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Introduction

Small GTPase RhoA functions as a bi-molecular switch that 
cycles between active GTP-bound state and inactive GDP-bound 
state. Interaction of activated RhoA with downstream effectors ini-
tiates events critical in regulation of cell migration. Activated RhoA 
stimulates formation of actin stress fibers, focal adhesion (FA) 
maturation, and increases contractility of actin cytoskeleton.1,2 Its 
activation in the rear of a migrating cell has been proposed to be 
critical for tail retraction.1-3 Interestingly, activated RhoA has also 
been detected at the front of a migrating cell, where it may partici-
pate in the regulation of membrane protrusions and contacts with 
extracellular matrix.1,3,4 RhoA-mediated contractility of actin cyto-
skeleton also influences cell–cell adhesions.2,5,6 Thus, spatiotem-
poral control of RhoA activity determines the location and timing 
of specific morphological processes occurring in a migrating cell.

RhoA activity is regulated by several distinct families of 
enzymes. RhoA is negatively regulated by Rho GTPase-activating 

protein (RhoGAPs) that accelerate the hydrolysis of GTP to GDP, 
thus inactivating RhoA.7 RhoA bound to GDP is maintained in 
this inactive state by interacting with Rho guanine nucleotide 
dissociation inhibitors (RhoGDIs) that sequester inactive RhoA 
within the cytosol.8 Positive regulation of RhoA is mediated by 
guanine nucleotide exchange factors (GEFs) that promote dis-
sociation of GDP from inactive RhoA allowing it to bind GTP, 
which activates RhoA.9 Therefore, activation of RhoA-mediated 
pathways is primarily achieved through regulation of RhoGEFs.

RhoGEFs belong to a large family of proteins that are char-
acterized by Dbl homology (DH) domain, which is primar-
ily responsible for catalyzing the exchange of GDP for GTP. 
Members within this family of proteins also contain a C-terminal 
Pleckstrin homology (PH) domain immediately adjacent to the 
DH domain. Studies have shown that the DH-PH domains 
together have greater GEF activity in comparison to only the 
DH domain.10-12 RhoGEFs employ multiple strategies to regu-
late activity of DH-PH domains. Growing evidence indicates 
that in many cases control of GEF activity is achieved by phos-
phorylation of these RhoGEFs. In some cases phosphorylation 
functions as a positive regulator of GEF activity, and in others 
it leads to inactivation of RhoGEFs. Mechanisms of regulation 
also vary: phosphorylation either directly regulates activity of 
RhoGEFs or leads to recruitment of proteins that modulate the 
RhoGEF’s activity. For some RhoGEFs, phosphorylation is the 
primary regulatory event, whereas in other cases it appears to 
act in parallel with other regulatory mechanisms. In all of these 
cases, RhoGEFs serve as critical signaling nodes coupling mul-
tiple kinase-mediated signaling cascades to regulation of RhoA. 
In the current review, we discuss recent evidence of phosphor-
ylation-mediated regulation of RhoGEF activity and its role in 
regulation of cell migration.

