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SUMMARY
Humans and monkeys can learn to classify perceptual information in a statistically optimal fashion
if the functional groupings remain stable over many hundreds of trials, but little is known about
categorisation when the environment changes rapidly. Here, we used a combination of
computational modelling and functional neuroimaging to understand how humans classify visual
stimuli drawn from categories whose mean and variance jumped unpredictably. Models based on
optimal learning (Bayesian model) and a cognitive strategy (working memory model) both
explained unique variance in choice, reaction time and brain activity. However, the working
memory model was the best predictor of performance in volatile environments, whereas
statistically optimal performance emerged in periods of relative stability. Bayesian and working
memory models predicted decision-related activity in distinct regions of the prefrontal cortex and
midbrain. These findings suggest that perceptual category judgments, like value-guided choices,
may be guided by multiple controllers.
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INTRODUCTION
The intertwined problems of how agents learn about the environment and decide how to act
are of central importance in the behavioural, cognitive and neural sciences. One fundamental
question is whether decisions rely on an internal model of the environment, replete with
statistical information about the likely causes of outcomes or sensations, or whether they
rely on simpler mechanisms, such as learning the value of one action over another (Daw et
al., 2005; Glascher et al., 2010; Sutton and Barto, 1998). All decisions are perturbed by
multiple sources of uncertainty, but decision-making is most demanding when the
environment can change rapidly and without warning. An agent that explicitly encodes
higher-order statistical information about the changing stimulation history, such as the
transitional probabilities among hidden or observable states (Green et al., 2010), their
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variability (Preuschoff et al., 2008), and rates of change (Behrens et al., 2007), can tailor
decision policy to account for this uncertainty, for example by discounting past rewards
more steeply when the world changes faster (Rushworth and Behrens, 2008), or by selecting
a sure prospect over an equal-valued but risky one (Christopoulos et al., 2009). Recent
research has begun to map the neural structures that represent the changing value of states
and stimuli, with a focus on the ventromedial prefrontal cortex (Hampton et al., 2006), and
one recent postulate is that related neural circuits, for example in the midbrain or insular
cortex, may encode the uncertainty associated with a prospect (e.g. outcome variance, or
risk) (Schultz et al., 2008). These findings have bolstered the view that, contrary to classic
assumptions in behavioural economics (Kahneman et al., 1982), human voluntary choices
are fundamentally rational, and can be described in a probabilistic framework that explicitly
represents choice uncertainty in order to maximise favourable outcomes.

Much of this research has employed economic tasks where individuals choose among goods
or gambles whose value can jump, drift or reverse unexpectedly (Behrens et al., 2007;
Boorman et al., 2009; Daw et al., 2006; Green et al., 2010; Hampton et al., 2006). In these
tasks, the stimuli are typically simple and readily discriminable (e.g. coloured squares or
symbols), but the choice value (e.g. the conditional probability that an action will be
rewarded, given the stimulus, and possibly a hidden state) is uncertain, and has to be
computed from the past reward history (outcome uncertainty, or risk). Critically, however,
outside of the laboratory, observers additionally have to deal with uncertainty pertaining to
the functional groupings (or categories) to which sensory stimuli belong. For example, a
foraging animal not only has to update the changing calorific value of a food source
throughout the changing seasons (e.g. are nuts good to eat now?), but also has to learn to
accurately and efficiently classify items as belong to that food category (e.g. is this is a
nut?). An exceptionally rich tradition has investigated the cognitive mechanisms by which
perceptual information is detected, discriminated and categorised (Ashby and Maddox,
2005; Swets et al., 1964), and recent neuroscientific research has offered important insights
into the brain mechanisms mediating perceptual choice (Freedman and Miller, 2008; Gold
and Shadlen, 2007; Li et al., 2009; Seger and Miller, 2010). Behavioural work has
emphasised that perceptual classification in humans can mimic that of a rational agent that
explicitly encodes not only the category mean (e.g. a prototype) but also the category
variability (i.e. uncertainty about class membership). For example, psychophysical detection
(Stocker and Simoncelli, 2006), multidimensional discrimination (Ashby and Gott, 1988),
multifeature integration (Michel and Jacobs, 2008) and exemplar clustering (Anderson,
1991) can all be described with an ideal observer models, such as signal detection theory
(Swets et al., 1964), general recognition theory (Ashby and Townsend, 1986), or with
related Bayesian approaches (Anderson, 1991).

