions

of (non)functional OR1/3/7. Significant differences were found

between Subterranean and Semi-aquatic (p = 0.036), Subterra-

nean and Volant (p = 0.011), and Terrestrial and Volant

ecogroups (p = 0.014). A nearly significant value differentiates

the Terrestrial from the Semi-Aquatic ecogroup (p = 0.06,

Table 1). Thus, whilst the subterranean environment undoubtedly

contributes to the evolution of the observed differences in OR 1/

3/7 ratios across the broad range of mammals analysed, our data

set is not significantly differentiated from the Terrestrial and

Aquatic ecotypes.

Discussion

This study reports the first assessment of OR gene diversity in

the African mole-rats and represents the first study of OR gene

evolution in a subterranean mammal. Phylogenetic inference of a

range of mammalian OR subgenomes identified the majority of

sequences we recovered as belonging to the OR7 subfamily

[22,61]. We report evidence for a large number of functional

polymorphisms that translate into diverse binding properties, as

well as the presence of OR polymorphisms conserved across mole-

rat species, indicating an ancient origin for some aspects of

bathyergid OR7 diversification [68]. Our analysis of signatures of

selection on mole-rat OR7 loci revealed evidence for clade-specific

evolution of olfactory receptor genes. Our results are discussed in

the context of the possible evolutionary drivers of OR7

diversification, and provide insight into the complex evolutionary

Figure 4. Proportions of OR 1/3/7 pseudogenes across Ecogroups. The mean percentage of pseudogenes and standard error are indicated
for each Ecogroup.
doi:10.1371/journal.pone.0093336.g004

Table 1. Pairwise comparisons between Ecogroups using Wilcoxon rank sum test (p-value adjustment method: BH).

Aquatic Semi-Aquatic Subterranean Terrestrial

Semi-Aquatic 0.317 – – –

Subterranean 0.505 0.036* – –

Terrestrial 0.483 0.06 0.81 –

Volant 0.127 0.518 0.011* 0.014*

*Ecogroups that differ significantly (p,0.05).
doi:10.1371/journal.pone.0093336.t001
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history of a gene family that may be linked to individual fitness in

this unusual mammalian lineage.

Functional Variation across Bathyergid OR7 Genes
Four strongly supported OR7 lineages (clades A–D) were

consistently recovered from all the OR phylogenies inferred in this

study. Functional OR7 genes exhibited clade-specific motifs across

the amino-acid sites involved in odorant-binding [14,15], and we

propose that ORs in each clade may have different binding

properties. Although polymorphisms characterise these sites across

clades, their chemical properties are similar, with a remarkable

prevalence of hydrophobic residues across the putative ligand-

binding OR domain. This finding is consistent with Katada et al.’s

hypothesis [15], that the binding of odorant molecules in the

odorant-binding pocket of ORs is mediated by hydrophobic

interactions and van der Waals forces [59]. The OR binding-

pocket spans TM3-6 and constitutes a binding environment that is

broad i.e. able to recognise a range of odorants, but also selective

for the shape, size and length of odorant ligands [15]. With the

exception of a few known odorant-OR dyads, the functional

characterisation of ORs and their respective ligands remains a

major challenge [69]. Nevertheless, in humans single nucleotide

polymorphisms in specific OR genes have been found to

determine whether a specific odorant is detected or not [70].

Therefore, functional variability of the magnitude observed in our

data set is consistent with a scenario where diverse binding

properties have been selected for at OR7 loci.

Given the direct association between functional OR diversity

and olfactory ability [17,18], together with the role of olfaction in

the socio-ecological success of bathyergids, we predicted that

positive Darwinian selection has played a fundamental role in the

evolution of variability at OR7 loci in the African mole-rats.

Whilst we did find evidence for positive selection within our

dataset, we also, somewhat unexpectedly, found strong evidence

for divergent patterns of selection across the OR7 phylogenetic

tree.