Phosphorylation of Vav Directly  
Stimulates GEF Activity

Regulation of Vav by phosphorylation is one of the most well-
characterized mechanisms demonstrating direct activation of its 
GEF activity through phosphorylation-mediated conformational 
changes. The DH-PH domains of Vav demonstrates higher activ-
ity toward Rac1 and Cdc42 GTPases, but can also activate RhoA 
in vitro.13-15 Furthermore, Vav has also been reported to activate 
all three Rho GTPase in vivo.15,16 Experimental evidence suggests 
that Vav-mediated activation of RhoA is required for Vav’s potent 
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Spatio-temporal control of RhoA GTPase is critical for regu-
lation of cell migration, attachment to extracellular matrix, and 
cell–cell adhesions. Activation of RhoA is mediated by guanine 
nucleotide exchange factors (GeFs), a diverse family of enzymes 
that are controlled by multiple signaling pathways regulating 
actin cytoskeleton and cell migration. GeFs can be regulated 
by different mechanisms. Growing evidence demonstrates 
that phosphorylation serves as one of the predominant signals 
controlling activity, interactions, and localization of RhoGeFs. it 
acts as a positive and a negative regulator, and allows for regu-
lation of RhoGeFs by multiple signaling cascades. Although 
there are common trends in phosphorylation-mediated regu-
lation of some RhoGeF homologs, the majority of GeFs utilize 
distinct mechanisms that are dictated by their unique struc-
ture and interaction networks. This diversity enables multiple 
signaling pathways to use different RhoGeFs for regulation of 
a single central—RhoA. Here, we review current examples of 
phosphorylation-mediated regulation of GeFs for RhoA and 
its role in cell migration, discuss mechanisms, and provide 
insights into potential future directions.
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cell transforming activity.15,17 There are three isoforms of Vav: 
Vav1, Vav2, and Vav3. Vav1 is primarily expressed in hematopoi-
etic cells, where as Vav2 and Vav3 are more widely expressed. Vav 
regulates variety of cellular processes such as T-cell activation, 
phagocytoses, superoxide production in neutrophils, cancer cell 
proliferation, and cell migration.18-24 Current evidence indicates 
that Vav2-RhoA signaling plays a significant role in regulation 
of cancer cell migration and invasion.23,24 It is interesting to note 
that Vav2 activation downstream of growth factor receptors, such 
as transforming growth factor β-receptor (TGFβ-R) and epider-
mal growth factor receptor (EGFR), regulates RhoA activation in 
variety of tissues, including in different solid tumors.24-27 EGFR-
mediated activation of Vav2-RhoA signaling has been reported 
to delay EGFR internalization and degradation in HeLa cells.26 
However, the role Vav2-RhoA signaling in regulation of EGFR 
internalization and degradation in other cancer cell type, and its 
effect on cancer cell biology is yet to be determined.

Vav has eight well-characterized domains, which include: cal-
ponin homology (CH), acidic region (Ac), DH, PH, zinc fin-
ger, Src homology 3 (SH3), SH2, and SH3 domains (Fig. 1A).28 
Current evidence demonstrates that the five N-terminal domains 
play a role in regulation of GEF activity by the DH domain, 
whereas the C-terminal SH3-SH2-SH3 domains mediate cellu-
lar localization of Vav. It is well known that Src and Syk family 
of kinases play a critical role in regulating Vav’s GEF activity. In 
its inactive form, Vav assumes an autoinhibited closed conforma-
tion where the N-terminal domains interact with DH and PH 
domains, thus inhibiting its GEF activity (Fig. 1B).28 Initially, 
it was described that Src and Syk phosphorylates Vav on Tyr-
174 found in the Ac region. Phosphorylation of Tyr-174 in turn 
resulted in disengagement of the N-terminal peptide from its 
DH domain inhibitory contacts, allowing substrate access to the 
Vav DH domain.29 However, as we now know, this is only one 
part of Vav regulation as the previous study utilized a truncated 
Vav1 with residues 170–375, which only contained part of the Ac 

region and the DH domain. A recent study by Yu et al. revealed 
how CH, Ac, DH, PH, and zinc finger domains (CADPZ) of Vav 
interact with each other to negatively regulate its basal GEF activ-
ity.28 The study elegantly shows how the CADPZ domains func-
tion together to constrain interaction of the inhibitory helix from 
the C-terminal Ac region with the DH domain. The constraint 
arising from intramolecular interactions between the CADPZ 
domains is relieved through multistep phosphorylation of Vav, 
where Tyr-142 and Tyr-160 in the Ac region are initially phos-
phorylated, possibly destabilizing the modulatory interactions 
(Fig. 1B). This results in exposure of the inhibitory helix that 
can now be readily phosphorylated on Tyr-174, culminating in 
the opening of the GTPase binding interface on the DH domain 
(Fig. 1B).28 The multistep phosphorylation system provides tight 
control of Vav activity, ensuring that the main regulatory Tyr-174 
amino acid can be phosphorylated only when Src activity reaches 
a certain level sufficient to phosphorylate all three tyrosines. Since 
Tyr-142 and Tyr160 are more accessible to phosphorylation, then 
it is possible that a tyrosine phosphatase keeps basal phosphor-
ylation level of these residues low until Src activity is elevated. 
Activation of a tyrosine phosphatase also could be used to reverse 
processes initiated by Src and Syk. Tyrosine phosphatases PTP-
PEST, PTPN22, and Shp1 have been shown to dephosphorylate 
Vav.30-32 PTP-PEST negatively regulates membrane protrusions 
by dephosphorylating Vav, and Shp1-mediated dephosphoryla-
tion of Vav inhibits cytotoxicity of natural killer cells.30,32 Thus, 
reversible control of Vav phosphorylation provides a mechanism 
for dynamic regulation of Vav-mediated processes.