Importantly, however, observers in these studies are typically allowed many hundreds of
training trials to learn stable and predictable category information. With overtraining,
rational models of categorical choice are difficult to distinguish from simpler, habit-based
accounts, because highly-trained participants can produce a pattern of choices that resembles
optimal responding by associating portions of the decision space with a particular action
through extensive stimulus-response learning (Blair and Homa, 2003). Indeed, an influential
framework suggests that model-free mechanisms, that capitalise on the extended learning
history to assign value to actions, may take precedence in control of action in stable,
overlearned environments (Daw et al., 2005; Dickinson and Balleine, 2002). It thus remains
unknown (i) whether observers learn about the uncertainty associated with category
membership (category variance), and use it to inform their decisions, and (ii) which neural
structures might encode category variability. The purpose of the current study was to
address these questions.
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One important feature of unpredictable, fast-changing environments is that observers are
obliged to distinguish between unexpected events that occur because of noise (i.e. an
outlier), and those that occur because of a state change in the environment (Yu and Dayan,
2005). For example, a bus might be late because of the vagaries of morning traffic (noise),
or because new roadworks have introduced a fundamental delay that should be budgeted for
when estimating subsequent journey times (a state change). When economic estimates
change rapidly, new learning quickly becomes outdated, and so past category information
should be discounted more steeply when choices are made (Nassar et al., 2010; Rushworth
and Behrens, 2008). Observers do indeed update their estimates of mean reward rate more
rapidly when the environment is more volatile, a computation that has been associated with
the anterior cingulate cortex (ACC) (Behrens et al., 2007). Model-based learning about the
environment (e.g. explicitly encoding category uncertainty) will be most useful in a volatile
world, as it allows observers to distinguish optimally between outliers and those events that
herald a change of state. On the other hand, in a volatile environment estimates of category
variance will be of limited precision, and expensive to compute. It thus remains unknown
whether rational strategies will predominate during periods of environmental stability, or
volatility. One efficient way of dealing with a volatile world would be to simply maintain
the most recent information about each category in short-term memory - equivalent to
updating category values in the frame of reference of the stimulus (rather than action) with a
learning rate that equals or approaches one.

In pursuit of the question of how category information is learned, represented, and used to
inform classification judgments, thus, we asked participants to classify sequentially
occurring stimuli (oriented gratings) drawn from categories whose mean and variability
(over angle) changed unpredictably and without warning. Recording brain activity during
the task with functional magnetic resonance imaging (fMRI) allowed us to compare
observed choices, decision latencies, and brain activity to those predicted by three
computational models that embodied different hypotheses about how humans learn about
and choose between categories. The first model learned the mean and variance of the
categories in an optimal Bayesian framework (Bayesian model), the second model learned
the value of action in a given state, i.e. angle (Q-learning model) and the third model simply
maintained the most recent category information in memory (working memory model).
These models allow us to compare the hypotheses that category judgments in an
unpredictable environment are driven by strategies that rely on ‘model-based’ optimal
estimation of uncertainty (Bayesian), ‘model-free’ habit learning (Q-learning), or a cognitive
strategy based on short-term maintenance (working memory).

We report a number of new findings. Firstly, both the Bayesian and the working memory
models encoded unique variance in choice, reaction time (RT) and brain activity, suggesting
that participants use a mixture of model-based categorisation strategies. Secondly,
participants’ tendency to use a decision policy that incorporated category variance depended
on the volatility of the environment, with the Bayesian model approximating human
performance more closely in relatively unchanging environments, and neural signatures of
choice and learning modulated by category variability only during stable periods; by
contrast, the working memory model prevailed when the environment was more volatile.
Finally, different strategies were associated with dissociable patterns of decision-related
brain activity, with fMRI signals predicted by the Bayesian model observed in the striatum
and medial PFC, but brain activity predicted by the working memory strategy activating
visual regions, and the dorsal frontal and parietal cortex. Together, these results suggest that
participants use cognitive strategies involving the short-term maintenance of information
when making decisions in volatile environments, but gradually come to rely on information
about category uncertainty to make more optimal choices as learning progresses.
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RESULTS
On each of 600 trials, 20 participants viewed an oriented stimulus (full-contrast Gabor
patch) that was drawn from one of two categories defined by orientation, with angular

means on trial i of  and  and variances  and  (figure 1a). Subjects received no
instructions regarding the categories, but were required to learn about them by trial-and-
error, via an auditory feedback tone following each decision epoch of 1500 ms. Generative
distributions over angle for the two categories changed unpredictably every 10-20 trials (4
episodes of 10 trials, 4 episodes of 20 trials, randomly intermixed), to a new mean value
drawn from a uniform distribution (between −90° and 90°) with a standard deviation of
either 5° or 20° (figure 1b). Overall, the task was challenging, with subjects responding
correctly on 68.6 ± 3.9% of trials (range 59% to 74%), and overall mean reaction times
(RTs) of 697 ± 131 ms. Subjects failed to respond within the deadline on an average of 9.6 ±
4.1 (range 5-22) trials, and these trials were excluded from all further analyses.

We built three competing computational models of categorical choice and compared them to
subjects’ behavioural performance. (1) The Bayesian model learned trial-by-trial means and
variances of each category, and their rates of change, in an optimal Bayesian framework. On
each successive trial, the model updated a probability space defined by the possible

(angular) values of , ,  and  as well as their respective rates of change, and
marginalised over the space to estimate current ‘best-guess’ category means and variances
of A and B. Choice values reflected the relative likelihood of A and B given current stimulus
angle Yi:

(1)

(2) The Q-learning model learned the value of choices A and B given the state (stimulus
angle), with a single learning rate as a free parameter; choice probability values were
calculated as the relative value of responding A vs. B:

(2)

The learning rate was set to be the best-fitting value across the cohort, α=0.8; in theory, this
extra free parameter gave the Q-learning (QL) model an advantage, but in practice it was the
poorest-performing of the three models. (3) The working memory model updated the

category means  and  using a delta-rule with a learning rate of 1, i.e. resetting category
means on the basis of the most recently viewed category member. Choice probabilities
reflected the relative distance of the stimulus to these current estimates of A and B:

(3)

For simplicity, we refer to these values as p(A) i.e. the probability of choosing A over B.
Full details of the models are provided in the Materials and Methods section below.