A Role for Positive Selection in the Evolution of
Bathyergid OR7 Genes

Positive selection is proposed to maintain functional variability

at vertebrate OR loci, particularly in the ligand-binding region of

ORs, while the overall receptor structure typical of GPCRs is

thought to evolve under purifying selection [19,20,71]. Signatures

of positive selection in clade A are similar to those reported for

other vertebrate species [19–21], with selection acting predomi-

nantly on the ligand-binding domain of mole-rat OR7 genes.

Similarly, two ancestral branches in clade C carry a signal of

adaptive evolution across the receptors’ ligand-binding region and

are likely the result of a historic pulse in positive selection on these

loci. Based on such signals of positive selection, we suggest that

functional variation at mole-rat OR7 loci was generated in

response to selective pressures for enhanced sensitivity to the range

of odorants recognised by mole-rats, and/or to optimise the

recognition of crucial odorants. From this perspective, the

detection of such odorant molecules may be directly related to

fitness in mole-rats. Consistent with this scenario, adaptive

evolution is likely an indicator of intra-specific competition for

olfactorily-mediated resources [20]. Emes et al. [20] present the

hypothesis that OR gene duplication and sequence diversification,

driven by positive selection, are the result of intense competition

between individuals, e.g. for food or predator avoidance.

Unfortunately, there is limited information on specific ORs and

their odorant ligands and it is therefore difficult to establish an

explicit link between fitness and OR diversity at specific loci [63].

A theoretical association between OR variation and fitness is

nonetheless indisputable, since ORs need to recognise odorants

from an ever-changing environment, in a way that is perhaps

comparable to the co-evolution of MHC receptors and the

pathogen environment [71].

In this study we tested the possible roles of the subterranean

environment and of the different levels of sociality in selecting for

enhanced functional OR7 variation in mole-rats. The contribution

of sociality (or solitariness), in shaping OR7 diversity, was explored

using a tree-based method (following Ramm et al. [67]), but the

analysis failed to indicate a significant correlation between the

social phenotype of species and positive selection. While odour

detection is of primary importance for mole-rats, the comparable

degrees of selection detected in both social and solitary species may

be the result of selection for functional diversification very early in

the evolution of the bathyergid lineage. We integrated our dataset

into a broad analysis of orthologous mammalian OR genes, to

explore how environmental niche-specialisation may have influ-

enced OR7 diversification in mole-rats. Proportions of (non)func-

tional ORs across OR1/3/7 gene families, reveal that the

Subterranean ecogroup differs significantly from the Volant and

Semi-aquatic groups, but is not significantly different from the

Terrestrial and Aquatic groups (Figure 4, Table 1). The lack of a

significant difference between Terrestrial and Subterranean

ecogroups may be biased by the heterogeneous taxonomic

coverage in the two datasets analysed, together with the different

ages of the taxa being compared. Species coverage in the

Terrestrial ecogroup spans four superorders of mammals, with

28 species from more than 20 different families, and extremely

variable lineage ages (e.g. Muridae 31 MY, Canidae 12 MY)

[72,73]. In contrast, only a single, relatively ancient mammalian

family represents the Subterranean group (Bathyergidae 49 MY)

[74,75]. Ideally, a more balanced species coverage across

ecogroups, considering only those taxa with similar ages, could

be used to test more accurately for the role of environment.

Because continuous ‘birth and death’ evolution theoretically leads

to an increase of OR pseudogenes, which are essentially neutral

[76,77], older species may have accumulated a greater proportion

of pseudogenes simply as a function of time. Even though OR

pseudogenes will eventually become unidentifiable due to accu-

mulated mutations, some ORs classified as ‘non-functional’ may

still play a regulatory role in gene expression. Zhang et al. [78]