Regulation of RhoGEFs  
by Tyrosine Phosphorylation

Due to its unique domain structure, the mechanism for phos-
phorylation-mediated regulation of Vav cannot be extrapolated 
to other RhoGEFs. However, several RhoGEFs have been shown 

Figure 1. Multi-step phosphorylation-mediated regulation of vav. (A) Schematic representation of the domain structures of vav. (B) vav activation is 
achieved via initial phosphorylation of Tyr-142 and Tyr-160 in the Ac region, resulting in disruption of the CH domain interaction with the PH domain. 
it is hypothesized that this allows for exposure of Tyr-174. Subsequent phosphorylation of this residue results in conformation change that allows 
RhoGTPase to access the DH domain.
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to be phosphorylated on tyrosine residues and in most cases it 
leads to activation of the GEF. However, the mechanisms of acti-
vation appear to be different even among close homologs.

RH-RhoGEF subfamily of RhoA-specific GEFs is comprised 
of p115RhoGEF (p115), PDZ-RhoGEF (PRG), and Leukemia-
associated RhoGEF (LARG) (Fig. 2). It is well established that 
this family of proteins are regulated specifically by Gα

12/13
 het-

ero-trimeric G-proteins.33 Therefore, RH-RhoGEFs provide a 
direct functional link from activated G-protein-coupled receptors 
(GPCRs) coupled to Gα

12/13
 to RhoA signaling. RH-RhoGEFs 

share three common domain structures (Fig. 2). They contain the 
tandem DH-PH domains that catalyze GDP/GTP exchange spe-
cifically on RhoA. The distinction of the RH-RhoGEF subfamily 

comes from the N-terminal regulator of G-protein signaling homol-
ogy (RH) domain. Structural and biochemical experiments have 
established that GTP-bound Gα

12/13
 subunits make direct con-

tacts with the RH-domain, and that this interaction positively 
regulates RhoGEF activity.34-38 It has also been shown that the RH 
domain of p115 and LARG also can function as negative regu-
lator of Gα

12/13
 by increasing its intrinsic hydrolysis rate of GTP 

to GDP.33,37,39 While interactions of RH-RhoGEFs with Gα
12/13

 is 
believed to be the primary and the most well-characterized mode 
of regulation, several reports also indicate that additional control 
could be provided by phosphorylation of tyrosine residues.

The smallest member of RH-RhoGEF subfamily, p115, is 
ubiquitously expressed with highest expression observed in 

Figure 2. Domain structures and phosphorylation sites of RhoA-specific GeFs. Schematic diagram of the domain structure of RhoGeFs, and depiction of 
phosphorylation sites and kinases that mediate activation (green) and inhibition (red) of RhoGeFs. Kinases that are known to phosphorylate and regu-
late RhoGeF function where phosphorylation sites have not been identified are listed on the right (see text for detail). CC, coiled-coil; DH, Dbl homol-
ogy; LR, leucine rich; NLS, nuclear localization signal; PDZ, post-synaptic density 95; disk large, zona occludens-1; PBM, PDZ binding motif; PH, Pleckstrin 
homology; RH, RGS homology; and ZF, Zinc finger-like binding domain.
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hematopoietic cells. Activation of angiotensin II receptor type-
I (AT-1) in vascular smooth muscle cells (VSMCs) leads to 
phosphorylation of p115 on Tyr-738 by Janus Kinase2 (JAK2). 
Evidence indicates that phosphorylation Tyr-738 is sufficient for 
positive regulation of GEF activity of p115, independent from 
Gα