Predicting choice
We estimated choice values p(A) under each model for successive stimuli in the trial
sequence. Trials were sorted into bins according to their value of p(A), and observed mean
choice probability was calculated for each bin (figure 2a). To quantify which model was the
best predictor of observed choice data, we used multiple regression; parameter estimates are
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shown in figure 2b. Entering all three models together into the regression, each explained
some unique variance in choice behaviour (Bayesian model: t(19) = 8.77, p < 1 × 10−7; QL
model t(19) = 2.4, p < 0.02; working memory model: t(19) = 16.6, p < 1 × 10−12). However,
across the subject cohort, the working memory model was a reliably better predictor than the
Bayesian model (t(19) = 4.07, p < 1 × 10−3) or the Q-learning model (t(19) = 10.2, p < 1 ×
10−8). To interrogate the data further, we fit a decision criterion c (0.01 < c < 0.99) to the
choice probability values under each model, and compared the resulting binary trial
classification (model choices) to human choices. Resulting χ2 values for each model across
values of c are shown for individual subjects in figure 2c. Comparing models under best-
fitting values of c, the working memory model again out-performed the Bayesian (t(19) =
2.69, p <0.05) and the Q-learning models (t(19) = 2.87, p <0.01) in pair-wise comparison at
the group level.

The task was structured such that the true category statistics jumped every 10 or 20 trials.
We wanted to determine whether participants learned this periodic jump structure, because if
so, this could have disadvantaged the Bayesian model, which has no way of inferring the
periodic structure of the task. Our approach was twofold. First, we asked whether learning
rates (fit by a simple delta rule) differed for the first 8 trials following switch (when an
observer with full knowledge of the 10-trial cycle should not learn any new information),
relative to trials 9-13 following a switch. In fact, participants learned faster immediately
following a switch (t(19) = 3.15, p < 0.004) – behaviour that is well captured by the working
memory model, but which would could not be approximated with a variant of the Bayesian
model that optimally inferred the cyclic task structure. Secondly, we compared learning
rates for different phases of a 10-trial harmonic across each run (i.e. trials 3-7, 13-17,
23-27… etc. vs. trials 1-2, 8-12,18-22…, irrespective of when jumps occurred). These
revealed almost identical learning rates (0.73 vs. 0.69, t(19) < 1). If participants had been
explicitly using knowledge about the structure of the sequence (to which the current
Bayesian model has no access), then we would expect them to learn faster in period where
jumps were more probable. Together, these two results strongly suggest that participants do
not learn the periodic structure of the task, and that the Bayesian model is not unfairly
disadvantaged by being blind to the 10-20 trial jump cycle. In fact, because the Bayesian
model outperforms the human participants, and a model with perfect knowledge of the
jumps would perform even better, so that it would approximate human behaviour yet more
poorly.

Predicting RT
We converted choice probability values into a quantity that scales with the probability of
making a correct response (methods) and correlated these choice values with trial-by-trial
RT values for each participant (figure 3a). Slopes were more negative for the working
memory model than the Bayesian (t(19) = 11.2, p < 1 × 10−9) and QL models (t(19) = 15.9, p
< 1 × 10−12), suggesting that choice values from the working memory model captured the
most variability in RT (indeed, the slope for the QL model did not deviate significantly from
zero: p = 0.48). This was confirmed by regression analysis (figure 3b), which revealed
parameter estimates for the working memory model that were significantly more negative
than for both competing models (Bayesian model, t(19) = 5.76, p < 1 × 10−5 ; QL model, t(19)
= 8.81, p < 1 × 10−7).

Predicting decision-related fMRI activity: expected value
Subsequently, we used the three models to generate trial-by-trial predictions about the
BOLD response, by modelling fMRI data with parametric regressors scaled by predicted
choice values from each model. Again, we included predictions from all three models in a
single design matrix, allowing them to compete for variance in brain activity at each voxel
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across the brain during the decision epoch (figure 4a and table S1). Our results thus reflect
the unique contribution of each model to fMRI signals (the common contribution is shown
in supplemental materials, figure S1). Because estimated choice values reflect the
probability that positive feedback will be obtained, we focussed our initial analyses on brain
regions known to respond to positive outcomes, such as the ventromedial prefrontal cortex
(vmPFC), and the posterior cingulate cortex (PCC) (Rushworth et al., 2009). Activity in
both of these regions was predicted by the working memory model (PCC: 9, −51, 27; t(19) =
9.15, p < 1 × 10−8; vmPFC, 6, 45, −18, t(19) = 7.87, p < 1 × 10−6), and more modestly by the
Bayesian model (PCC: 9, −57, 15, t(19) = 4.02, p < 0.001, vmPFC: 12, 60, 0, t(19) = 3.51, p <
0.002). No such prediction was observed for the QL model.