report that 67% of human pseudogenes are in fact transcribed and

this may explain the persistence of OR ‘pseudogenes’ in the

genome over long periods of time. A further caveat, given our

methodology, is that our data set is unlikely to be fully

representative of the true pattern in the Bathyergidae, and analysis

of the recently published naked mole-rat genome (http://naked-

mole-rat.org) will provide valuable insight into this question in

future studies. Nevertheless, a role for sociality and the environ-

ment in shaping and/or maintaining OR variation in mole-rats

cannot be excluded. Undoubtedly, olfactory requirements will

differ between solitary and social bathyergid species because of the

fundamental differences in lifestyles. For example, social species

require a mechanism to optimise kin recognition and use this

behaviour to avoid incestuous matings and maintain colony

cohesion [44,53,79]. The observed tendency of the subterranean

environment to influence OR7 diversity, is only partly consistent

with Hayden et al.’s conclusions [22] that natural selection, via

niche-specific adaptation, shapes OR subgenomes. Nonetheless, it

is reasonable to propose that the olfactory requirements of species

that inhabit such diverse ecogroups are different and may be

reflected in other OR gene families. The necessity to detect either

airborne or water-soluble odorants is the most logical reason why
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the OR repertoires of terrestrial and aquatic species differ

[5,17,80]. The subterranean environment, on the other hand,

presents unique challenges. These include the absence of visual

cues and limited auditory cues, requiring fossorial species to

compensate with enhanced olfaction and hence a diversification in

OR genes.

Purifying Selection and Ancient OR7 Variation
Based on the occurrence of allelic variants of the same OR7

genes, as well as identical OR7 sequences across mole-rat species,

we suggest that a proportion of the variability observed in the

Bathyergidae might be of ancient origin. This idea is also

supported by the clustering of sequences into distinct OR7

lineages, rather than in a species-specific manner (Figure S1). It is

worth noting that the majority of functional ‘‘ancient’’ bathyergid

OR7 alleles, i.e. conserved alleles from a single OR gene that are

present across numerous mole-rat species, occur within clade D

(70%) only. This clade was identified as evolving under strong

purifying selection and supports the highest number and

proportion of functional OR7 genes. Conserved OR7 alleles

across this clade may represent allelic variants that maintain

precise binding properties among bathyergid species, enabling

them to detect primary olfactants e.g. plant exudates released from

roots of edible plants [40,41].

The occurrence of ancient OR loci has also been reported in a

comparative study of whole Mouse and Rat OR subgenomes,

where the presence of conserved OR loci across species is

proposed to be the result of ‘slow OR evolution’ [81]. The authors

propose a scenario where the genes have evolved under neutrality,

such that loci shared between the two species are a consequence of

relatively recent divergence; Mus and Rattus are estimated to have

diverged ,23 MYA [72]. We argue that purifying selection in the

African mole-rats has ensured the persistence of conserved OR

loci across all the major generic divergence events in the family i.e.

Bathyergus, Georychus, Cryptomys and Fukomys onwards (,17–15

MYA) [66]. Under a scenario of neutral evolution, alleles are

predicted to become species-specific only when species have

diverged for more than 4Ne generations (where Ne is the effective

population size; [82]). Information on bathyergid effective

population sizes is not available, but even calculations based on

educated estimates suggest highly unrealistic population sizes

would be required to account for the retention of conserved OR7

loci due to ‘slow OR evolution’. Conserved OR7 alleles across

bathyergid species are therefore most likely the result of strong

purifying selection for alleles that confer significant fitness benefits.

Indeed, one could envisage that at least some of the conserved OR

loci identified by Zhang et al. [81], are a result of selective

pressures acting to maintain specific capacities of odour recogni-

tion among sympatric Muridae, rather than a by-product of

neutral evolution, especially given the divergence time between the

two species [72].

A New Method for Characterising OR Subfamilies
Based on our analyses, the subpool of Bathyergidae OR genes

isolated and characterised in this study belongs to a single family of

ORs, namely OR7. In order to perform fine-scale classification of

the complex vertebrate OR gene superfamily, a number of recent

studies subdivide OR families into ‘subfamilies’ based on ‘pattern’

i.e. setting sequence similarity cut-offs of generally 60% [23,61].