13
 binding to p115.40 AT-1-mediated phosphorylation of p115 

and activation of p115-RhoA signaling was reported to con-
tribute to increased vascular remodeling.40 The mechanism of 
phosphorylation-mediated activation has not been determined. 
However, the location of the phosphorylated residue in the PH 
domain of p115RhoGEF is unusual, suggesting a potentially 
novel mechanism for regulation of RH-RhoGEFs. Tyr-738 is 
buried in the hydrophobic pocket of the PH domain (Fig. 3A). 
Phosphorylation of this tyrosine would dramatically change the 
environment in the pocket and should result in conformational 
changes in the PH domain. Another intriguing question is how 
does JAK-2 access this Tyr-738 residue? Either this particular 
PH domain has very dynamic structure allowing Tyr-738 to be 
exposed at least transiently, or there is an alternative conforma-
tion that has not yet been determined. Interestingly, Tyr-738 is 
located within a motif highly conserved among RH-RhoGEFs, 

but it is still unknown if JAK-2 can phosphorylate LARG 
and PRG on that residue (Fig. 3B). p115 has also been 
reported to be phosphorylated by proline-rich tyrosine 
kinase2 (Pyk2) upon activation of protease-activated 
receptor-1 (PAR-1) in THP-1 cells.41 However, the phos-
phorylation site has not been determined and it is not 
clear if p115 phosphorylation by Pyk2 in this context 
is sufficient to increase its GEF activity. Non-the-less, 
evidence indicates that Pyk2 activity and p115 expres-
sion is required for thrombin-induced THP-1 cell migra-
tion and VSMC migration.41,42 Furthermore, Pyk2 and 
its close homolog focal adhesion kinase (FAK) can also 
regulate activity of two other members of RH-RhoGEF 
family, PRG and LARG.

PRG and LARG are ubiquitously expressed with 
higher expression of PRG observed in the brain. PRG 
was the first RH-RhoGEF reported to be regulated by 
tyrosine phosphorylation. Both PRG and LARG are 
tyrosine phosphorylated by FAK upon PAR-1 activa-
tion in HEK293T cells. The report provides evidence 
that the tyrosine phosphorylation occurs in the C termi-
nus of PRG and LARG, and that this phosphorylation 
positively regulates GEF activity.43 Furthermore, existing 
data demonstrate that PRG and LARG tyrosine phos-
phorylation is sufficient for positive regulation of its GEF 
activity independently of Gα

12
 or Gα

13
.43 Current evi-

dence suggests that C-terminal domains of LARG and 
PRG mediate their homo- and hetero-dimerization, lead-
ing to inhibition of GEF activity.44,45 Thus, it is possible 
that phosphorylation of the C-terminal portion of LARG 
and PRG disrupts inhibitory dimerization, and leads to 
their activation.44,45 Importantly, p115 does not have the 
similar sequence homology in its C-terminal fragment, 
suggesting that this mode of regulation is unique for PRG 
and LARG. In the initial study, the impact of GEF phos-

phorylation on cell migration was not assessed. However, a study 
by Iwanicki and colleagues showed that indeed the interaction 
between FAK and PRG at focal adhesions is critical for trailing-
edge retraction in fibroblasts upon LPA stimulation.46 PRG phos-
phorylation has also been implicated in cancer cell migration. 
In prostate cancer cells, circumstantial evidence implicated FAK-
mediated phosphorylation of PRG downstream of bombesin-2 
(BB-2) receptor in regulating prostate cancer cell migration.47 
Thus, collective evidence suggests that FAK-mediated regula-
tion of PRG and potentially LARG could represent an alternative 
mechanism for regulation of cell migration via RH-RhoGEFs 
downstream of GPCR activation.