Predicting decision-related fMRI activity: decision entropy
The inverse contrast identified voxels that correlated with the entropy (or conflict)
associated with the decision, i.e. how close the probability of a choosing A over B was to
chance (p = 0.5) under each model (figures 4-5 and table S2). We modelled the predictions
of each model with a unique parametric regressor and entered these simultaneously into the
design matrix, allowing the identification of voxels that responded (i) to the predictions of
all three models (shown in figure 4), and (ii) to predictions of one model alone. We defined
the latter as voxels where t-values were positive-going for decision entropy, and exceeded
those for the other two models by at least 3.09 (p < 0.001) in both cases (shown in figure 5).
These analyses offer complementary information: the former identifies voxels that correlate
with each model for a given threshold, and the latter identifies voxels that differ in their
degree of correlation with each model (although this analysis is limited by the extent to
which regressors are correlated). Firstly, we found that decision-related BOLD signals in the
anterior insular cortex were robustly predicted by all three models (figure 4b and 5a).
Secondly, activity predicted by the working memory model, but not the other models, was
mainly observed in the extrastriate visual cortex (peak: −21, −96, −9, t(19) = 9.29, p < 1 ×
10−8), including the superior occipital lobe (peak: −30, −81, 33, t(19) = 8.01, p < 1 × 10−7),
as well as dorsal fronto-parietal sites such as the superior parietal lobule (peak: 24, −69, 54,
t(19) = 15.09, p < 1 × 10−11) dorsolateral prefrontal cortex (peak: −48, 6, 30, t(19) = 7.97, p <
1 × 10−7), and pre-SMA (peak: 6, 15, 48, t(19) = 7.17, p < 1 × 10−6).

The Bayesian model was also associated with unique patterns of brain activity, but these fell
in the left striatum (peak: −12, 9, −3, t(19) = 6.09, p < 1 × 10−5), and the supplementary
motor area (SMA) (peak: 3, 0, 57, t(19) = 6.26, p < 1 × 10−5). The SMA cluster fell
immediately caudal to the pre-SMA cluster identified by the working memory model; the
juxtaposition of the two clusters is shown in supplementary materials. Finally, activity in the
left ventrolateral prefrontal cortex (peak: −48, 24, 3, t(19) = 6.45, p < 1 × 10−5) was uniquely
predicted by the QL model. These results are shown in detail in figures 4 and 5.

Correlation with volatility
We reasoned that participants’ tendency to employ the simple working memory strategy
rather than higher-order model-based strategies might depend on the volatility in the
environment. One possibility is that participants use information about the variance of the
categories only when the environment is stable and predictable, when more resources are
available for computationally intensive decision strategies. Alternatively, probabilistic
information might be deployed when it is most useful, i.e. in volatile environments, where
the category means are changing fast, and there is more ambiguity about whether
unexpected events are outliers, or reflect a change in the generative mean. We arbitrated
among these possibilities using the behavioural data by estimating trial-by-trial errors in the
fit of each model to choice data, and correlating this with the estimated volatility of the
sequence (methods). Statistically reliable positive correlations were observed for the
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Bayesian (t(19) = 3.13, p < 0.003) and QL (t(19) = 2.46, p < 0.02) models, suggesting that
these models fit the observed data better [lower residual error] when volatility was low. No
such correlation was observed for the working memory model (p = 0.58). In a further
analysis, we separated trials into quartiles on the basis of the estimated volatility, and re-ran
the regression analysis separately for the 25% most volatile and 25% least volatile trials. The
advantage for the WM model over the Bayesian model on high volatile trials (t(19) = 3.81, p
< 0.001) was eliminated on low volatile trials (p = 0.34). In other words, observers were
more likely to base their decisions on information about the category variance when the trial
sequence was stable than when it was volatile.

This finding prompted us to search for voxels where fMRI signals correlated better with
Bayesian or QL estimates of decision entropy under low than high volatility. We identified
voxels in the SMA and anterior cingulate cortex that displayed such a pattern for estimates
of decision entropy predicted by the Bayesian model (ACC peak: 3, 21, 33, t(19) = 4.54, p <
0.001; SMA peak: 0, 9, 60, t(19) = 4.54, p < 1 × 10−6) as well as a small cluster in the ACC
for the interaction between volatility and entropy predicted by the QL model (peak: 3, 15,
45, t(19) = 3.96, p < 0.001). No such voxels were identified for the working memory model.
These results are shown in figure 6a and table S3. This finding at the time of the decision is
complementary to, but does not contradict, the previous finding that ACC signals scale with
increasing volatility at the time of the outcome.

fMRI signals for category updating
The above analysis of behavioural and brain imaging data at the time of the decision
suggests that observers display a greater tendency to use optimal decision strategies when
the environment is more stable. This led us to ask whether neural signals reflecting updating
of information at the time of feedback are modulated by variance and volatility. In our task,
an observer should update his or her beliefs about the categories on the basis of the angular
disparity between the stimulus presented and the current estimate of the mean of the
category from which that stimulus was drawn. For example, if an observer who estimates
the mean of category A to be 45° responds B to a stimulus presented at 90° and receives
negative feedback, that observer will probably want to substantially revise his or her beliefs
about category A. However, an observer who is using a statistical decision strategy will
revise this estimate more when category variance is low than high (Preuschoff and
Bossaerts, 2007). We thus searched for voxels that reflected the angular updating signal
normalised by its variance under low, but not high, volatility.