On inspection of average pairwise distances, based on the number

of nucleotide differences between functional OR7 genes from

clades A–D, we observe that between 62–68% of the sequence

similarity occurs across clades. Therefore, if we were to classify

Bathyergidae OR7 genes into subfamilies according to ‘pattern’,

and using the cut-off limit of 60% [61], the observed clade

structure would not reflect subfamily structure. This is because all

OR7 genes would fall into a single subfamily. Nevertheless, the

results presented here are consistent with the clustering of ORs

into clades that have evolved under unrelated selective forces,

potentially reflecting their underlying biological significance.

Despite the high percentage of between-clade sequence similarity,

there appears to be strong functional association between genes

belonging to each clade. Thus, it is tempting to speculate that from

a functional viewpoint each clade may represent a distinct OR7

subfamily. The above discussion on classification of OR genes into

families based on sequence similarity cut-offs, raises the debate of

the appropriateness of this practice that has been common in

many large-scale OR studies. From our results it is clear that

analysis of the evolutionary mechanisms that shape OR genetic

diversity across clades can be used as an additional, novel and

potentially more accurate method in classifying OR genes,

informed by ‘process’ rather than ‘pattern’ alone.

Using a recent dated phylogeny, based on 66 genes and over

2000 mammalian species, the OR7 gene family is thought to have

diversified after the Placental-Marsupial split ,147 MYA [18,83].

High levels of gene duplication in humans have resulted in OR7

being the largest family of the OR subgenome, occurring as OR7-

specific clusters scattered across a number of genomic locations

[8]. Although the function of OR7 remains poorly understood,

some OR7 genes have played a significant role in recent

mammalian evolution, e.g. OR7D4 in humans binds the steroid

compounds androstenone and androstadienone [84]. Interestingly,

these two compounds were classified as human ‘pheromone

candidates’ after they were found to influence both brain function

and, more recently, endocrine balance in humans [85–87]. These

studies suggest that in those species where the VNO is considered

to be a ‘nonchemosensory vestige’, like Homo sapiens or indeed the

naked mole-rat [49], pheromonal communication may still occur,

possibly mediated by ORs in the MOE and possibly including loci

in the OR7 subfamily.

Conclusion
This study represents the first assessment of OR7 diversity for a

family of subterranean mammals. In exploring the mechanisms

shaping the evolution of the African mole-rat olfactory repertoire,

we reveal that olfaction in mole-rats has been subject to a

spectrum of evolutionary forces. Positive selection emerges as the

foremost evolutionary process shaping functional OR7 variability

in the family; nonetheless, neither the divergent social strategies of

mole-rats nor the specialised subterranean environment emerge as

clear drivers of this process. In addition to classic features of ‘birth

and death’ evolution [10], an important role for purifying selection

also emerges in the evolution of OR7 genes in mole-rats. The

‘clade structure’ observed in the Bathyergidae OR7 gene tree is

consistent with a ‘subfamily structure’ based on OR7 functional

properties, and likely reflects the broad range of odorant ligands

that mole-rat OR7 genes can recognise. These findings challenge

the commonly accepted theory that closely related ORs necessarily

share functional properties [56], and reveal the intricate mecha-

nisms of OR evolution at a ‘microscopic’ single-OR family scale,

thus offering a valuable perspective on the breadth and complexity

of OR evolution at the subgenome level.

Materials and Methods

Ethics Statement
Mole-rat tissue samples were collected as part of a previous

study carried out by Deuve et al. [88–90] with full ethics approval
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by the University of Stellenbosch, Ethics Clearance Certificate #
2006B01006.

Olfactory Receptor Gene Isolation and Identification
Genomic DNA was extracted from fresh muscle tissue using a

standard phenol-chloroform protocol [91]. Species sampled

include representative taxa from all currently recognised genera

in the Bathyergidae: Bathyergus janetta (BJ), Bathyergus suillus (BS),

Cryptomys hottentotus hottentotus (CHH), Cryptomys hottentotus natalensis

(CHN), Cryptomys hottentotus pretoriae (CHP), Fukomys mechowi (CM),

Fukomys amatus (CA), Fukomys anselli (CAN), Fukomys bocagei (CB),

Fukomys damarensis (CDM), Fukomys darlingi (CD), Georychus capensis

(GC), Heliophobius argentocinereus (HA), Heterocephalus glaber (HG).