Several other tyrosine kinases have been shown to phos-
phorylate PRG and LARG. Pyk2 phosphorylates PRG provid-
ing positive regulation of its GEF activity.48,49 Furthermore, 
Pyk2-mediated tyrosine phosphorylation of PRG downstream of 
AT-1 receptor regulates Rho-ROCK cascade in vascular smooth 
muscle cells leading to increased migration.49 Given the homol-
ogy between Pyk2 and FAK, it is possible that Pyk2 regulates 
PRG via the same mechanism as FAK. However, the site(s) of 
phosphorylation on PRG by Pyk2 have not been mapped. It has 

Figure 3. Phosphorylation of PH domain of p115RhoGeF by JAK2. (A) Structure of 
p115RhoGeF’s PH domain (PDB identifier: 3ODO). TheTyr738 residue is depicted in 
red and the surrounding hydrophobic residues are depicted in blue. (B) Alignment 
of amino acid sequences for p115RhoGeF, LARG, and PDZ-RhoGeF.
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also been shown that LARG is tyrosine phosphorylated by Fyn, 
a Src family kinase, in response to tensional force resulting in 
positive regulation of its GEF activity and targeting of LARG 
to FA.50 Suzuki et al. have also identified Tec tyrosine kinase to 
phosphorylate LARG. This study utilizing in vitro reconstitu-
tion assays and cell-based assays demonstrated that LARG phos-
phorylation by Tec makes LARG receptive to activation by Gα

12
 

both in vitro and in vivo.37 This suggests an interesting mecha-
nism where Tec-mediated phosphorylation of LARG provides an 
additional mode of control-enhancing GEF activation by GPCR 
signaling. However, the phosphorylation sites and the details of 
this potential regulation still remain to be determined.

Another RhoGEF known to be regulated by tyrosine phos-
phorylation is p190RhoGEF, also known as Rgnef. It is a ubiq-
uitously expressed multi-domain-containing GEF (Fig. 2).51,52 
p190RhoGEF has been shown to directly interact with FAK, and 
this interaction helps localize p190RhoGEF to focal adhesions. 
Biochemical studies have revealed that the interaction of FAK 
with p190RhoGEF is important for its function. The interaction 
between p190RhoGEF and FAK has been shown to occur via the 
coiled-coil domain of p190RhoGEF, which contains the residues 
1292–1301, and the focal adhesion targeting (FAT) domain of 
FAK.53 Laminin stimulation of Neuro-2a cells promoted FAK-
p190RhoGEF complex formation, which enhances p190RhoGEF 
tyrosine phosphorylation resulting in positive regulation of its GEF 
activity.53 Additional studies have also reported the importance of 
FAK-p190RhoGEF complex in regulation of FA formation and 
fibronectin-stimulated motility of mouse embryonic fibroblasts.54 
In a pathological condition, evidence also supports the role of FAK-
p190RhoGEF complex in regulation of colon cancer cell migration 
and invasion downstream of gastrin binding to cholecystokinin 
receptor-2.55 Furthermore, recent studies have illuminated the 
mechanisms by which p190RhoGEF may regulate cancer cell 
migration and invasion through the use of novel Rho biosensors. 
These studies elegantly demonstrate that p190RhoGEF plays a 
critical role in formation of leading edge protrusions and invado-
podia through spatial regulation of RhoC (a Rho isoform), which 
leads to regulation of directional cell migration and invasion.56,57 
These reports suggest that p190RhoGEF interaction with FAK 
is important for proper localization of p190RhoGEF and regula-
tion of its GEF activity. However, what is unknown is the role of 
tyrosine phosphorylation of p190RhoGEF by FAK in regulating its 
activity. Thus, it would be of great interest to identify the tyrosine 
phosphorylation site(s) of p190RhoGEF and assess if phosphory-
lation is sufficient to regulate its GEF activity independent of its 
interactions with FAK.

Regulation of GEFs by Ser/Thr Kinases

While tyrosine kinases appear to predominantly activate 
RhoGEFs, phosphorylation by Ser/Thr kinases can be both acti-
vating and inhibitory. In most cases, phosphorylation on Ser or 
Thr residues either disrupts or enhances interactions with other 
proteins that regulates sub-cellular localization of RhoGEFs and 
influences their GEF activity. Below we discuss several examples 
of such regulation.