Accordingly, when we constructed predictors that encoded these three factors and their two-
and three-way interactions (methods), along with regressors encoding the main effect of
stimulus, feedback, and reward. These were then regressed against brain activity at the time
of feedback. The results are shown in figure 6b and table S4. Critically, a three-way
interaction between these factors was observed in the posterior portion of the cingulate gyrus
(peak: 3, −30, 27; t(19) = 6.03, p < 1 × 10−5) extending into the posterior cingulate on the
right (peak: 12, −54, 9; t(19) = 5.15, p < 1 × 10−4) and left (peak: −15, −48, 6; t(19) = 4.76, p
< 1 × 10−4), as well as the supplementary motor area (peak: 6, 9, 63; t(19) = 5.57 p < 1 ×
10−4). Moreover, when we tested for significance within an a priori region of interest
centred on the dorsal ACC region previously found to respond to scale prediction errors by
volatility (Behrens et al., 2007), we found an additional cluster (peak: 3, 30, 18; t(19) = 2.98,
p < 0.004).

DISCUSSION
We asked healthy human participants to classify visual stimuli in a rapidly-changing
environment, with a view to describing the computational strategies they use to learn about,
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and choose between, perceptual categories. Our analyses compared three models: the
Bayesian model learned the statistics of the environment (e.g. the mean and variance of
category information), the Q-learning model learned the value of actions, and the working
memory model simply stored the last piece of information learned about each of the
categories, and used that as a benchmark for future choices. These models embody different
strategies that observers could use during categorisation, strategies that differ in terms of
what is encoded (first-order, or higher-order information about the categories), and the rate
at which past information is devalued (immediately, in the working memory model; or
according to environmental volatility, in the Bayesian model). Surprisingly, we found that
the simple, ‘working memory’ model was the best predictor of choice, RT, and brain activity
across the experiment. This suggests that in our task, human participants favour a fast and
frugal categorisation strategy that does not overly tax systems for storage and processing of
decision-relevant information. Indeed, the working memory model was many orders of
magnitude more economical than the Bayesian model. For example, where n is the sampling
resolution of the decision space (over angle), our computer based-implementation of the
working memory model demanded the storage of 2n bits of information per trial, compared
to 2n4 bits for the Bayesian model (although of course these values may not reflect the true
neural cost of each model).

Our fMRI analyses also identified specific neural circuits associated with this simple,
memory-based decision strategy. For example, working memory model was the best
predictor of decision-related activity in a dorsal fronto-parietal network previously
implicated in working memory maintenance (D’Esposito, 2007; Wager et al., 2004), and
superior occipital regions implicated in storing iconic traces in visual short-term memory
(Xu and Chun, 2006). Together, these data points reveal that a simple, memory-based
process can be used to solve a seemingly complex and challenging categorisation problem,
and suggest that visual and fronto-parietal regions are engaged to do so.

However, we know that participants did not rely exclusively on this cognitive strategy to
make categorical choices, because the other models – in particular, the Bayesian model –
explained unique variance in choice, RT and BOLD activity. In other words, participants
switched between different strategies for categorisation, and in the process, preferentially
activated distinct brain regions. The dissociable patterns of voxels that were observed to
correlate with decision entropy under each model offer clues to the strategies involved. For
example, in the medial and lateral prefrontal cortex (PFC), decision-related brain activity
predicted by the WM model fell systematically more anterior to that predicted by the
Bayesian model, activating rostral regions of the lateral PFC (BA 9/46) that are typically
recruited when decision-relevant information has to be maintained in the face of distraction
over a prolonged behavioural episode (Koechlin et al., 2003; Sakai et al., 2002). By contrast,
both models were associated with decision-related activity in middorsolateral PFC regions
falling at the intersection of BA 8 and 44 (the ‘inferior frontal junction’) (Brass et al., 2005),
where activity tends to reflect the demand of selection, conditioned on the context (Koechlin
and Summerfield, 2007), and from where category-related information can be decoded
independent of physical input (Li et al., 2009). Similarly, in the medial PFC, the Bayesian
model predicted decision-related activity in the SMA, and the WM model in the pre-SMA.
Although the relative functional significance of the SMA and pre-SMA remains
controversial (Nachev et al., 2008), one possibility is that there exists a rostro-caudal
gradient in the medial PFC, by which more anterior regions responding more vigorously
when decisions are based on motivational information that is more conditionally complex
(Badre and D’Esposito, 2009; Nachev et al., 2009), or that arose further in the past
(Kouneiher et al., 2009; Summerfield and Koechlin, 2010). One interpretation of these
findings is that cognitive strategies for categorisation in a volatile environment involve
maintaining recent exemplar-based representations active across several intervening trials at
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the expense of their competitors, and thus recruit PFC structures known to support cognitive
and motivational control across a discrete behavioural episode.

By contrast, when decisions are made without the benefit of explicit working memory
information, but based on approximations of the mean and variance of the categories, recruit
more posterior zones within the PFC, as well as the striatum. The latter finding is surprising
from the perspective of theories that have emphasised a role for the basal ganglia in habit
learning (Daw et al., 2005; Dickinson and Balleine, 2002), but squares well with the finding
that the risk associated with an economic prospect (i.e. the variance of the outcome) scales
with signals in both caudate and putamen (Preuschoff et al., 2006; Schultz et al., 2008).
Indeed, dopaminoceptive neurons of the striatum are known to encode uncertainty
associated with an economic decision, in addition to its value (Bunzeck et al., 2010; Fiorillo
et al., 2003; Tobler et al., 2007); our results imply that this may extend to situations where
the uncertainty pertains to the category of the stimulus. Finally, the Q-learning model
activated preferentially the left ventrolateral prefrontal cortex, in tune with a substantial
literature implicating this region in stimulus-response learning (Toni et al., 2001).