Vertebrate olfactory receptors display a conserved overall

structure typical of GPCRs, with variability concentrated across

the ligand binding pockets, spanning transmembrane (TM)

domains 3–6 [12,15]. To provide a reference sequence for the

development of bathyergid-specific PCR primers, we used the

degenerate PCR primers A4/B6 described in Buck and Axel [4] to

amplify TM 2–7 from a single C. damarensis individual; conditions

followed those reported in Buck and Axel [4]. PCR products were

gel purified using the Wizard SV Gel and PCR Clean-up System

(Promega) and cloned into E. coli DH5a CaCl2-competent cells

using pGEM-T-Easy Vector System (Promega). Insert-containing

clones were sequenced using a BigDye Terminator v.3.1 Cycle

Sequencing Kit (Applied Biosystems). Post-sequencing purification

was performed using Centrisep Columns (Princeton) and DNA

sequences were analysed on an ABI 3130 Genetic Analyser using

3130 Genetic Analyser Data Collection software v.5.2.

Bathyergid-specific OR primers were designed to TM domains

2–7 (approx. size 645 bp): Bathy-OR1 59- GCG GAC ATC YGT

TTC AC - 39; Bathy-OR2 59- GTG ACC ACA GTG TAC ATC

–39. The Bathy-OR1/Bathy-OR2 primer pair successfully ampli-

fied unambiguous PCR products in all 14 mole-rat species, using

the following conditions: 95uC for 1 min, 54uC for 3 min, 72uC
for 3 min (35 cycles). Each 40 ul reaction contained between 50–

100 ng genomic DNA, 2 pmol/ul of each Bathy-OR1 and Bathy-

OR2 primers, 1.5 mM MgCl2, 0.2 mM dNTPs, 1.25 U Super-

Therm Taq DNA polymerase and 1x corresponding Taq reaction

buffer. PCR products were gel-purified, cloned and sequenced as

described previously. Between 10 and 50 clones were sequenced in

both direction using using both the forward and reverse-primers

for 1 to 3 individuals for each species; this produced 402 OR

sequences. Forward and reverse sequences were aligned and

checked for ambiguities by eye in Bioedit v7.0.8.0 [92], resulting in

201 putative OR sequences. The sequences were then aligned

using Clustal W v2.0 [93,94] and translated in Bioedit v7.0.8.0

[92]; identical sequences were identified by pairwise comparisons

in MEGA v5 [95] and the final data set comprised 178 unique OR

sequences.

A BLAST search was performed against the nucleotide

collection data, available on NCBI (www.ncbi.nlm.nih.gov), to

assign identity to both nucleotide and amino acid OR sequences.

OR Sequence Identification
The role of recombination in generating sequence variation in

any dataset, either in vivo or in vitro, was evaluated by calculating

the level of linkage disequilibrium between polymorphic sites as a

function of their physical distance, using Rozas et al’s [96] ZZ

value in DnaSP4.5 [97]. This test reduces the possibility of in vitro

recombination generating false OR variability, since recombina-

tion is established as only a minor source of OR variation in vivo

[10].

Following Steiger et al. [31], OR sequences were classified as

pseudogenes if they contained stop codons or frame-shift

mutations that disrupted the overall receptor structure. Sequences

that translated into putatively functional OR genes, but that

differed in length, were considered to be functional only if they

maintained the known features of ORs (e.g. the MAYDRFVAIC

and KAFSTCASH motifs in TM domains 3 and 6, respectively),

and if the variability mapped to the ligand-binding pockets of ORs

[14,15].

In order to identify allelic variants of OR genes, pairwise

comparisons were performed across all unique sequences in our

dataset using MEGA v5 [95]. Allelic pairs based on the pairwise

comparison matrix generated in MEGA were then identified using

alleles.R (R. Gaujoux, unpublished) developed in R (R Develop-

ment Core Team, 2008, http://www.R-project.org ). The criteria

for allele identification described by Kishida [18] were applied to

the bathyergid dataset using the following cut-off limits: within a

species, sequences that shared 99% sequence similarity were

considered to be alleles of the same gene; across species, the cut-

offs were 98% within the same genus and 96% across genera.