Guanine nucleotide exchange factor-H1 (GEF-H1) is regu-
lated via protein–protein interaction and through protein phos-
phorylation. It has been reported that GEF-H1 regulates cell 
motility through spatial control of RhoA activation at the lead-
ing edge without having any appreciable effect on overall RhoA 
activation.58 This spatial regulation of RhoA activation in turn 
regulates focal adhesions at the leading edge in HeLa cells.58 
GEF-H1 was originally identified as microtubule-associated 
nucleotide exchange factor.59 GEF-H1 directly interacts with 
either microtubules or microtubule-associated proteins (MAPs) 
via its N-terminal zinc finger-like domain and through its 
C-terminal coiled-coil domain (Fig. 2).59,60 This interaction has 
been shown to negatively regulate its GEF activity.60 Recently, 
several studies have provided evidence that GEF-H1 is both posi-
tively and negatively regulated via phosphorylation. It has been 
demonstrated that extracellular signal-regulated kinase (ERK) 
phosphorylates GEF-H1 on Thr-678 in HeLa S3 and HT1080 
cells increasing its GEF activity.61 Similar results were obtained 
upon stimulation of LLC-PK and MDCK cells with TNFα.62 An 
independent study also demonstrated that GEF-H1 is activated 
by ERK1 downstream of FAK-Raf signaling pathway in rat fibro-
blasts upon application of force.50 Intriguingly, a recent study 
shows that ERK-mediated phosphorylation of GEF-H1 on Ser-
959 inhibits its activity and regulates tumor cell migration and 
invasiveness.63 It has been reported that PAK-1 phosphorylates 
GEF-H1 on Ser-885 stimulating interaction of GEF-H1 with 
14-3-3 protein. This interaction localizes GEF-H1/14-3-3 com-
plex to microtubules, thus inhibiting its GEF activity.64 Similarly, 
Aurora A/B kinase and cyclin B1/cdk1 phosphorylate GEF-H1 
on Ser-885 and Ser-959, respectively, thus negatively regulating 
its activity.65 Partioning–defective 1b (PAR1b) kinase can also 
phosphorylate both Ser-885 and Ser-959 on GEF-H1 in COS-7 
cells. Similar to PAK-1-mediated phosphorylation of GEF-H1 on 
Ser-885, PAR1b-mediated phosphorylation of Ser-885 and Ser-
959 increases 14-3-3 binding to GEF-H1, and thus, decreasing 
its GEF activity. Existing evidence also supports the notion that 
phosphorylation of GEF-H1 on Ser-885 and S-959 is sufficient 
to inhibit its GEF activity independent of 14-3-3 interaction.66 
It is worth noting that while phosphorylation in the C-terminal 
portion (Ser-885 and Ser-959) promotes inhibitory interactions, 
the activating phosphorylation (Thr-678) occurs between the PH 
and coiled-coil domain of GEF-H1 (Fig. 2). It still remains to 
be determined if phosphorylation of Thr-678 affects interaction 
with 14-3-3 and/or association with microtubules.

Another example of negative regulation by phosphorylation 
is observed with neuroepithelioma transforming gene 1 (Net1) 
RhoGEF. Net1 is unusual among the RhoGEFs in that in its N 
terminus it contains multiple nuclear localization signals (NLS) 
(Fig. 2).67 It is thought that the NLS on Net1 plays a critical role 
in negative regulation of RhoA activation and stress fiber for-
mation.68 An isoform of Net1 known as Net1A lacks two NLS, 
and thus, is less regulated through subcellular localization.69 It 
is believed that cytoplasmic redistribution of Net1 is sufficient 
for its GEF activation.68 However, there is evidence that supports 
the existence of additional regulatory elements that control Net1 
activity in the cytoplasm. A report by Alberts et al. indicates that 
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PAK1 activation downstream of Rac1 leads to phosphorylation of 
Net1 on Ser-152 and Ser-153 in vitro.70 Indeed, overexpression of 
constitutively active Rac1 increases Pak1-mediated phosphoryla-
tion of Net1 on Ser-152 in HEK293 cells, resulting in decreased 
Net1 RhoGEF activity.70 However, the mechanism by which 
phosphorylation of Net1 on Ser-152 inhibits its activity is not 
known. Much like other RhoGEFs, Net1A has also been shown 
to be important in cancer cell migration and invasion. It has been 
demonstrated that Net1A co-localize with FAK and promotes 
focal adhesion maturation in breast cancer cells.69 However, 
whether Net1A is phosphorylated by FAK in breast cancer cells 
and if that impacts its GEF activity is yet to be determined.