Our analysis of the interaction between model fits and environmental stability/volatility
offered insight into the factors that prompt participants to switch between memory-based
and higher-order learning strategies for categorical choice. Specifically, the Bayesian model
(but not the working memory model) fit the choice data better when the environmental
volatility is low, as if participants gradually acquired information about category variances.
In our task, ‘stable’ environments consisted of runs of 20-30 trials in which the category
mean remained constant – a far shorter training interval than the hundreds or even thousands
of trials offered in many categorisation or sensorimotor tasks (Ashby and Gott, 1988;
Kording and Wolpert, 2004). It is thus perhaps unsurprising that overall, the working
memory model provided a better fit to human choices than an ideal observer model.
However, our data chart clearly the emergence of optimal decision-making as observers are
offered a chance to become familiar with the category statistics.

This notion was also supported by fMRI analyses, which identified voxels that responded to
the interaction between volatility and decision entropy predicted by the Bayesian model in
the anterior cingulate cortex (ACC). One interpretation of these data is that the ACC
contributes to choices that are informed by information about the rate of change of the
environment, in line with previous lesion (Kennerley et al., 2006) and fMRI (Behrens et al.,
2007) work implicating this region in making optimal use of past reward history to inform
decisions. Analysis of brain activity at the time of the feedback also supported this
contention. Using an ROI-based analysis, we found that the ACC region activated in concert
with environmental volatility at the time of feedback in (Behrens et al., 2007) was sensitive
to ‘optimal updating’ signals defined by the three-way interaction between angular update,
estimated variability, and volatility. One interpretation consistent with previous work is that
at outcome time the volatility of the environment is encoded in the ACC in a fashion that
dictates the extent that subjects will learn from each outcome (Behrens et al., 2007), in the
decision period, ACC activity is only modulated by the optimal level of uncertainty at times
when subjects employ this optimal strategy (in this task, when the environment is stable).
We additionally found strong optimal updating signals at the time of feedback in the
posterior cingulate gyrus, a brain region implicated in the representation of uncertainty about
rewards (McCoy and Platt, 2005), and in the choice to make exploratory decisions (Pearson
et al., 2009) in the non-human primate.

Admittedly our current data do not indicate the mechanism by which, or the cortical locus at
which, participants switch between strategies. Indeed, one possible candidate is the anterior
insular cortex, where decision-related fMRI signals were predicted by all three strategies,
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and which has been previously implicated in controlling the switch between behavioural
modes (Sridharan et al., 2008). However, this remains a topic for future investigation.

Together, our findings suggest that participants adapt their decision strategy to the demands
of the environment, moving towards statistically optimal behaviour when the environment
permits learning about stable and predictable categories (Nisbett et al., 1983). By contrast, in
volatile environment agents adopt a cognitive strategy that is fast and computationally
frugal, and relies on maintainence processes subserved by the prefrontal cortex.

EXPERIMENTAL PROCEDURES
Subjects

Twenty healthy participants aged between 18 and 37 with no history of psychiatric or
neurological disorder, and normal or corrected-to-normal vision, participated in the
experiment. Participants were paid ~80 Euros for their participation.

Procedure
In each of 5 scanning sessions of ~8 minutes each, subjects viewed 120 successive, full-
contrast Gabor patches that were oriented at between −90° and 90° degrees relative to the
vertical meridian. Each stimulus was visible for 1500 ms, during which period subjects were
required to make a categorization judgement by pressing the right or left button on the
response pad. Auditory feedback consisted of an ascending (400/800 Hz) or descending
(800/400 Hz) tone of 200 ms, and followed stimulus onset by a variable interval in the range
of 3-7 seconds. On 25% of trials, correct or incorrect feedback engendered a small monetary
gain or loss, which was totalled up and supplemented subjects’ compensation (range 20 to
30 Euros). An interstimulus interval of x intervened between feedback and the subsequent
stimulus. Stimuli were drawn randomly from category A (60 trials) or B (60 trials) with no
constraints, and response-category assignments were counterbalanced across subjects.
Category means and variances were unstable and independent, and jumped unpredictably
every 10 or 20 trials (4 episodes of 10 trials, 4 episodes of 20 trials, randomly intermixed) to
a new mean drawn from a uniform random distribution with a variance of either 5° or 20°.

Modelling
Values representing the probability of choosing category A over B under the Bayesian
model were estimated using a hierarchical Bayesian learner that calculates best-guess
estimates of the generative mean and variance of each category in a Markovian fashion. For
each category, a generative model of the observations is assumed as follows (see
supplementary info of Behrens et al. 2007 a more extensive description of a related model):
At each trial i, after the true category has been revealed the probability of observing the
orientation i, given any possible mean and variance may be written:

(4)

Hence each new data point contains information about the underlying mean and variance.
However, the mean and variance are constant over runs of trials before jumps, or change-
points occur. Hence the prior distribution, conditional on the previous trial, may be written
as follows:

(5)
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This equation states that the underlying category mean at trial i will be the same as that at
trial i-1 if there has not been a jump (J=0), or could take on any value if there has been a
jump (J=1). A similar equation may be written to describe the dynamics of σ, which varied
in a log space.