Single base-pair differences as well as two base-pair differences

were assumed to represent identical sequences due to PCR or

sequencing errors. Similarly, when two allelic variants shared

more than 99% sequence similarity across species (i.e. between 3–

5 base pair differences), they were considered to represent identical

alleles. When more than two putative alleles of the same OR gene

were found in an individual, given the defined cut-offs, two copies

of that particular gene were assumed to be present. Similarly,

when two presumed alleles were of different functional status i.e.

one putatively functional and one pseudogene, they were

considered to belong to two different OR genes, the result of a

duplication event followed by pseudogenisation. Whenever the

percentage sequence similarity led to ambiguous results e.g. when

transitivity was not applicable (A = B, B = C but A?C, with ‘ = ’

meaning ‘alleles’ based on sequence similarity), phylogenetic

relationships (described below) were used to allocate alleles to

different OR genes. Once identified, alleles of the same OR gene

were collapsed down to a single consensus sequence for each

putative gene, and used in subsequent analyses.

Phylogenetic Analyses
Evolutionary relationships among Bathyergidae OR7 genes

were explored using maximum likelihood (ML) [98], based on the

general time-reversible model (GTR) [99] as determined jMo-

deltest [100], and constructed in MEGA v5 [95]. Tree topology

was inferred using all unique mole-rat OR sequences identified,

with three non-OR GPCR genes used as an outgroup; robustness

of the tree topology was tested using 1000 bootstrap replicates

[101]. The resulting tree was used in combination with the

pairwise comparison matrix to determine allelic relationships

amongst sequences. If sequence similarity led to uncertain allelic

allocation, alleles were considered to be sister taxa in the

phylogenetic tree. A further ML tree was then constructed

(GTR, 1000 bootstrap) using only a single representative sequence

for each putative OR gene.

In the most comprehensive survey of mammalian ORs to date,

Hayden et al. [22] used a combination of sequence similarity and

phylogenetic criteria for OR gene classification. Their dataset

analysed the entire OR subgenomes of 50 mammalian species,

consisting of ,50,000 OR sequences. One or two representative

sequences per species, for each of the 17 OR families from Hayden

et al. [22], were aligned together with the bathyergid OR dataset,

using the online Clustal W alignment tool from the European

Bioinformatics Institute (available at www.ebi.ac.uk). Aligned
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sequences were then imported into Bioedit v7.0.8.0 [92] and

corrections to the alignment were made by eye. An ML tree was

then constructed using the Tamura-Nei substitution model [102]

in MEGA v5 [95] with 1000 bootstrap replications. Phylogenetic

analysis based on all nucleotide sites included 312 representative

sequences from all OR gene families across 18 different

mammalian species, as well as the 119 Bathyergidae ORs. All

Bathyergidae sequences clustered together with known Family

7 ORs [22]. Family information was included in Bathyergidae

sequence nomenclature (GenBank accession numbers KF453235–

KF453412).

All the available OR sequences belonging to Family 7 from

Hayden et al’s dataset [22], representing the entire Family 7 OR

subgenome of 18 different mammalian species, were then aligned

with the 119 mole-rat sequences using the online Clustal W tool.

Aligned sequences were corrected by eye in Bioedit v7.0.8.0 [92],

and a final ML tree (Tamura-Nei) was constructed in MEGA v5

and tested using 1000 bootstraps replicates. Positions containing

alignment gaps were eliminated from the pairwise sequence

comparisons (pairwise deletion option), resulting in 805 nucleotide

positions in the final dataset.

Signatures of Selection on Bathyergid OR7 Genes
Because olfactory receptors display a highly conserved overall

structure, with variability limited to a set of amino acid residues

involved in the binding of odorant molecules, an average of

substitution rates across the entire OR gene provides neither an

accurate nor informative test of positive selection [12,15].