Synectin-binding RhoA exchange factor (Syx also known as 
TECH, PLEKHG5, or GEF720) is a RhoGEF that is highly 
expressed in the brain and endothelial cells.71-73 Syx contains 
DH-PH domains and a C-terminal PDZ-binding motif (Fig. 2). 
The PDZ-binding motif is required for Syx membrane localiza-
tion through its interaction with Crumbs polarity complex.72 Cell 
membrane localization and Syx RhoGEF function is required for 
cell polarity and directional cell migration of glioblastoma multi-
forme cancer cells, breast cancer cells, and endothelial cells.72,74,75 
It is interesting to note that in these studies with different cell 
types, Syx was shown to be targeted to leading edge of the cell 
where it mediated local RhoA-Dia activation, which was required 
for directional cell migration. Recently, two reports have shown 
that Syx is phosphorylated by protein kinase D1 (PKD1) on 
Ser-92, Ser-806, and Ser-938.6,76 Through mutational analysis, 
it was found that phosphorylation of Ser-92 and Ser-938 results 
in binding of Syx to 14-3-3 proteins. The authors speculate that 
phosphorylation of Ser-806 may induce conformational changes 
of Syx that may allow for dimerization of the 14-3-3 proteins 
bound to the N- and C-termini of Syx. This ultimately leads to 
conformational changes that inactivate Syx GEF activity, leading 
to de-stabilization cell–cell junctions.76

Concluding Remarks

Protein phosphorylation is one of the key post-translational 
modifications utilized in signal transduction. Thus, it is not 
surprising that phosphorylation is used to regulate activity of 
RhoGEFs. Interestingly, unlike for many other enzymes, the 
direct phosphorylation of the catalytic domain (DH) has not 
been detected so far and there is only one report demonstrating 

phosphorylation of PH domain in p115RhoGEF.40 As evident 
from current research, regulation of GEF activity is achieved 
by phosphorylation of residues outside the DH-PH domains 
affecting either intramolecular interactions or association 
with binding partners that modulate GEF activity. The diver-
sity of the regulatory mechanisms enables control of different 
RhoGEFs through independent pathways, and allows use of 
combination of pathways for regulation of a single RhoGEF. 
This is particularly important for spatio-temporal regulation 
of RhoA activation, where phosphorylation and dephosphory-
lation of different RhoGEFs at specific subcellular locations 
defines local control of RhoA activity. Better understanding of 
these processes requires further identification and dissection of 
phosphorylation-driven mechanisms regulating RhoGEF activ-
ity. Recent improvements in phosphoproteomic analysis sim-
plify identification of novel phosphorylation sites in RhoGEFs. 
Development of novel biosensors for RhoGEFs and applica-
tion of existing biosensors for RhoA will help to identify local 
changes in their activity.3 It is possible to ascertain a more com-
plete picture of kinase-mediated RhoGEF-RhoA activation in 
“real-time” by employing recently developed techniques that 
allow for temporal regulation of kinase activity in living cells.77-

80 Precise control of specific kinases in living cells will be instru-
mental for dissection of phosphorylation-mediated regulation 
of RhoGEFs.

Phosphorylation-mediated regulation of RhoA signaling goes 
beyond modulating RhoGEF activity. Other molecular entities 
that regulate RhoA activity, such as GDIs and GAPs, are also 
controlled by phosphorylation. Evidence indicates that RhoA 
itself is phosphorylated on Ser-188 by cGMP-dependent protein 
kinase (cGK), protein kinase A (PKA), and by Ste20-related 
kinase (SLK).81-83 It has been shown that RhoA Ser-188 phos-
phorylation negatively regulates its function by promoting its 
association with RhoGDIs.84 Thus, phosphorylation of all com-
ponents has to be taken into account in order to describe the 
signaling network controlling RhoA.
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