(6)

Jumps J occur at random with probability v, termed the volatility.

(7)

This allows us to marginalise over J to rewrite the conditional priors:

(8)

(9)

This generative model may then be inverted at each trial using Bayes’ rule, with the
posterior distribution from the previous trial acting as the prior for the current trial (See
Behrens et al. 2007 for a formal proof):

First compute the joint distribution over μ and σ parametered from trials i and i-1

(10)

Where this last distribution p(μi−1,σi−1,ν∣Y1:i−1) is the posterior distribution taken from the
previous trial.

Next marginalise over the parameters from the previous trial:

(11)

Lastly incorporate the new information from the current observed angle:

(12)

All integrals are performed using numerical grid integration.

Under the Bayesian model, choice probability values were estimated by comparing the
expected probability that the stimulus Y was drawn from distributions A and B

(13)

The Q-learning model learned the value of state-action pairings as previously described
(Watkins and Dayan, 1992), where R is the feedback [correct = 1, incorrect = 0] and t is
trial.

(14)
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Under this formulation, states (n=18) reflect the angle of orientation of the stimulus in bins
of 10 degrees, i.e.

(15)

The choice rule was then simply

(16)

The working memory model simply updated a single value for A and B whenever new
information was received, i.e. where feedback indicated that a stimulus Y was from the
category A

Allowing choice probability values to be calculated for the subsequent trial i+1 as

(17)

The values calculated in the equations above are in the space of A vs. B, i.e. p(A) > 0.5
predicts that the subject should choose A, and p(A) < 0 predicts that B should be chosen.
These values were used for behavioural analyses concerned with predicting choice. For RT
analyses, and for all fMRI analyses, however, we calculated an absolute choice value
estimate for each trial, directly related to the likelihood of being correct:

Here, choice value = 0 means each option is equally valued, e.g. p(correct) =0.5. We used
choice values because we had no reason to believe that subjects would be faster, or the brain
more active, when the subject chose A over B.

fMRI data acquisition
Magnetic resonance images were acquired with a Siemens (Erlangen, Germany) Allegra
3.0T scanner to acquire gradient echo T2*-weighted echo-planar images with blood
oxygenation level-dependent contrast as an index of local increases in synaptic activity. The
image parameters used were as follows: matrix size, 64 × 64; voxel size, 3 × 3 mm; echo
time, 40 ms; repetition time, 2000 ms. A functional image volume comprised 32 contiguous
slices of 3 mm thickness (with a 1 mm interslice gap), which ensured that the whole brain
was within the field of view.

fMRI data preprocessing
Data were preprocessed using SPM2 (Wellcome Department of Cognitive Neurology,
London). Following correction for head motion and slice acquisition timing, functional data
were spatially normalized to a standard template brain. Images were resampled to 5-mm
cubic voxels and spatially smoothed with a 10-mm full-width at half maximum isotropic
Gaussian kernel. A 256 s temporal high-pass filter was applied in order to exclude low-
frequency artifacts. Temporal correlations were estimated using restricted maximum
likelihood estimates of variance components using a first-order autoregressive model. The
resulting non-sphericity was used to form maximum likelihood estimates of the activations.
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fMRI statistical analysis
Data were analysed in a modified version of SPM2. By default, SPM2 orthogonalises each
parametric regressor in turn with respect to those already entered; we ensured that no
orthogonalisation was used in any analysis. We analysed our fMRI data via two design
matrices. In the first, we entered (1) the main effect of stimulus presentation; (2-4)
parametric regressors for choice value predicted by the Bayesian, QL, and working memory
models; (5) the main effect of volatility; (6-8) the interaction between volatility and choice
value for the three models; (9) the main effect of feedback; (10) a parametric regressor
encoding the valence of the feedback; (11-13) parametric regressors encoding prediction
error signals predicted by the Bayesian, QL and working memory models; (14) a nuisance
regressor encoding the mean fMRI signal from 1000 randomly selected voxels from outside
the brain; (15-20) nuisance regressors encoding realignment parameters (see figure S2 for an
example design matrix). Analyses described in figures 3 (expected value/decision entropy)
pertain to regressors 2-4 (note that decision entropy = 1-choice value); analyses described in
figures 4 (interaction with volatility) pertain to regressors 5-8. Note that main effects of
decision- and feedback-related activity for each model, and their interaction with volatility,
are all entered simultaneously into this design matrix and so the results described reflect
unique variance associated with each of these predictors. Results for the common variance
can be seen in supplemental materials (figure S1).

For the second design matrix, we entered (1) the main effect of stimulus, (2) the main effect
of reward, (3) the log of the main effect of volatility log(VA) (4) where the out come
revealed the stimulus to be from category A, the absolute angular difference between the
current mean of that category and the stimulus ; (5) this difference divided by the

standard deviation of category A ; (6) This value multiplied by the log volatility

 Analyses described in figure 5b (optimal updating) pertain to .