Therefore, tests for positive selection were applied to different

codon sites in the dataset using the SELECTON server (available

at http://selecton.tau.ac.il/) [103,104]. Estimates of the ratio of

non-synonymous (dN) to synonymous (dS) substitutions were

obtained for each codon, and significance assessed via a LRT. The

LRT compared two nested models for each codon: a null model

(M8a), which assumes no selection, and an alternative model (M8)

which allows positive selection to occur. Three sets of bathyergid

OR7 genes, corresponding to clades A, C and D, identified in the

phylogenetic analysis, were analysed separately using codon-based

multiple sequence alignment (MSA); pseudogenes were not

included in the analysis. Clade B displayed only three putatively

functional OR genes, and was therefore excluded from this

analysis due to insufficient sample size. Across clade D, several

codons with dN/dS ratios ,1 were identified, while none

appeared to have dN/dS .1. A codon-based-Z test, to test for

purifying selection (overall average), was performed on clade D’s

functional ORs using the Nei-Gojobori method [105] implement-

ed in MEGA5 [95], with 1000 bootstrap replicates to determine

significance of purifying selection across this clade.

To investigate whether positive selection may have acted along

specific bathyergid OR7 lineages, a branch-site test (test 2 in [106])

was carried out in PAML [107,108] using CodeML and based on

the ML tree of African mole-rat OR7 genes. CodeML was used to

estimate the dN/dS ratio (v) on codon (nucleotide) alignments

across the topology of the trees. Two nested models, null and

alternative, were computed and compared using a LRT. In the

null model, codons along all branches are either under purifying

selection (v ,1) or under neutral evolution (v= 1), and the

foreground branch may have different proportions of sites under

neutral selection than the background branches (i.e. relaxed

purifying selection). In the alternative model, some sites on the

foreground branch may be under positive selection (v .1).

Following Yang [109], stop codons and alignment gaps were

excluded from the alignment used to construct a ML tree (as

previously described), and the resulting tree maintained the same

tree topology as the original bathyergid OR tree. In the branch-

site test of positive selection, each branch of the OR gene tree was

labelled in turn as foreground; a LRT was performed on all pairs

of nested models and compared to a x2 distribution to determine

significance. Furthermore, the Q-value, a measure of the false

discovery rate (FDR) due to multiple testing, was calculated for

each branch using the ‘Q-value’ software available at http://

genomics.princeton.edu [110–112]. When the LRT remained

significant after the correction for multiple testing (i.e. both p- and

Q-values,0.05), the posterior probability of sites being under

positive selection (dN/dS .1) was calculated using the BEB

method [64,65] implemented in CodeML.

Testing the Role of Sociality in OR7 Variation
To test the role of sociality in shaping OR7 variation, we

partitioned the OR7 gene tree between Solitary and Social

bathyergid species (following Ramm et al. [67]), and performed a

branch-site test of positive selection as previously described. The

tree was partitioned by labelling the terminal branches of the

phylogeny according to the social status of the corresponding

species. The analysed data comprised all 119 unique bathyergid

OR genes identified in this study, including both functional OR7

genes and pseudogenes. Stop codons from OR pseudogenes and

alignment gaps were excluded from the OR7 alignment. OR7

genes from the genera Bathyergus, Georychus and Heliophobius were

labelled as Solitary, while those belonging to Cryptomys, Fukomys

and Heterocephalus were labelled Social [33].

We did not hypothesise a priori which social system (i.e. solitary

or social) would be subject to positive selection, and therefore

conducted two branch-site analyses. In the first analysis we tested

whether social lineages carried a signal of increased selection when

compared to the solitary ones, labelling all the terminal branches

of the OR7 gene tree that belonged to social bathyergid as

‘foreground’. In the second analysis, the test was performed with

the ‘solitary leaves’ of the tree labelled as foreground. With these

branches defined as foreground, a LRT was performed on all pairs

of nested models (null and alternative) and compared to a x2

distribution to determine significance. A Q-value was then

calculated for each branch using the ‘Q-value’ software as before.

When the LRT was significant with a FDR below 5%, the

posterior probability of sites being under positive selection (dN/dS

.1) was then calculated using the BEB method in CodeML.