Our analysis strategy was as follows. (1) we calculated whole-brain SPMs corresponding to
the relevant contrasts, reporting voxels that survive p < 0.001 uncorrected. We report
clusters where the peak exceeded at least p < 0.0001 uncorrected, except in two cases: (i)
that of the volatility × decision entropy interactions in the anterior cingulate cortex, where
we relaxed the threshold to p < 0.001, on the basis of strong a priori predictions that optimal
updating signals would be observed there (Behrens et al., 2007; Kennerley et al., 2006), and
(ii) that of the correlation of brain activity with choice value predicted by the Bayesian
model, where marginal [p < 0.001/0.002 uncorrected] signals were observed in a priori
predicted regions [PCC and vmPFC]. Full details of voxels surviving a threshold of p <
0.001 uncorrected are described in supplemental tables 1-4 in the supplemental online
materials.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Human categorisation judgements are guided by both Bayesian and cognitive
strategies

• Decision strategy varies with environmental volatility

• Distinct prefrontal and midbrain regions are activated by different strategies
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Figure 1.
A. Participants viewed a succession of oriented stimuli (Gabor patches) and responded to
each with a button press. Stimuli were drawn from one of two categories, A or B (red/blue
labels in A not shown to participants). B. Category values for an example block (120 trials),
for categories A (red line) and B (blue line). Underlying lighter bars show the generative
mean and variance for each category. Dashed boxes highlight periods of common or
differing category variance. C. Circles show angular values of stimuli presented in an
example block (red circles, A; blue circles, B). White-ringed circles were responded to
correctly by this subject; black-ringed circles provoked an error. Red and blue lines show the
category mean estimated by the Bayesian model. Red/blue background shading indicates the
choice probability landscape across angle,with more red shading indicating angles for which
A was the better choice, and blue shading favouring the response B, according to the
Bayesian model.
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Figure 2.
A. The probability of choosing category A plotted as a function of the log of p(A) calculated
by the Bayesian (left panel), Q-learning (middle panel) and working memory (right panel)
models. Grey circles show data from individual participants; the black line shows the best-
fitting 4-parameter sigmoidal function. B. Parameter estimates from the probit binomial
regression of model-derived estimates of choice probability [p(A)] on human observers’
actual choices, for the three models (QL = Q-learning model, WM = working memory
model). Grey circles show data from individual participants. Stars indicate that comparisons
among regressors are all significant at p<0.001. C. Lines show χ2 values for each model (red
= Bayes, green = QL, red = WM) reflecting the overlap between participants choices and
model choices. Model choices were calculated by applying a criterion (0.01 < c < 0.99) on
p(A) values (x-axis). Each plot is an individual participant. Blue shading shows criterion
values for which the WM model is more successful than the other two models.
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Figure 3.
A. Scatter plots of choice values against reaction time (RT) in seconds for individual
participants, with best fitting linear trend lines for the Bayesian (red), Q-learning (green) and
working memory (blue) models. B. Parameter estimates for the regression of choice values
on RT for the three models. Grey circles are individual participants. More negative values
indicate a better prediction of RT, i.e. when choice values are closer to 1, RT is faster. Stars
indicate the significance of the comparison between betas: *p < 0.05, *** p < 0.001.
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Figure 4.
A. Voxels for which BOLD signals are stronger when choice values from the Bayesian (left
panel), QL (middle panel) and WM (right panel) models are higher (i.e. when the probability
of a correct response is greater) rendered at a threshold of p < 0.001 onto a template brain
(saggital slice). B. Voxels for which BOLD signals are stronger when choice values from
the three models are lower (e.g. when p(A) is closest to 0.5, the probability of correct is
lowest, and decision entropy is highest), shown on three coronal slices. Full coloured circles
highlight clusters that are specific to either the Bayesian or WM models; dashed models
signal the absence of the corresponding cluster for the other model (red, SMA; blue,
striatum; green, anterior dorsolateral PFC; yellow, pre-SMA). Black arrows highlight
activation in the anterior insula, which was present in all three condition (see also figure 5a).
In both A and B, the red-white render scale indicates the t value at each voxel.
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Figure 5.
A. Mean parameter estimates for the correlation with decision entropy predicted by the
Bayesian (left panel), Q-learning (middle panel) and working memory (right panel) models,
averaged over voxels falling within independent regions of interest. Bars are coloured when
parameter estimates are significantly greater than zero at a threshold of p < 0.001. Numbers
in the titles correspond to clusters shown in B. B. Voxels that correlate with decision entropy
for the Bayesian model alone (yellow), the QL model alone (green) and the WM model
alone (red), rendered onto axial slices of a template brain. Voxels were deemed to respond to
one model alone if the voxel was positive-going for decision entropy, and the relevant t-
value was greater than that for the other two models by at least 3.29 (p < 0.001). Numbers
refer to brain regions referred to in the text: 1, extrastriate visual regions; 2, superior parietal
lobule; 3, dorsolateral prefrontal cortex; 4, pre-SMA; 5, striatum; 6, SMA.
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Figure 6.
A. Voxels responding to the interaction between decision entropy and volatility, i.e. voxels
that predict decision-related activity more successfully when the environments is stable than
volatile, for the Bayesian, QL and WM models. Green rings encircle the SMA and ACC. B.
Voxels responding to the three-way interaction of update, category variance, and volatility,
in the posterior cingulate cortex and retrosplenial cortex. For A and B, activations are
rendered onto a template brain, and the red-white scale indicates the t-value associated with
each voxel.
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