The Subterranean Ecogroup as a Driver of Bathyergid
OR7 Diversification

The role of the subterranean environment as a driver of OR

evolution across the Bathyergidae, was explored by comparing the

ratios of functional OR genes:pseudogenes across ecotypes

(following [22]). Hayden et al.’s dataset [22], comprising ratios

of OR functional genes:pseudogenes from whole-OR-subgenome

data for 50 mammalian species, covered a range of environmental

niches, namely: Terrestrial, Aquatic, Semi-aquatic and Volant (i.e.

bats). Hayden et al. [22] performed a Bayesian phylogenetic

analysis to classify OR genes into gene families, and the 17

‘traditional’ OR families were recovered [61]; the following

families were found to group together; OR 2/13; OR 1/3/7; OR

5/8/9. Data for this part of the study is available at http://

genome.cshlp.org/content/20/1/1/suppl/DC1.

The authors used a principal component analysis, based on the

different proportions of functional ORs and pseudogenes across

gene families, to then compare data from the different ecogroups,

and in so doing identify the OR families that explain most of the

variation between these groups.
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Following Hayden et al. [22], OR7 belongs to the broader

mammalian OR grouping of OR 1/3/7. Here, we used the

numbers of functional OR 1/3/7 genes and pseudogenes, as well

as their relative proportions as reported in [22], together with data

from the 14 Bathyergidae species analysed in this study, to test our

hypothesis that the subterranean niche has contributed to the

diversification of functional variability in the mole-rat OR

genome. In this context, species used in the analysis were classified

according to five ecogroups: Aquatic, Semi-aquatic, Subterranean,

Terrestrial and Volant.

OR1/3/7 ratios were plotted across all species within each

ecogroup, and the mean percentage of pseudogenes and associated

standard error were calculated in R (R Development Core Team,

2008, http://www.R-project.org). To test for pairwise differences

in the distributions of pseudogene proportions between each

ecogroup, we applied a non-parametric Wilcoxon-test [113], as

well as the Benjamini & Hochberg ‘BH’ correction for multiple

testing [114].

Supporting Information

Figure S1 Bathyergid OR7 gene tree. Maximum-likelihood

tree (GTR, 1000 bootstrap) constructed using all 178 unique

Bathyergid OR sequences; three rhodopsin-like GPCRs are used

as outgroups (accession numbers NP_001287.2, NP_005292.2,

NP_037014.2). The four main OR clades are indicated (A–D);

only one isolated gene (BJ4_A12) falls out of these clades and is

labelled with an asterisk. Abbreviations correspond to gene names

in Genbank accession numbers KF453235–KF453412 and

contain species information as follows: Bathyergus janetta (BJ),

Bathyergus suillus (BS), Cryptomys hottentotus hottentotus (CHH),

Cryptomys hottentotus natalensis (CHN), Cryptomys hottentotus pretoriae

(CHP), Fukomys mechowi (CM), Fukomys amatus (CA), Fukomys anselli

(CAN), Fukomys bocagei (CB), Fukomys damarensis (CDM), Fukomys

darlingi (CD), Georychus capensis (GC), Heliophobius argentocinereus (HA),

Heterocephalus glaber (HG).

(TIF)

Figure S2 Mammalian OR7 gene tree. Maximum likeli-

hood tree (Tamura-Nei, 1000 boostrap) constructed with all the

available mammalian OR7 genes [22]. Each circle dot corre-

sponds to an OR7 gene belonging to family 7; ORs from different

taxonomic families are colour-coded as indicated on the figure.

Rhodopsin-like non-OR GPCRs are used as an outgroup

(accession numbers NP_001287.2, NP_005292.2, NP_037014.2).

Bathyergidae ORs from clades A–D are indicated in green;

bootstrap values are reported for the main bathyergid clades.

(TIF)

Table S1 Numbers of functional ORs and pseudogenes
in clades A–D.

(DOCX)

Table S2 Positively selected residues in Bathyergidae
OR7 lineages.

(DOCX)
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